Desenvolvimento de reator eletroquímico utilizando a manufatura aditiva visando a remoção de microplásticos
Data
2022-12-15
Tipo
Trabalho de conclusão de curso
Título da Revista
ISSN da Revista
Título de Volume
Resumo
A utilização da manufatura aditiva para fabricação de protótipos está crescendo dia após
dia, principalmente com o surgimento de novas tecnologias e novos materiais utilizados na
impressão das peças, gerando assim, uma infinidade de oportunidades a serem exploradas para
estudar diversos problemas como, por exemplo, a presença de microplásticos no ar, nos
oceanos, nos seres vivos e nos seres humanos. Uma das maneiras de remover os microplásticos
de efluentes é através da eletrocoagulação, sendo que os reatores mais indicados para essa
finalidade são o reator filtro prensa e o reator airlift. O presente trabalho, teve como objetivo a
impressão de um reator filtro prensa com o termoplástico PETG, utilizando-se da técnica de
modelagem por deposição de material fundido (FDM). O software adotado para desenhar as
placas do reator filtro prensa foi Fusion 360, da Autocad,. A partir disso, desenhou-se a duas
placas externas, com a entrada para o fluido, e os furos para os parafusos que vão prensar o
reator, e as duas placas internas, que foram estruturadas com os distribuidores de fluxo na
entrada das placas e com os promotores de turbulência, essas configurações do reator filtro
prensa foram adotadas seguindo os estudos realizados por alguns autores. Como resultado do
presente trabalho foram impressas, por meio da manufatura aditiva, as 4 placas com o
termoplástico PETG para construção do reator filtro prensa. Um diferencial que a impressão
3D permite é a inclusão de distribuidores de fluxos e promotores de turbulência, o que tornam
as placas mais sofisticadas.
The use of additive manufacturing to manufacture prototypes is growing day by day, especially with the emergence of new technologies and new materials used in printing the parts, thus generating a multitude of opportunities to be explored to study various problems such as, for example, the presence of microplastics in the air, oceans, living beings and humans. One way to remove microplastics from effluents is through electrocoagulation, and the most suitable reactors for this purpose are the filter press reactor and the airlift reactor. The objective of the present work was to design a filter press reactor with PETG thermoplastic, using the fused material deposition modeling (FDM) technique. The software used to design the filter press reactor plates was Fusion 360, from Autocad. From this, it was designed the two external plates, with the fluid inlet, and the holes for the screws that will press the reactor, and the two internal plates, which were structured with the flow distributors at the entrance of the plates and with the turbulence promoters, these configurations of the filter press reactor were adopted following the studies carried out by some authors. As a result of this work, the 4 plates with PETG thermoplastic for the construction of the filter-press reactor were printed, through additive manufacturing. A differential that 3D printing allows is the inclusion of flow distributors and turbulence promoters, which make the plates more sophisticated.
The use of additive manufacturing to manufacture prototypes is growing day by day, especially with the emergence of new technologies and new materials used in printing the parts, thus generating a multitude of opportunities to be explored to study various problems such as, for example, the presence of microplastics in the air, oceans, living beings and humans. One way to remove microplastics from effluents is through electrocoagulation, and the most suitable reactors for this purpose are the filter press reactor and the airlift reactor. The objective of the present work was to design a filter press reactor with PETG thermoplastic, using the fused material deposition modeling (FDM) technique. The software used to design the filter press reactor plates was Fusion 360, from Autocad. From this, it was designed the two external plates, with the fluid inlet, and the holes for the screws that will press the reactor, and the two internal plates, which were structured with the flow distributors at the entrance of the plates and with the turbulence promoters, these configurations of the filter press reactor were adopted following the studies carried out by some authors. As a result of this work, the 4 plates with PETG thermoplastic for the construction of the filter-press reactor were printed, through additive manufacturing. A differential that 3D printing allows is the inclusion of flow distributors and turbulence promoters, which make the plates more sophisticated.