Synthesis, characterization and cytotoxicity of S-nitrosomercaptosuccinic acid-containing alginate/chitosan nanoparticles

Data
2017
Tipo
Trabalho apresentado em evento
Título da Revista
ISSN da Revista
Título de Volume
Resumo
Nitric oxide (NO) is an endogenous free radical, which plays key roles in several biological processes including vasodilation, neurotransmission, inhibition of platelet adhesion, cytotoxicity against pathogens, wound healing, and defense against cancer. Due to the relative instability of NO in vivo (half-life of ca. 0.5 seconds), there is an increasing interest in the development of low molecular weight NO donors, such as S-nitrosothiols (RSNOs), which are able to prolong and preserve the biological activities of NO in vivo. In order to enhance the sustained NO release in several biomedical applications, RSNOs have been successfully allied to nanomaterials. In this context, this work describes the synthesis and characterization of the NO donor S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), which belongs to the class of RSNOs, and its incorporation in polymeric biodegradable nanoparticles composed by alginate/chitosan. First, chitosan nanoparticles were obtained by gelation process with sodium tripolyphosphate (TPP), followed by the addition of the alginate layer, to enhance the nanoparticle protection. The obtained nanoparticles presented a hydrodynamic diameter of 343 +/- 38 nm, polydispersity index (PDI) of 0.36 +/- 0.1, and zeta potential of -30.3 +/- 0.4 mV, indicating their thermal stability in aqueous suspension. The negative zeta potential value was assigned to the presence of alginate chains on the surface of chitosan/TPP nanoparticles. The encapsulation efficiency of the NO donor into the polymeric nanoparticles was found to be 98 +/- 0.2%. The high encapsulation efficiency value was attributed to the positive interactions between the NO donor and the polymeric content of the nanoparticles. Kinetics of NO release from the nanoparticles revealed a spontaneous and sustained release of therapeutic amounts of NO, for several hours under physiological temperature. The incubation of NO-releasing alginate/chitosan nanoparticles with human hepatocellular carcinoma (HepG2) cell line revealed a concentration-dependent toxicity. These results point to the promising uses of NO-releasing alginate/chitosan nanoparticles for anti-cancer chemotherapy.
Descrição
Citação
5th Nanosafe International Conference On Health And Safety Issues Related To Nanomaterials For A Socially Responsible Approach (Nanosafe 2016). Bristol, v. 838, p. -, 2017.
Pré-visualização PDF(s)