Mitigando viés de gênero na tradução automática para o português
Data
2024-02-26
Tipo
Dissertação de mestrado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
A Tradução Automática (TA) tornou-se uma ferramenta essencial na era da globalização, facilitando a comunicação e o acesso à informação em diversas línguas. No entanto, a presença de viés em modelos de TA representa um desafio significativo, especialmente em línguas menos populares como o Português. Um dos desafios está relacionado à presença de viés de gênero na tradução, em que estereótipos e desigualdades sociais podem ser
inadvertidamente perpetuados. Esta pesquisa se concentra em abordar e mitigar o viés de gênero em modelos de TA do Inglês para o Português, uma área ainda pouco explorada em comparação com outros pares de línguas. O foco era desenvolver uma metodologia que preservasse a precisão das traduções, ao mesmo tempo em que promovia a equidade de gênero nos textos gerados. Para isso, a estratégia adotada foi a de aplicar técnicas de ajuste
fino (fine-tuning) em um modelo de TA pré-treinado, visando otimizar os parâmetros do modelo para alcançar traduções precisas e reduzir o viés de gênero. A pesquisa desenvolveu um processo de ajuste fino focado na redução do viés, que inclui a criação de um corpus paralelo Inglês-Português equilibrado em relação à representação estereotipada / não estereotipada de gênero. Foi utilizado o modelo de TA pré-treinado MarianMT como
base, o qual foi ajustado utilizando um conjunto de dados específico, visando mitigar o viés de gênero nas traduções do Inglês para o Português, sem comprometer demasiadamente a qualidade do modelo original. Os resultados, medidos com base no conjunto de testes WinoMT, determinados pelos indicadores ∆G, ∆S e a acurácia global (preservação do gênero da entidade principal do original), mostraram uma melhoria significativa na
equidade de gênero após o emprego do fine-tuning, embora com uma ligeira redução na qualidade da tradução, verificada pela pontuação BLEU (BiLingual Evaluation Understudy). Este estudo não só demonstra a eficácia do fine-tuning para atenuar o viés de gênero em traduções do Inglês para o Português, mas também contribui para a compreensão mais ampla de como abordar este desafio e abre caminhos para futuras pesquisas na área, ressaltando a importância de criar sistemas de inteligência artificial mais inclusivos e eticamente responsáveis.