Automatic Design of Decision-Tree Algorithms with Evolutionary Algorithms
Data
2013-11-01
Tipo
Artigo
Título da Revista
ISSN da Revista
Título de Volume
Resumo
This study reports the empirical analysis of a hyper-heuristic evolutionary algorithm that is capable of automatically designing top-down decision-tree induction algorithms. Top-down decision-tree algorithms are of great importance, considering their ability to provide an intuitive and accurate knowledge representation for classification problems. the automatic design of these algorithms seems timely, given the large literature accumulated over more than 40 years of research in the manual design of decision-tree induction algorithms. the proposed hyper-heuristic evolutionary algorithm, HEAD-DT, is extensively tested using 20 public UCI datasets and 10 microarray gene expression datasets. the algorithms automatically designed by HEAD-DT are compared with traditional decision-tree induction algorithms, such as C4.5 and CART. Experimental results show that HEAD-DT is capable of generating algorithms which are significantly more accurate than C4.5 and CART.
Descrição
Citação
Evolutionary Computation. Cambridge: Mit Press, v. 21, n. 4, p. 659-684, 2013.