Um estudo sobre a detecção de ondas gravitacionais: interferometria.
Data
2022-11-05
Tipo
Trabalho de conclusão de curso
Título da Revista
ISSN da Revista
Título de Volume
Resumo
A possibilidade do uso de interferômetros para detecção de ondas gravitacionais (OGs) começou a ser considerada na década de 1960 e se desenvolveu a partir daí.
As ondas gravitacionais foram previstas pela teoria da relatividade geral descrita por Albert Einstein e desde então buscava-se uma maneira de se comprovar a sua existência. Com os interferômetros, sua detecção direta se tornou possível e foi com essa técnica que a colaboração Laser Interferometer Gravitational-wave Observatory (LIGO) conseguiu finalmente comprovar experimentalmente as OGs, isso quase 100 anos após a teoria desenvolvida pelo Einstein.
Apesar da técnica da interferometria ser a mais conhecida e atualmente a mais eficiente na detecção de OGs, ela não é a única e existem outros métodos sendo estudados pelos cientistas, assim como tem-se vários laboratórios e colaborações no mundo todo estudando sobre ondas gravitacionais, além da colaboração LIGO.
As ondas gravitacionais e sua detecção são extremamente importantes, pois contribuem para a prova experimental da Teoria da Relatividade e coloca em contraponto outro grande gênio da ciência, Isaac Newton, uma vez que a Lei da Gravitação Universal e a Teoria da Relatividade Geral representam perspectivas e referências de estudos distintos sobre o nosso universo. Como decorrência desse empenho mundial através das décadas para detectar as OGs, hoje podemos vislumbrar o nascimento de um novo tipo de astronomia, que deverá dar à humanidade um olhar inédito sobre o cosmos: a astronomia gravitacional.
Neste trabalho será feita uma breve revisão do que são as OGs, da sua importância e de alguns dos principais desafios experimentais enfrentados para sua detecção direta em detectores interferométricos.
The possibility of using interferometers to detect gravitational waves (GWs) began to be considered in the 1960s and developed from there. Gravitational waves were predicted by the theory of general relativity described by Albert Einstein and since then, people were looking for a way to prove their existence. With interferometers, their direct detection became possible and it was with this technique that the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration was finally able to experimentally prove GWs, almost 100 years after the theory developed by Einstein. Although the interferometry technique is the best known and currently the most efficient in the detection of GWs, it is not the only one and there are other methods being studied by scientists, as well as several laboratories and collaborations around the world studying gravitational waves, in addition to the LIGO collaboration. Gravitational waves and their detection are extremely important, as they contribute to the experimental proof of the Theory of Relativity and put in counterpoint another great genius of science, Isaac Newton, since the Law of Universal Gravitation and the General Theory of Relativity represent perspectives and references from different studies about our universe. As a result of this worldwide effort over the decades to detect GWs, today we can see the birth of a new type of astronomy, which should give humanity an unprecedented look at the cosmos: gravitational astronomy. In this work, a brief review of what GWs are, their importance and some of the main experimental challenges faced for their direct detection in interferometric detectors will be made.
The possibility of using interferometers to detect gravitational waves (GWs) began to be considered in the 1960s and developed from there. Gravitational waves were predicted by the theory of general relativity described by Albert Einstein and since then, people were looking for a way to prove their existence. With interferometers, their direct detection became possible and it was with this technique that the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration was finally able to experimentally prove GWs, almost 100 years after the theory developed by Einstein. Although the interferometry technique is the best known and currently the most efficient in the detection of GWs, it is not the only one and there are other methods being studied by scientists, as well as several laboratories and collaborations around the world studying gravitational waves, in addition to the LIGO collaboration. Gravitational waves and their detection are extremely important, as they contribute to the experimental proof of the Theory of Relativity and put in counterpoint another great genius of science, Isaac Newton, since the Law of Universal Gravitation and the General Theory of Relativity represent perspectives and references from different studies about our universe. As a result of this worldwide effort over the decades to detect GWs, today we can see the birth of a new type of astronomy, which should give humanity an unprecedented look at the cosmos: gravitational astronomy. In this work, a brief review of what GWs are, their importance and some of the main experimental challenges faced for their direct detection in interferometric detectors will be made.