Projeto ForestEyes – Ciência Cidadã e Aprendizado de Máquina na Detecção de Áreas Desmatadas em Florestas Tropicais

Data
2020-08-28
Tipo
Tese de doutorado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
Tropical forests’ conservation is a current issue of social and ecological relevance due to their important role in the global ecosystem. Tropical forests have a great diversity of fauna and flora, act in the regulation of climate and rainfall, absorb large amounts of carbon dioxide, and serve as a home for countless indigenous peoples. Unfortunately, millions of hectares are deforested and degraded every year, requiring government or private initiative programs to monitor tropical forests. Most of these programs involve the inspection of remote sensing images by specialists, generally counting on the support of computational resources for automatic detection of patterns. This thesis proposes a novel methodology that aims to detect deforestation in tropical forests based on Citizen Science and Machine Learning. With the created methodology, it was possible to develop the prototype of a system called ForestEyes. It uses non-specialized volunteers to inspect images for the target task, interacting with them through an appropriate graphical interface, allocated as a project on the well-known Citizen Science platform Zooniverse. In the performed experiments, six official campaigns have been carried out, receiving more than 81, 000 contributions from 644 distinct volunteers. The results were compared with the official monitoring program for the Brazilian Legal Amazon (PRODES). The volunteers, within the concept of the wisdom of crowds, achieved excellent data labeling when considered an efficient segmentation even for early deforestation detection, which is considered a challenge for any similar system. These labeled data were used as a training set for different Machine Learning techniques, the results of which are comparable and many times even better than the achieved by using the official monitoring program as input data. Active Learning, with a balanced initial training set, obtained results comparable to the classic supervised learning but using smaller amounts of samples. New Active Learning approaches based on the entropy of the classification have been proposed, which have proved to be suitable for some conditions. In this way, the developed methodology shows promise, and with its improvement, it can complement official monitoring systems or be applied to regions where there is a shortage of specialists or of official monitoring programs.
A conservação das florestas tropicais é um assunto atual de relevância social e ecológica, devido ao importante papel que as mesmas desempenham no ecossistema global. Florestas tropicais possuem uma grande diversidade de fauna e flora, atuam na regulação do clima e das chuvas, absorvem grandes quantidades de dióxido de carbono e servem de lar para inúmeros povos indígenas. Infelizmente, milhões de hectares são desmatados e degradados todo ano, sendo necessários programas, governamentais ou de iniciativas privadas, para monitoramento das florestas tropicais. A maioria desses programas envolvem a inspeção de imagens de sensoriamento remoto por especialistas, contando, geralmente, com o apoio de recursos computacionais para detecção automática de padrões. Esta tese propõe uma nova metodologia que objetiva detectar desmatamento em florestas tropicais, baseado em Ciência Cidadã e Aprendizado de Máquina. Com a metodologia criada foi possível desenvolver o protótipo de um sistema, chamado ForestEyes, o qual utiliza voluntários não especializados para inspecionar imagens para a tarefa alvo, interagindo com os mesmos através de uma interface gráfica apropriada, alocada como um projeto na bem conhecida plataforma de Ciência Cidadã Zooniverse. Nos experimentos realizados, seis campanhas oficiais foram feitas, recebendo mais de 81.000 contribuições de 644 voluntários distintos, cujos resultados foram comparados com o programa oficial de monitoramento da Amazônia Legal Brasileira (PRODES). Os voluntários, dentro do conceito de sabedoria das multidões, conseguiram realizar uma ótima rotulagem dos dados, considerando uma segmentação eficiente, mesmo para detecção de desmatamento recente, o qual é considerado um desafio para qualquer sistema de mesma natureza. Estes dados classificados foram utilizados como conjunto de treinamento para diferentes técnicas de Aprendizado de Máquina, cujos resultados são comparáveis, e muitas vezes até melhores, aos obtidos utilizando-se do sistema oficial de monitoramento como conjunto de entrada. O Aprendizado Ativo, utilizando um conjunto de treinamento inicial balanceado, obteve resultados comparáveis ao clássico aprendizado supervisionado, porém, utilizando quantidades menores de amostras. Foram propostas novas abordagens de Aprendizado Ativo baseadas em entropia da classificação, as quais se mostraram adequadas para alguns contextos. Desta forma, a metodologia desenvolvida se mostra promissora, e com seu aprimoramento pode se tornar complementar a sistemas de monitoramentos oficiais, ou ser aplicada a regiões onde há deficit de especialistas, ou de programas oficiais de monitoramento.
Descrição
Citação
Pré-visualização PDF(s)