Mechanistic hypotheses for nonsynaptic epileptiform activity induction and its transition from the interictal to ictal state-Computational simulation

dc.contributor.authorAlmeida, Antonio-Carlos G. de
dc.contributor.authorRodrigues, Antonio M.
dc.contributor.authorScorza, Fulvio A. [UNIFESP]
dc.contributor.authorCavalheiro, Esper Abrão [UNIFESP]
dc.contributor.authorTeixeira, Hewerson Z.
dc.contributor.authorDuarte, Mario A.
dc.contributor.authorSilveira, Gilcelio A.
dc.contributor.authorArruda, Emerson Z.
dc.contributor.institutionUniv Fed Sao Joao del Rei
dc.contributor.institutionUniversidade Federal de São Paulo (UNIFESP)
dc.date.accessioned2016-01-24T13:51:49Z
dc.date.available2016-01-24T13:51:49Z
dc.date.issued2008-11-01
dc.description.abstractThe aim of this work is to study, by means of computational simulations, the induction and sustaining of nonsynaptic epileptiform activity.The computational model consists of a network of cellular bodies of neurons and glial cells connected to a three-dimensional (3D) network of juxtaposed extracellular compartments. the extracellular electrodiffusion calculation was used to simulate the extracellular potential. Each cellular body was represented in terms of the transmembrane ionic transports (Na(+)/K(+) pumps, ionic channels, and cotransport mechanisms), the intercellular electrodiffusion through gap-junctions, and the neuronal interaction by electric field and the variation of cellular volume.The computational model allows simulating the nonsynaptic epileptiform activity and the extracellular potential captured the main feature of the experimental measurements. the simulations of the concomitant ionic fluxes and concentrations can be used to propose the basic mechanisms involved in the induction and sustaining of the activities.The simulations suggest: the bursting induction is mediated by the Cl(-) Nernst potential overcoming the transmembrane potential in response to the extracellular [K(+)] increase. the burst onset is characterized by a critical point defined by the instant when the Na(+) influx through its permeable ionic channels overcomes the Na(+)/K(+) pump electrogenic current. the burst finalization is defined by another critical point, when the electrogenic current of the Na(+)/K(+) pump overcomes its influx through the channels.en
dc.description.affiliationUniv Fed Sao Joao del Rei, Dept Biomed Engn, Lab Neurociencia Expt & Computac, BR-36301160 Sao Joao Del Rei, MG, Brazil
dc.description.affiliationUniversidade Federal de São Paulo, Escola Paulista Med, Disciplina Neurol Expt, São Paulo, Brazil
dc.description.affiliationUnifespUniversidade Federal de São Paulo, Escola Paulista Med, Disciplina Neurol Expt, São Paulo, Brazil
dc.description.sourceWeb of Science
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent1908-1924
dc.identifierhttp://dx.doi.org/10.1111/j.1528-1167.2008.01686.x
dc.identifier.citationEpilepsia. Malden: Wiley-Blackwell, v. 49, n. 11, p. 1908-1924, 2008.
dc.identifier.doi10.1111/j.1528-1167.2008.01686.x
dc.identifier.issn0013-9580
dc.identifier.urihttp://repositorio.unifesp.br/handle/11600/30983
dc.identifier.wosWOS:000260744200010
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofEpilepsia
dc.rightsAcesso aberto
dc.rights.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dc.subjectEpilepsyen
dc.subjectNonsynaptic epilepsyen
dc.subjectMathematical modelen
dc.subjectInterictal stateen
dc.subjectIctal stateen
dc.subjectTransitionen
dc.titleMechanistic hypotheses for nonsynaptic epileptiform activity induction and its transition from the interictal to ictal state-Computational simulationen
dc.typeArtigo
Arquivos