Aplicação de redes complexas no desenvolvimento de metodologia para análise de resiliência e sustentabilidade de cadeia de suprimentos
Data
2022-06-01
Tipo
Dissertação de mestrado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
O estudo de cadeias de suprimentos e da fabricação de produtos manufaturados é um dos principais tópicos relacionados aos impactos da globalização no dia a dia das empresas. Especialmente no contexto de países Latino Americanos, como o Brasil, é necessário entender os impactos da cadeia de suprimentos na sustentabilidade do planeta, assim como sua resiliência a eventos excepcionais. A pandemia do COVID-19 culminou em crises de suprimentos em todo o mundo, incluindo medicamentos e suprimentos hospitalares, sendo necessária a identificação e implementação de alternativas que permitam a redução de custos, eficiência e manutenção de uma cadeia de suprimentos forte e sustentável. Neste contexto, o presente trabalho tem como objetivo central o desenvolvimento de uma metodologia que permita analisar a sustentabilidade e a resiliência de cadeias de suprimentos a partir da modelagem em redes complexas utilizando teoria dos grafos. Em seu desenvolvimento, utilizou-se como estudo de caso a cadeia de suprimentos da Fiocruz/Farmanguinhos, sendo escolhido pela sua complexidade, disponibilidade de dados abertos e importância para o SUS (Sistema Único de Saúde). A modelagem foi feita a partir de uma construção de notebook em Python com o auxílio da biblioteca NetworkX. Os resultados indicam que é possível utilizar métricas de redes complexas para análise conjunta de resiliência e sustentabilidade, além de indicar que localidade/regionalização é o fator principal para a manutenção dos índices.
The study of supply chains and the manufacture of manufactured products is one of the main topics related to the impacts of globalization on the daily lives of companies. Especially in the context of Latin American countries, such as Brazil, it is necessary to understand the impacts of the supply chain on the sustainability of the planet, as well as its resilience to exceptional events. The COVID-19 pandemic has culminated in supply crises around the world, including medicines and hospital supplies, requiring the identification and implementation of alternatives that allow cost reduction, efficiency and maintenance of a strong and sustainable supply chain. In this context, the present work has as its main objective the development of a methodology that allows analyzing the sustainability and resilience of supply chains from the modeling in complex networks using graph theory. In its development, the Fiocruz/Farmanguinhos supply chain was used as a case study, being chosen for its complexity, availability of open data and importance for the SUS (Unified Health System). The modeling was done from a notebook construction in Python with the help of the NetworkX library. The results indicate that it is possible to use complex network metrics for joint analysis of resilience and sustainability, in addition to indicating that locality/regionalization is the main factor for maintaining the indexes.
The study of supply chains and the manufacture of manufactured products is one of the main topics related to the impacts of globalization on the daily lives of companies. Especially in the context of Latin American countries, such as Brazil, it is necessary to understand the impacts of the supply chain on the sustainability of the planet, as well as its resilience to exceptional events. The COVID-19 pandemic has culminated in supply crises around the world, including medicines and hospital supplies, requiring the identification and implementation of alternatives that allow cost reduction, efficiency and maintenance of a strong and sustainable supply chain. In this context, the present work has as its main objective the development of a methodology that allows analyzing the sustainability and resilience of supply chains from the modeling in complex networks using graph theory. In its development, the Fiocruz/Farmanguinhos supply chain was used as a case study, being chosen for its complexity, availability of open data and importance for the SUS (Unified Health System). The modeling was done from a notebook construction in Python with the help of the NetworkX library. The results indicate that it is possible to use complex network metrics for joint analysis of resilience and sustainability, in addition to indicating that locality/regionalization is the main factor for maintaining the indexes.