A especiação química como determinante do impacto de metais no metabolismo de proteínas
Data
2023-05-22
Tipo
Trabalho de conclusão de curso
Título da Revista
ISSN da Revista
Título de Volume
Resumo
A essencialidade e a toxicidade de um elemento são determinadas pela quantidade ingerida e pelas suas formas químicas. Assim, a exposição a espécies químicas de metais em organismos vivos pode levar a efeitos adversos à saúde humana, no crescimento e desenvolvimento. Estudos in vitro e in vivo sugerem que a exposição crônica a metais essenciais e não essenciais pode resultar em alterações neurotoxicológicas evoluindo para doenças neurodegenerativas, como o Alzheimer, que tem sido associadas a alterações no metabolismo de proteínas. Nesse sentido, a especiação química, que é a identificação das formas químicas de um elemento químico em um sistema, desempenha um papel crucial na compreensão dos efeitos dos metais nos processos biológicos e no meio ambiente. Enquanto a biologia de sistemas, que busca compreender os organismos biológicos em sua totalidade, analisando as interações e o comportamento dos componentes que os formam pode identificar alterações sistêmicas nos organismos, incluindo a identificação de fatores determinantes na evolução de doenças. Dessa maneira, no presente estudo levantamos a hipótese de que a especiação química pode ser determinante na interferência do manganês no metabolismo de proteínas, e objetivamos identificar se as espécies químicas de manganês alteram o metabolismo de proteínas. Os estudos permitiram inferir que espécies químicas divalentes e trivalentes, em especial, do manganês alteram o metabolismo de proteínas de maneira diferenciada, potencialmente associado ao desenvolvimento de doenças neurodegenerativas. Genes afetados pelo Mn2+ envolvem a interrupção de diversas vias metabólicas, acarretando no comprometimento da biossíntese de proteínas. Neste estudo verificou-se que o Mn3+ pode não afetar o metabolismo de proteínas. Essas alterações podem ser atribuídas aos efeitos proteolíticos dos metais.
The essentiality and toxicity of an element are determined by the amount ingested and its chemical forms. Thus, exposure to chemical species of metals in living organisms can lead to adverse effects on human health, growth and development. In vitro and in vivo studies suggest that chronic exposure to essential and non-essential metals can result in neurotoxicological changes leading to neurodegenerative diseases, such as Alzheimer's, which have been associated with changes in protein metabolism. In this sense, chemical speciation, which is the identification of the chemical forms of a chemical element in a system, plays a crucial role in understanding the effects of metals on biological processes and the environment. While systems biology, which seeks to understand biological organisms in their entirety, analyzing the interactions and behavior of the components that form them can identify systemic changes in organisms, including the identification of determining factors in the evolution of diseases. Thus, in the present study we raised the hypothesis that chemical speciation may be determinant in the interference of manganese in protein metabolism, and we aimed to identify whether the chemical species of manganese alter protein metabolism. The studies allowed us to infer that divalent and trivalent chemical species, in particular, of manganese alter protein metabolism in a differentiated way, potentially associated with the development of neurodegenerative diseases. Genes affected by Mn2+ involve the interruption of several metabolic pathways, leading to impaired protein biosynthesis. In this study it was found that Mn3+ may not affect protein metabolism. These changes can be attributed to the proteolytic effects of metals.
The essentiality and toxicity of an element are determined by the amount ingested and its chemical forms. Thus, exposure to chemical species of metals in living organisms can lead to adverse effects on human health, growth and development. In vitro and in vivo studies suggest that chronic exposure to essential and non-essential metals can result in neurotoxicological changes leading to neurodegenerative diseases, such as Alzheimer's, which have been associated with changes in protein metabolism. In this sense, chemical speciation, which is the identification of the chemical forms of a chemical element in a system, plays a crucial role in understanding the effects of metals on biological processes and the environment. While systems biology, which seeks to understand biological organisms in their entirety, analyzing the interactions and behavior of the components that form them can identify systemic changes in organisms, including the identification of determining factors in the evolution of diseases. Thus, in the present study we raised the hypothesis that chemical speciation may be determinant in the interference of manganese in protein metabolism, and we aimed to identify whether the chemical species of manganese alter protein metabolism. The studies allowed us to infer that divalent and trivalent chemical species, in particular, of manganese alter protein metabolism in a differentiated way, potentially associated with the development of neurodegenerative diseases. Genes affected by Mn2+ involve the interruption of several metabolic pathways, leading to impaired protein biosynthesis. In this study it was found that Mn3+ may not affect protein metabolism. These changes can be attributed to the proteolytic effects of metals.