Desenvolvimento de um microgel de alginato carreado com vetores adeno-associados para liberação sustentada
Data
2020-01-30
Tipo
Dissertação de mestrado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
Gene therapy consists in manipulating and inserting exogenous genetic material in a patient to treat diseases. Although gene transfer technologies have greatly improved, there are still several limitations such as uncontrolled vector release that leads to immediate and excessive release of vectors at the site of administration. The consequence of this uncontrolled release is the leakage of vectors to other tissues, reducing gene transfer efficiency in the desired tissues and increasing the transfer of vectors to unwanted tissues. One solution to this problem is the use of vectors encapsulated in a biodegradable gel for slow and continuous release. Droplet microfluidics enabled the production of small and homogeneous microgels as carriers. Using alginate in a microfluidic device, it is possible to produce biocompatible alginate microgels with a sustained release kinetics of molecules. Despite being a promising carrier for gene therapy, there are no studies in the literature on the encapsulation of non-integrative viral vectors using microfluidics. In this work, 1.2% alginate microgel delivery system with type 2 adeno-associated vectors (AAV) was evaluated for its use for gene therapy. To this end, microgels encapsulate with model nanoparticles and AAVs were produced by microfluidics using the competitive ligand exchange crosslinking (CLEX) method. The microgels were produced and their encapsulation and controlled release capacity were evaluated by fluorescence spectroscopy, realtime quantitative PCR and fluorescence microscopy techniques, the latter to analyze the in vitro transduction efficiency of encapsulated AAVs. For the characterization, techniques of phase contrast microscopy, scanning electron microscopy and atomic force microscopy were used. Results showed that the pure 1.2% alginate microgels, microgels loaded with nanoparticles and microgels loaded with AAVs presented an average size of 125 µm, 106 µm and 116 µm, respectively. While pure and AAV microgels were monodisperse and with a regular topography, microgels with nanoparticles were monodisperse and showed an irregular and porous topography. The average encapsulation efficiency was 70.9% for nanoparticles and 13.2% for AAVs. Release kinetics studies have shown that the microgels produced can release encapsulated nanoparticles and AAVs in a continuous manner. In vitro transduction studies with HeLa cells using microgels with encapsulated AAVs showed that despite the low encapsulation efficiency, the AAVs released from the microgels were able to transduce cells, validating this delivery system for use in gene therapy studies.
A terapia gênica consiste na manipulação e inserção de material genético exógeno em um paciente para tratar doenças. Apesar das tecnologias de transferência gênica terem melhorado muito, ainda há várias limitações como o descontrole da liberação de vetores, o que leva a liberação imediata e excessiva de vetores no local de administração. A consequência disso é o vazamento destes vetores para outros tecidos, logo, há uma redução na eficiência de transferência gênica no local desejado e uma maior transferência de vetores para tecidos indesejados. Uma das soluções para este problema pode ser o uso de vetores encapsulados num gel biodegradável para liberação lenta e continua. A microfluídica de gotas permite produzir microgéis pequenos e homogêneos como carreadores. Utilizando alginato no dispositivo microfluídico, é possível produzir microgéis de alginato biocompatíveis e com uma cinética sustentada de liberação de moléculas. Apesar de ser um carreador promissor para terapia gênica, ainda não há estudos na literatura sobre o encapsulamento de vetores virais não integrativos via microfluídica. Neste trabalho foi avaliado o sistema de entrega de microgéis de alginato 1,2% carreados com vetores adeno-associados (AAV) tipo 2 visando seu uso para terapia gênica. Para tanto, os microgéis carreados com nanopartículas modelo e AAVs foram produzidos por microfluídica através do método de crosslinking por troca de ligantes (CLEX). Os microgéis foram produzidos e sua capacidade de encapsulamento e liberação sustentada foram avaliadas pelas técnicas de espectroscopia de fluorescência, PCR quantitativa em tempo real e microscopia de fluorescência, sendo esta última para analisar a eficiência de transdução in vitro dos AAVs encapsulados. Para caracterização, foram utilizadas as técnicas de microscopia de contraste de fase, microscopia eletrônica de varredura e microscopia de força atômica. Os resultados mostraram que os microgéis de alginato 1,2% puros, carreados com nanopartículas e carreados com AAVs apresentaram um tamanho médio de 125 µm, 106 µm e 116 µm, respectivamente. Enquanto os microgéis puros e com AAVs se apresentaram monodispersos e com uma topografia regular, os microgéis com nanopartículas produzidos na melhor condição (B) se apresentaram monodispersos e com uma topografia irregular e porosa. A eficiência média de encapsulamento foi de 70,9% para as nanopartículas e 13,2% para os AAVs. Os estudos de cinética de liberação mostraram que os microgéis produzidos possuem a capacidade de liberar as xiv nanopartículas e os AAVs encapsulados de maneira contínua. Os estudos in vitro de transdução de células HeLa utilizando-se microgéis com AAVs encapsulados mostraram que apesar da baixa eficiência de encapsulamento, os AAVs liberados dos microgéis foram capazes de transduzir células, validando esse sistema de entrega para utilização em estudos de terapia gênica.
A terapia gênica consiste na manipulação e inserção de material genético exógeno em um paciente para tratar doenças. Apesar das tecnologias de transferência gênica terem melhorado muito, ainda há várias limitações como o descontrole da liberação de vetores, o que leva a liberação imediata e excessiva de vetores no local de administração. A consequência disso é o vazamento destes vetores para outros tecidos, logo, há uma redução na eficiência de transferência gênica no local desejado e uma maior transferência de vetores para tecidos indesejados. Uma das soluções para este problema pode ser o uso de vetores encapsulados num gel biodegradável para liberação lenta e continua. A microfluídica de gotas permite produzir microgéis pequenos e homogêneos como carreadores. Utilizando alginato no dispositivo microfluídico, é possível produzir microgéis de alginato biocompatíveis e com uma cinética sustentada de liberação de moléculas. Apesar de ser um carreador promissor para terapia gênica, ainda não há estudos na literatura sobre o encapsulamento de vetores virais não integrativos via microfluídica. Neste trabalho foi avaliado o sistema de entrega de microgéis de alginato 1,2% carreados com vetores adeno-associados (AAV) tipo 2 visando seu uso para terapia gênica. Para tanto, os microgéis carreados com nanopartículas modelo e AAVs foram produzidos por microfluídica através do método de crosslinking por troca de ligantes (CLEX). Os microgéis foram produzidos e sua capacidade de encapsulamento e liberação sustentada foram avaliadas pelas técnicas de espectroscopia de fluorescência, PCR quantitativa em tempo real e microscopia de fluorescência, sendo esta última para analisar a eficiência de transdução in vitro dos AAVs encapsulados. Para caracterização, foram utilizadas as técnicas de microscopia de contraste de fase, microscopia eletrônica de varredura e microscopia de força atômica. Os resultados mostraram que os microgéis de alginato 1,2% puros, carreados com nanopartículas e carreados com AAVs apresentaram um tamanho médio de 125 µm, 106 µm e 116 µm, respectivamente. Enquanto os microgéis puros e com AAVs se apresentaram monodispersos e com uma topografia regular, os microgéis com nanopartículas produzidos na melhor condição (B) se apresentaram monodispersos e com uma topografia irregular e porosa. A eficiência média de encapsulamento foi de 70,9% para as nanopartículas e 13,2% para os AAVs. Os estudos de cinética de liberação mostraram que os microgéis produzidos possuem a capacidade de liberar as xiv nanopartículas e os AAVs encapsulados de maneira contínua. Os estudos in vitro de transdução de células HeLa utilizando-se microgéis com AAVs encapsulados mostraram que apesar da baixa eficiência de encapsulamento, os AAVs liberados dos microgéis foram capazes de transduzir células, validando esse sistema de entrega para utilização em estudos de terapia gênica.
Descrição
Citação
CINÉL, Victor Dal Posolo. Desenvolvimento de um microgel de alginato carreado com vetores adeno-associados para liberação sustentada. 2019. 97f. Dissertação (Mestrado em Biologia Molecular) – Escola Paulista de Medicina, Universidade Federal de São Paulo. São Paulo, 2019.