• RI - Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
    • português (Brasil)
    • English
    • español
  • Sobre
    • RI Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
  • English 
    • português (Brasil)
    • English
    • español
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Instituto de Ciência e Tecnologia (ICT)
  • ICT - Artigos
  • View Item
  •   DSpace Home
  • Instituto de Ciência e Tecnologia (ICT)
  • ICT - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A biased random-key genetic algorithm for the two-stage capacitated facility location problem

Thumbnail
View/Open
A_Biased_Random_key_Genetic_Algorithm_for_the_Two_stage_Capacitated_Facility_Location_Problem__UNIFESP_.pdf (427.4Kb)
Date
2019
Author
Lacerda, Fabrício Biajoli [UNIFESP]
Chaves, Antônio Augusto [UNIFESP]
Lorena, Luiz Antonio Nogueira [UNIFESP]
Type
Artigo
DOI
10.1016/j.eswa.2018.08.024
Metadata
Show full item record
Abstract
This paper presents a new metaheuristic approach for the two-stage capacitated facility location problem (TSCFLP), which the objective is to minimize the operation costs of the underlying two-stage transportation system, satisfying demand and capacity constraints. In this problem, a single product must be transported from a set of plants to meet customers demands passing out by intermediate depots. Since this problem is known to be NP-hard, approximated methods become an efficient alternative to solve real-industry problems. As far as we know, the TSCFLP is being solved in most cases by hybrid approaches supported by an exact method, and sometimes a commercial solver is used for this purpose. Bearing this in mind, a BRKGA metaheuristic and a new local search for TSCFLP are proposed. It is the first time that BRKGA had been applied to this problem and the computational results show the competitiveness of the approach developed in terms of quality of the solutions and required computational time when compared with those obtained by state-of-the-art heuristics. The approach proposed can be easily coupled in intelligent systems to help organizations enhance competitiveness by optimally placing facilities in order to minimize operational costs.
Citation
BIAJOLI, Fabrício Lacerda ; CHAVES, Antônio Augusto ; LORENA, Luiz Antonio Nogueira . A biased random-key genetic algorithm for the two-stage capacitated facility location problem. EXPERT SYSTEMS WITH APPLICATIONS, v. 115, p. 418-426, 2019.
Keywords
Two-stage capacitated facility location
Biased random-key genetic algorithm
Local search
Transportation systems
Sponsorship
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
URI
https://repositorio.unifesp.br/handle/11600/53418
Collections
  • ICT - Artigos [439]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV