• RI - Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
    • português (Brasil)
    • English
    • español
  • Sobre
    • RI Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
  • English 
    • português (Brasil)
    • English
    • español
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Instituto de Ciência e Tecnologia (ICT)
  • ICT - Artigos
  • View Item
  •   DSpace Home
  • Instituto de Ciência e Tecnologia (ICT)
  • ICT - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studying bloat control and maintenance of effective code in linear genetic programming for symbolic regression

Thumbnail
Date
2016
Author
dal Piccol Sotto, Leo Francoso [UNIFESP]
de Melo, Vinicius Veloso [UNIFESP]
Type
Artigo
ISSN
0925-2312
Is part of
Neurocomputing
DOI
10.1016/j.neucom.2015.10.109
Metadata
Show full item record
Abstract
Linear Genetic Programming (LGP) is an Evolutionary Computation algorithm, inspired in the Genetic Programming (GP) algorithm. Instead of using the standard tree representation of GP, LGP evolves a linear program, which causes a graph-based data flow with code reuse. LGP has been shown to outperform GP in several problems, including Symbolic Regression (SReg), and to produce simpler solutions. In this paper, we propose several LGP variants and compare them with a traditional LGP algorithm on a set of benchmark SReg functions from the literature. The main objectives of the variants were to both control bloat and privilege useful code in the population. Here we evaluate their effects during the evolution process and in the quality of the final solutions. Analysis of the results showed that bloat control and effective code maintenance worked, but they did not guarantee improvement in solution quality. (C) 2015 Elsevier B.V. All rights reserved.
Citation
Neurocomputing. Amsterdam, v. 180, p. 79-93, 2016.
Keywords
Bloat control
Effective code
Symbolic regression
Linear genetic programming
Sponsorship
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
Comissao Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq Universal)
Coordenadoria de Apoio a Pesquisa e Ensino Superior (CAPES Science without Borders)
URI
https://repositorio.unifesp.br/handle/11600/57799
Collections
  • ICT - Artigos [439]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV