Unsupervised Distance Learning for Plant Species Identification
dc.citation.issue | 12 | |
dc.citation.volume | 9 | |
dc.contributor.author | Almeida, Jurandy [UNIFESP] | |
dc.contributor.author | Pedronette, Daniel C. G. | |
dc.contributor.author | Alberton, Bruna | |
dc.contributor.author | Morellato, Leonor Patricia C. | |
dc.contributor.author | Torres, Ricardo da S. | |
dc.coverage | Piscataway | |
dc.date.accessioned | 2020-07-31T12:47:08Z | |
dc.date.available | 2020-07-31T12:47:08Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Phenology is among the most trustworthy indicators of climate change effects on plants and animals. The recent application of repeated digital photographs to monitor vegetation phenology has provided accurate measures of plant life cycle changes over time. A fundamental requirement for phenology studies refers to the correct recognition of phenological patterns from plants by taking into account time series associated with their crowns. This paper presents a new similarity measure for identifying plants based on the use of an unsupervised distance learning scheme, instead of using traditional approaches based on pairwise similarities. We experimentally show that its use yields considerable improvements in time-series search tasks. In addition, we also demonstrate how the late fusion of different time series can improve the results on plant species identification. In some cases, significant gains were observed (up to +8.21% and +19.39% for mean average precision and precision at 10 scores, respectively) when compared with the use of time series in isolation. | en |
dc.description.affiliation | Fed Univ Sao Paulo UNIFESP, Inst Sci & Technol, BR-12247014 Sao Jose Dos Campos, Brazil | |
dc.description.affiliation | Sao Paulo State Univ UNESP, Dept Stat Appl Math & Computat, BR-13506900 Rio Claro, Brazil | |
dc.description.affiliation | Sao Paulo State Univ UNESP, Dept Bot, BR-13506900 Rio Claro, Brazil | |
dc.description.affiliation | Univ Campinas UNICAMP, Inst Comp, BR-13083852 Campinas, SP, Brazil | |
dc.description.affiliationUnifesp | Institute of Science and Technology, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil | |
dc.description.source | Web of Science | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) e Microsoft Research Virtual Institute | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipID | Microsoft Research Virtual Institute E FAPESP: 2010/52113-5 | |
dc.description.sponsorshipID | Microsoft Research Virtual Institute e FAPESP: 2013/50169-1 | |
dc.description.sponsorshipID | Microsoft Research Virtual Institute e FAPESP: 2013/50155-0 | |
dc.description.sponsorshipID | FAPESP: 2014/00215-0 | |
dc.description.sponsorshipID | FAPESP: 2009/18438-7 | |
dc.description.sponsorshipID | FAPESP: 2010/51307-0 | |
dc.description.sponsorshipID | FAPESP: 2013/08645-0 | |
dc.description.sponsorshipID | FAPESP: 2016/06441-7 | |
dc.description.sponsorshipID | CNPq: 310761/2014-0 | |
dc.description.sponsorshipID | CNPq: 306580/2012-8 | |
dc.format.extent | 5325-5338 | |
dc.identifier | http://dx.doi.org/10.1109/JSTARS.2016.2608358 | |
dc.identifier.citation | Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway, v. 9, n. 12, p. 5325-5338, 2016. | |
dc.identifier.doi | 10.1109/JSTARS.2016.2608358 | |
dc.identifier.issn | 1939-1404 | |
dc.identifier.uri | https://repositorio.unifesp.br/handle/11600/56607 | |
dc.identifier.wos | WOS:000391468100005 | |
dc.language.iso | eng | |
dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | |
dc.relation.ispartof | Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Image analysis | en |
dc.subject | plant identification | en |
dc.subject | remote phenology | en |
dc.subject | time series | en |
dc.subject | unsupervised distance learning | en |
dc.title | Unsupervised Distance Learning for Plant Species Identification | en |
dc.type | info:eu-repo/semantics/article |