Métodos Do Tipo Newton Aplicados A Métodos De Restauração Inexata
Data
2017-03-14
Tipo
Dissertação de mestrado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
In this dissertation, we study Brent’s method to solve systems of equations and their relation with Inexata Restoration methods. Brent’s method solves a non-linear system by dividing it into blocks and considering linearizations of these blocks in each iteration. We reconstruct a proof of a theorem in which are established the conditions so that the point sequence generated by Brent’s method has local quadratic convergence to the system solution. Inexact Restoration methods are developed to solved constrained optimization problems and the have the characteristic of dividing each iteration into two phases. In the first one, they seek to improve viability and, in the second, optimality. So, it is natural to think that Inexact Restoration methods look to solve the KKT system by dividing it into two blocks. For this reason, it seems evident the existence of a relation between Brent’s and Inexact Restoration methods. Considering this, we present a quadratic local convergence result for the point sequences generated by the Inexact Restoration methods, derived from adaptations in the convergence demonstration of Brent’s method. After that, we propose two iterative computational methods for optimization, introducing small modifications in the Inexact Restoration method. We show that these two methods also have quadratic convergence and we discuss possible advantages and disadvantages of each one of them. Finally we briefly comment some ideas about how these methods could be inserted into a scheme with global convergence.
Nesta dissertação, estudamos o método de Brent para resolução de sistemas de equações e a sua relação com métodos de Restauração Inexata. O método de Brent resolve um sistema não linear dividindo-o em blocos e considerando linearizações destes blocos em cada iteração. Reconstruímos uma demonstração de um teorema no qual são estabelecidas condições para que a sequência de pontos gerada pelo método de Brent possua convergência local quadrática à solução do sistema. Métodos de Restauração Inexata são desenvolvidos para resolver problemas de otimização com restrições e possuem a característica de dividir cada iteração em duas fases. Na primeira delas, busca-se melhorar a factibilidade e, na segunda, a otimalidade. Desta forma, é natural pensar que em métodos de Restauração Inexata busca-se resolver o sistema KKT dividindo-o em dois blocos. Por esta razão, fica evidente a existência de uma relação entre métodos de Brent e de Restauração Inexata. Pensando nisso, apresentamos um resultado de convergência local quadrática para sequências de pontos geradas pelos métodos de Restauração Inexata, proveniente de adaptações na demonstração de convergência do método de Brent. Posteriormente, propomos dois métodos computacionais iterativos para otimização, introduzindo pequenas modificações no método de Restauração Inexata. Mostramos que estes dois métodos também têm convergência quadrática e discutimos possíveis vantagens e desvantagens de cada um deles. Finalmente comentamos brevemente algumas ideias de como estes métodos poderiam ser inseridos em um esquema com convergência global.
Nesta dissertação, estudamos o método de Brent para resolução de sistemas de equações e a sua relação com métodos de Restauração Inexata. O método de Brent resolve um sistema não linear dividindo-o em blocos e considerando linearizações destes blocos em cada iteração. Reconstruímos uma demonstração de um teorema no qual são estabelecidas condições para que a sequência de pontos gerada pelo método de Brent possua convergência local quadrática à solução do sistema. Métodos de Restauração Inexata são desenvolvidos para resolver problemas de otimização com restrições e possuem a característica de dividir cada iteração em duas fases. Na primeira delas, busca-se melhorar a factibilidade e, na segunda, a otimalidade. Desta forma, é natural pensar que em métodos de Restauração Inexata busca-se resolver o sistema KKT dividindo-o em dois blocos. Por esta razão, fica evidente a existência de uma relação entre métodos de Brent e de Restauração Inexata. Pensando nisso, apresentamos um resultado de convergência local quadrática para sequências de pontos geradas pelos métodos de Restauração Inexata, proveniente de adaptações na demonstração de convergência do método de Brent. Posteriormente, propomos dois métodos computacionais iterativos para otimização, introduzindo pequenas modificações no método de Restauração Inexata. Mostramos que estes dois métodos também têm convergência quadrática e discutimos possíveis vantagens e desvantagens de cada um deles. Finalmente comentamos brevemente algumas ideias de como estes métodos poderiam ser inseridos em um esquema com convergência global.