On the Semadeni derivative of Banach spaces C(K, X)

dc.citation.issue266pt_BR
dc.citation.volume2pt_BR
dc.contributor.authorCandido, Leandro [UNIFESP]
dc.contributor.authorLatteshttp://lattes.cnpq.br/6975165037874387pt_BR
dc.coverage.spatialPolôniapt_BR
dc.date.accessioned2023-07-05T17:24:28Z
dc.date.available2023-07-05T17:24:28Z
dc.date.issued2022
dc.description.abstractThe Semadeni derivative of a Banach space X, denoted by S(X), is the quotient of the space of all weak* sequentially continuous functionals in X** by the canon- ical copy of X. In a remarkable 1960 paper, Z. Semadeni introduced this concept in order to prove that C([0, ω 1 ]) is not isomorphic to C([0, ω 1 ]) ⊕ C([0, ω 1 ]). Here we investigate this concept in the context of C(K, X) spaces. In our main result, we prove that if K is a Hausdorff compactum of countable height, then S(C(K, X)) is isometrically isomorphic to C(K, S(X)) for every Banach space X. Additionally, if X is a Banach space with the Mazur property, we explicitly find the derivative of C([0, ω 1 ] n , X) for each n ≥ 1. Further we obtain an example of a nontrivial Banach space linearly isomorphic to its derivative.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorshipID2016/25574-8pt_BR
dc.format.extent225-240pt_BR
dc.identifier.doiDOI: 10.4064/sm210810-9-12pt_BR
dc.identifier.urihttps://repositorio.unifesp.br/handle/11600/68458
dc.languageengpt_BR
dc.publisherAdam Skalskipt_BR
dc.relation.ispartofStudia Mathematicapt_BR
dc.rightsinfo:eu-repo/semantics/restrictedAccesspt_BR
dc.subjectBanach spaces not isomorphic to their squarespt_BR
dc.subjectisomorphisms of C(K, X) spacespt_BR
dc.subjectMazur spacespt_BR
dc.titleOn the Semadeni derivative of Banach spaces C(K, X)pt_BR
dc.title.alternativeOn the Semadeni derivative of Banach spaces C(K, X)pt_BR
dc.typeinfo:eu-repo/semantics/articlept_BR
unifesp.campusInstituto de Ciência e Tecnologia (ICT)pt_BR
unifesp.departamentoCiência e Tecnologiapt_BR
unifesp.graduacaoNão se aplicapt_BR
unifesp.graduateProgramNão se aplicapt_BR
unifesp.knowledgeAreaOutrapt_BR
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
CandidoStudia.pdf
Tamanho:
494.54 KB
Formato:
Adobe Portable Document Format
Descrição:
Artigo
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
5.67 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Coleções