Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks

Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks

Author Lima, Francisco J. L. Google Scholar
Martins, Fernando R. Autor UNIFESP Google Scholar
Pereira, Enio B. Google Scholar
Lorenz, Elke Google Scholar
Heinemann, Detlev Autor UNIFESP Google Scholar
Abstract There has been a growing demand on energy sector for short-term predictions of energy resources to support the planning and management of electricity generation and distribution systems. The purpose of this work is establishing a methodology to produce solar irradiation forecasts for the Brazilian Northeastern region by using Weather Research and Forecasting Model (WRF) combined with a statistical post-processing method. The 24 h solar irradiance forecasts were obtained using the WRF model. In order to reduce uncertainties, a cluster analysis technique was employed to select areas presenting similar climate features. Comparison analysis between VVRF model outputs and observational data were performed to evaluate the model skill in forecasting surface solar irradiance. Next, model-derived short-term solar irradiance forecasts from the WRF outputs were refined by using an artificial neural networks (ANNs) technique. The output variables of the WRF model representing the forecasted atmospheric conditions were used as predictors by ANNs, adjusted to calculate the solar radiation incident for the entire Brazilian Northeastern (NEB) (which was divided into four homogeneous regions, defined by the Ward method). The data used in this study was from rainy and dry seasons between 2009 and 2011. Several predictors were tested to adjust and simulate the ANNs. We found the best ANN architecture and a group of 10 predictors, in which a deeper analyzes were carried out, including performance evaluation for Fall and Spring of 2011 (rainy and dry season in NEB, mainly in the northern section). There was a significant improvement of the WRF model forecasts when adjusted by the ANNs, yielding lower bias and RMSE, and an increase in the correlation coefficient. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords Solar energy forecast
Artificial neural network
WRF model
Solar irradiance
xmlui.dri2xhtml.METS-1.0.item-coverage Oxford
Language English
Sponsor Brazilian National Research Council (CNPq)
Grant number CNPq: 142083/2012-7
CAPES/DAAD/GIZ/NOPA grant: 4404/13-0
Date 2016
Published in Renewable Energy. Oxford, v. 87, p. 807-818, 2016.
ISSN 0960-1481 (Sherpa/Romeo, impact factor)
Publisher Pergamon-Elsevier Science Ltd
Extent 807-818
Access rights Closed access
Type Article
Web of Science ID WOS:000367759500079

Show full item record


File Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)




My Account