Treinamento muscular respiratório para apneia obstrutiva do sono: revisão sistemática e meta-análise
Data
2024-06-26
Tipo
Dissertação de mestrado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
Objetivo: Avaliar os efeitos do treinamento muscular respiratório (TMR) no trata-mento de pacientes com a apneia obstrutiva do sono (AOS). Métodos: Conduzimos uma revisão sistemática de ensaios clínicos randomizados (ECRs) que avaliaram os efeitos do TMR em pacientes com AOS. O protocolo do estudo foi registrado pros-pectivamente na Plataforma Prospero (CRD42018096980). Em julho de 2022, foram realizadas buscas nas bases de dados Medical Literature Analysis and Retrieval System Online (MEDLINE) via Pubmed, Excerpta Medica dataBASE (Embase) via Elsevier, Cochrane Central Register of Controlled Trials (CENTRAL) via Cochrane Library, Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) via Portal Biblioteca Virtual em Saúde, Physiotherapy Evidence Database (PEDro) e Clinical Trials, com estratégias sensíveis, sem limitação de ano de publicação ou idioma. Buscas adicionais também foram realizadas na literatura cinzenta. Incluí-mos apenas ECRs com indivíduos com idade > 18 anos. Os estudos foram excluí-dos se os participantes tivessem diagnósticos de lesão medular ou doença neuro-muscular. Dois autores independentes selecionaram os estudos relevantes, extraí-ram os dados e avaliaram o rigor metodológico e a certeza da evidência utilizando as ferramentas Risk of Bias 2.0 da Cochrane e a abordagem Grading of Recom-mendations As-sessment, Development and Evaluation (GRADE), respectivamente. As discordâncias em qualquer fase foram resolvidas por um terceiro revisor. Quando houve homogeneidade quanto aos participantes, intervenções e desfechos avalia-dos, agrupamos os estudos em meta-análise por meio do modelo de efeitos aleató-rios no software Review Manager 5.4. Quando a combinação dos dados não foi viá-vel, realizamos apenas uma síntese narrativa do estudo. Resultados: Treze ECRs com um total de 432 participantes foram incluídos. Todos os estudos apresentaram alto risco geral de viés. Nove ECRs compararam o treinamento muscular inspiratório (TMI) com sham, os resultados sugerem que o TMI pode reduzir a pressão arterial diastólica (PAD) em repouso (diferença média (DM)= -6,09; intervalo de confiança (IC) de 95% -10,02 a -2,16; diferença mínima clinicamente importante (DMCI): 2 mmHg), capacidade vital forçada (CVF) pós-intervenção (DM= -0,20; IC 95% -1,39 a 0,99), a relação VEF1/CVF % da mudança (DM= -5,80; IC 95% -14,77 a 3,17), a VEF1/CVF pós-intervenção (DM= -7,10 IC 95% -18,82 a 4,62) e o pico de fluxo expi-ratório (DM= -8,80; IC 95% -2,63 a 1,03) quando comparado com sham; todos com baixa certeza da evidência. O TMI pode aumentar a CVF % da mudança (DM= 14,30; IC 95 % 5,50 a 23,10), a CVF prevista (DM= 17,20; 95 % IC 9,53 a 24,87; DMCI de 2%) e o volume expiratório forçado (VEF) no primeiro segundo % da mu-dança (DM= 16,40; IC 95% 5,81) quando comparado com sham; todos com baixa certeza da evidência. E o TMI pode resultar em pouca ou nenhuma diferença (efeito trivial) na qualidade do sono (DM= -3,07; IC 95% -4,33 a -1,82; DMCI: 4,4 pontos) quando comparado com sham; baixa certeza da evidência. Para os demais desfe-chos, as evidências são de muito baixa certeza. Um ECR comparou os efeitos do TMI com exercícios orofaríngeos (EO), os resultados sugerem que TMI pode reduzir a pressão expiratória máxima (PEmáx) (DM= -20,02; IC 95% -40,92 a 0,88); baixa certeza da evidência; pode resultar em pouca ou nenhuma diferença (efeito trivial) na qualidade do sono (DM= -0,20; 95% IC -1,95 a 1,55; DMCI: 4,4 pontos) e na qua-lidade de vida (DM= -0,36; IC 95% -1,42 a 0,70; DMCI: 1,8 pontos); ambos com baixa certeza da evidência. Para os demais desfechos, as evidências são de muito baixa certeza. Um ECR comparou os efeitos do TMI mais exercício físico com exercício físico isolado, os resultados sugerem que TMI mais exercício físico pode reduzir a PEmáx (DM= -28,30; IC 95% -58,90 a 2,30); baixa certeza da evidência; pode resul-tar em pouca ou nenhuma diferença (efeito trivial) na qualidade de vida (DM= 1.1; IC 95% 4.12 a 6.32; DMCI: 7 pontos) e na capacidade funcional (DM= 1,79; IC 95% 0,4 a 3,98; DMCI: 25 metros); ambos com baixa certeza da evidência. Para os de-mais desfechos, as evidências são de muito baixa certeza. O mesmo ECR compa-rou os efeitos do TMI mais exercício físico com exercício físico mais ventilação não invasiva, os resultados sugerem que o TMI mais exercício físico pode reduzir a pres-são arterial sistólica (DM= -10,8; IC 95% -16,77 a -4,83; DMCI: 2 mmHg) e pode au-mentar a PAD (DM= 10,5; IC 95% 4,9 a 16,1; DMCI: 2 mmHg); baixa certeza da evi-dência. Para os demais desfechos, as evidências são de muito baixa certeza. Um ECR comparou os efeitos do TMI mais exercícios de reabilitação cardíaca com exer-cícios de reabilitação cardíaca isolado, os resultados sugerem que TMI mais exercí-cios de reabilitação cardíaca pode resultar em pouca ou nenhuma diferença (efeito trivial) na qualidade do sono (DM= -1,5; IC 95% -2,97 a -0,03; DMCI: 4,4 pontos); baixa certeza da evidência. Para os demais desfechos, as evidências são de muito baixa certeza. Apena um ECR avaliou os efeitos do TME comparado com sham, os resultados sugerem que o TME pode reduzir o IAH (DM= -44; IC 95% -48,37 a -39,63; DMCI: 5 eventos/hora), a qualidade do sono (DM= -38; IC 95% -45.76 a -30.24, DMCI: 4,4 pontos) e pode aumentar a PEmáx (DM= 59; IC 95% 52,39 a 65,61) quando comparado com sham; todos com baixa certeza da evidência. Conclusão: O TMI, quando comparado com sham, pode aumentar a CVF % da mudança, a CVF prevista, o VEF no primeiro segundo % da mudança; e pode reduzir a CVF pós-intervenção, a relação VEF1/CVF, a VEF1.0/CVF pós-intervenção e o pico de fluxo expiratório. Em comparação com exercícios orofaríngeos, o TMI pode reduzir a força muscular expiratória. E quando combinado com outras intervenções, o TMI pode reduzir a pressão expiratória máxima, a pressão artéria sistólica e pode aumentar a pressão arterial diastólica. Esses resultados devem ser interpretados com cautela, considerando o nível de certeza nas evidências disponíveis e as limitações metodo-lógicas dos estudos incluídos. Assim, novos ECRs com uma metodologia mais rigo-rosa e com um maior número de participantes, são necessários para melhorar a pre-cisão das estimativas de efeitos encontradas.
Objective: To evaluate the effects of Respiratory Muscle Training (RMT) in the treatment of patients with obstructive sleep apnea. Methods: We conducted a sys-tematic review of randomized clinical trials (RCTs) assessing the effects of RMT on patients with OSA. The study protocol was prospectively registered on the Prospero platform (CRD42018096980). In July 2022, searches were performed in the Medical Literature Analysis and Retrieval System Online (MEDLINE) via PubMed, Excerpta Medica database (Embase) via Elsevier, Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS) via the Virtual Health Library Portal, Physiotherapy Evidence Database (PEDro), and Clinical Trials with sensitive strategies, without limiting the year of publication or language. Additional searches were also conduct-ed in grey literature. We included only RCTs with individuals aged > 18 years. Stud-ies were excluded if participants had diagnoses of spinal cord injury or neuromuscu-lar disease. Two independent authors selected relevant studies, extracted data, and assessed methodological rigor and certainty of evidence using the Cochrane Risk of Bias 2.0 tool and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach, respectively. Disagreements at any stage were re-solved by a third reviewer. When there was homogeneity regarding participants, in-terventions, and evaluated outcomes, we grouped studies in a meta-analysis using the random-effects model in Review Manager 5.4 software. When data combination was not feasible, we performed only a narrative synthesis of the study. Results: Thirteen RCTs with a total of 432 participants were included. All studies presented an overall high risk of bias. Nine RCTs compared inspiratory muscle training (IMT) with sham, and the results suggest that IMT may reduce resting diastolic blood pres-sure (mean difference (MD) = -6.09; 95% confidence interval (CI) -10.02 to -2.16; minimal clinically important difference (MCID): 2 mmHg), forced vital capacity (FVC) post-intervention (MD = -0.20; 95% CI -1.39 to 0.99), the FEV1/FVC ratio % change (MD = -5.80; 95% CI -14.77 to 3.17), the FEV1/FVC post-intervention (MD = -7.10; 95% CI -18.82 to 4.62), and peak expiratory flow (MD = -8.80; 95% CI -2.63 to 1.03) compared to sham; all with low certainty of the evidence. IMT may increase FVC % change (MD = 14.30; 95% CI 5.50 to 23.10), predicted FVC (MD = 17.20; 95% CI 9.53 to 24.87; MCID of 2%), and forced expiratory volume (FEV) in the first second % change (MD = 16.40; 95% CI 5.81) compared to sham; all with low certainty of evi-dence. And RMT may result in little or no difference (trivial effect) in sleep quality (MD= -3.07; 95% CI -4.33 to -1.82; MCID: 4.4 points) compared with sham; low cer-tainty of evidence. For other outcomes, the evidence is of very low certainty. One RCT compared the effects of RMT with oropharyngeal exercises (OE), and the re-sults suggest that RMT may reduce maximum expiratory pressure (MEP) (MD= -20.02; 95% CI -40.92 to 0.88); low certainty of evidence; may result in little or no dif-ference (trivial effect) in sleep quality (MD= -0.20; 95% CI -1.95 to 1.55; MCID: 4.4 points) and in quality of life (MD= -0.36; 95% CI -1.42 to 0.70; MCID: 1.8 points); both with low certainty of evidence. For other outcomes, the evidence is of very low cer-tainty. One RCT compared the effects of RMT plus physical exercise with isolated physical exercise, and the results suggest that RMT plus physical exercise may re-duce MEP (MD= -28.30; 95% CI -58.90 to 2.30); low certainty of evidence; may result in little or no difference (trivial effect) in quality of life (MD= 1.1; 95% CI 4.12 to 6.32; MCID: 7 points) and in functional capacity (MD= 1.79; 95% CI 0.4 to 3.98; MCID: 25 meters); both with low certainty of evidence. For other outcomes, the evidence is of very low certainty. The same RCT compared the effects of RMT plus physical exer-cise with physical exercise plus non-invasive ventilation, and the results suggest that RMT plus physical exercise may reduce systolic blood pressure (SBP) (MD= -10.8; 95% CI -16.77 to -4.83; MCID: 2 mmHg) and may increase diastolic blood pres-sure (DBP) (MD= 10.5; 95% CI 4.9 to 16.1; MCID: 2 mmHg); low certainty of evi-dence. For other outcomes, the evidence is of very low certainty. One RCT com-pared the effects of RMT plus cardiac rehabilitation exercises with isolated cardiac rehabilitation exercises, and the results suggest that RMT plus cardiac rehabilitation exercises may result in little or no difference (trivial effect) in sleep quality (MD= -1.5; 95% CI -2.97 to -0.03; MCID: 4.4 points); low certainty of evidence. For other out-comes, the evidence is of very low certainty. Only one RCT assessed the effects of RMT compared with sham, and the results suggest that RMT may reduce apnea-hypopnea index (AHI) (MD= -44; 95% CI -48.37 to -39.63; MCID: 5 events/hour), sleep quality (MD= -38; 95% CI -45.76 to -30.24, MCID: 4.4 points), and may increase MEP (MD= 59; 95% CI 52.39 to 65.61) compared with sham; all with low certainty of evidence. Conclusion: RMT, when compared to sham, may increase FVC % change, predicted FVC, and forced expiratory volume in one second % change; and may reduce FVC post-intervention, FEV1/FVC ratio, post-intervention FEV1.0/FVC, and peak expiratory flow. Compared to oropharyngeal exercises, RMT may reduce expiratory muscle strength. When combined with other interventions, RMT may re-duce maximal expiratory pressure, systolic blood pressure, and may increase diastol-ic blood pressure. These results should be interpreted with caution, considering the level of certainty in the available evidence and the methodological limitations of the included studies. Thus, new RCTs with a more rigorous methodology and a larger number of participants are necessary to improve the accuracy of the effect estimates found.
Objective: To evaluate the effects of Respiratory Muscle Training (RMT) in the treatment of patients with obstructive sleep apnea. Methods: We conducted a sys-tematic review of randomized clinical trials (RCTs) assessing the effects of RMT on patients with OSA. The study protocol was prospectively registered on the Prospero platform (CRD42018096980). In July 2022, searches were performed in the Medical Literature Analysis and Retrieval System Online (MEDLINE) via PubMed, Excerpta Medica database (Embase) via Elsevier, Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS) via the Virtual Health Library Portal, Physiotherapy Evidence Database (PEDro), and Clinical Trials with sensitive strategies, without limiting the year of publication or language. Additional searches were also conduct-ed in grey literature. We included only RCTs with individuals aged > 18 years. Stud-ies were excluded if participants had diagnoses of spinal cord injury or neuromuscu-lar disease. Two independent authors selected relevant studies, extracted data, and assessed methodological rigor and certainty of evidence using the Cochrane Risk of Bias 2.0 tool and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach, respectively. Disagreements at any stage were re-solved by a third reviewer. When there was homogeneity regarding participants, in-terventions, and evaluated outcomes, we grouped studies in a meta-analysis using the random-effects model in Review Manager 5.4 software. When data combination was not feasible, we performed only a narrative synthesis of the study. Results: Thirteen RCTs with a total of 432 participants were included. All studies presented an overall high risk of bias. Nine RCTs compared inspiratory muscle training (IMT) with sham, and the results suggest that IMT may reduce resting diastolic blood pres-sure (mean difference (MD) = -6.09; 95% confidence interval (CI) -10.02 to -2.16; minimal clinically important difference (MCID): 2 mmHg), forced vital capacity (FVC) post-intervention (MD = -0.20; 95% CI -1.39 to 0.99), the FEV1/FVC ratio % change (MD = -5.80; 95% CI -14.77 to 3.17), the FEV1/FVC post-intervention (MD = -7.10; 95% CI -18.82 to 4.62), and peak expiratory flow (MD = -8.80; 95% CI -2.63 to 1.03) compared to sham; all with low certainty of the evidence. IMT may increase FVC % change (MD = 14.30; 95% CI 5.50 to 23.10), predicted FVC (MD = 17.20; 95% CI 9.53 to 24.87; MCID of 2%), and forced expiratory volume (FEV) in the first second % change (MD = 16.40; 95% CI 5.81) compared to sham; all with low certainty of evi-dence. And RMT may result in little or no difference (trivial effect) in sleep quality (MD= -3.07; 95% CI -4.33 to -1.82; MCID: 4.4 points) compared with sham; low cer-tainty of evidence. For other outcomes, the evidence is of very low certainty. One RCT compared the effects of RMT with oropharyngeal exercises (OE), and the re-sults suggest that RMT may reduce maximum expiratory pressure (MEP) (MD= -20.02; 95% CI -40.92 to 0.88); low certainty of evidence; may result in little or no dif-ference (trivial effect) in sleep quality (MD= -0.20; 95% CI -1.95 to 1.55; MCID: 4.4 points) and in quality of life (MD= -0.36; 95% CI -1.42 to 0.70; MCID: 1.8 points); both with low certainty of evidence. For other outcomes, the evidence is of very low cer-tainty. One RCT compared the effects of RMT plus physical exercise with isolated physical exercise, and the results suggest that RMT plus physical exercise may re-duce MEP (MD= -28.30; 95% CI -58.90 to 2.30); low certainty of evidence; may result in little or no difference (trivial effect) in quality of life (MD= 1.1; 95% CI 4.12 to 6.32; MCID: 7 points) and in functional capacity (MD= 1.79; 95% CI 0.4 to 3.98; MCID: 25 meters); both with low certainty of evidence. For other outcomes, the evidence is of very low certainty. The same RCT compared the effects of RMT plus physical exer-cise with physical exercise plus non-invasive ventilation, and the results suggest that RMT plus physical exercise may reduce systolic blood pressure (SBP) (MD= -10.8; 95% CI -16.77 to -4.83; MCID: 2 mmHg) and may increase diastolic blood pres-sure (DBP) (MD= 10.5; 95% CI 4.9 to 16.1; MCID: 2 mmHg); low certainty of evi-dence. For other outcomes, the evidence is of very low certainty. One RCT com-pared the effects of RMT plus cardiac rehabilitation exercises with isolated cardiac rehabilitation exercises, and the results suggest that RMT plus cardiac rehabilitation exercises may result in little or no difference (trivial effect) in sleep quality (MD= -1.5; 95% CI -2.97 to -0.03; MCID: 4.4 points); low certainty of evidence. For other out-comes, the evidence is of very low certainty. Only one RCT assessed the effects of RMT compared with sham, and the results suggest that RMT may reduce apnea-hypopnea index (AHI) (MD= -44; 95% CI -48.37 to -39.63; MCID: 5 events/hour), sleep quality (MD= -38; 95% CI -45.76 to -30.24, MCID: 4.4 points), and may increase MEP (MD= 59; 95% CI 52.39 to 65.61) compared with sham; all with low certainty of evidence. Conclusion: RMT, when compared to sham, may increase FVC % change, predicted FVC, and forced expiratory volume in one second % change; and may reduce FVC post-intervention, FEV1/FVC ratio, post-intervention FEV1.0/FVC, and peak expiratory flow. Compared to oropharyngeal exercises, RMT may reduce expiratory muscle strength. When combined with other interventions, RMT may re-duce maximal expiratory pressure, systolic blood pressure, and may increase diastol-ic blood pressure. These results should be interpreted with caution, considering the level of certainty in the available evidence and the methodological limitations of the included studies. Thus, new RCTs with a more rigorous methodology and a larger number of participants are necessary to improve the accuracy of the effect estimates found.
Descrição
Citação
SOUSA. André Silva de. Treinamento muscular respiratório para apneia obstrutiva do sono: revisão sistemática e meta-análise. 2024. 119 f. Dissertação (Mestrado em Saúde Baseada em Evidências) - Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP). São Paulo, 2024.