Evolutionary Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression Data Sets
dc.contributor.author | Barros, Rodrigo C. | |
dc.contributor.author | Basgalupp, Márcio Porto [UNIFESP] | |
dc.contributor.author | Freitas, Alex A. | |
dc.contributor.author | Carvalho, Andre C. P. L. F. de | |
dc.contributor.institution | Pontificia Univ Catolica Rio Grande do Sul | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Federal de São Paulo (UNIFESP) | |
dc.contributor.institution | Univ Kent | |
dc.date.accessioned | 2016-01-24T14:38:12Z | |
dc.date.available | 2016-01-24T14:38:12Z | |
dc.date.issued | 2014-12-01 | |
dc.description.abstract | Decision-tree induction algorithms are widely used in machine learning applications in which the goal is to extract knowledge from data and present it in a graphically intuitive way. the most successful strategy for inducing decision trees is the greedy top-down recursive approach, which has been continuously improved by researchers over the past 40 years. in this paper, we propose a paradigm shift in the research of decision trees: instead of proposing a new manually designed method for inducing decision trees, we propose automatically designing decision-tree induction algorithms tailored to a specific type of classification data set (or application domain). Following recent breakthroughs in the automatic design of machine learning algorithms, we propose a hyper-heuristic evolutionary algorithm called hyper-heuristic evolutionary algorithm for designing decision-tree algorithms (HEAD-DT) that evolves design components of top-down decision-tree induction algorithms. By the end of the evolution, we expect HEAD-DT to generate a new and possibly better decision-tree algorithm for a given application domain. We perform extensive experiments in 35 real-world microarray gene expression data sets to assess the performance of HEAD-DT, and compare it with very well known decision-tree algorithms such as C4.5, CART, and REPTree. Results show that HEAD-DT is capable of generating algorithms that significantly outperform the baseline manually designed decision-tree algorithms regarding predictive accuracy and F-measure. | en |
dc.description.affiliation | Pontificia Univ Catolica Rio Grande do Sul, Fac Informat, BR-90619900 Porto Alegre, RS, Brazil | |
dc.description.affiliation | Univ São Paulo, Dept Comp Sci, BR-13566590 Sao Carlos, SP, Brazil | |
dc.description.affiliation | Universidade Federal de São Paulo, Inst Ciencia & Tecnol, BR-12231280 Sao Jose Dos Campos, Brazil | |
dc.description.affiliation | Univ Kent, Dept Comp Sci, Canterbury CT2 7NF, Kent, England | |
dc.description.affiliationUnifesp | Universidade Federal de São Paulo, Inst Ciencia & Tecnol, BR-12231280 Sao Jose Dos Campos, Brazil | |
dc.description.source | Web of Science | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipID | FAPESP: 2009/14325-3 | |
dc.format.extent | 873-892 | |
dc.identifier | http://dx.doi.org/10.1109/TEVC.2013.2291813 | |
dc.identifier.citation | Ieee Transactions On Evolutionary Computation. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 18, n. 6, p. 873-892, 2014. | |
dc.identifier.doi | 10.1109/TEVC.2013.2291813 | |
dc.identifier.file | WOS000345907800007.pdf | |
dc.identifier.issn | 1089-778X | |
dc.identifier.uri | http://repositorio.unifesp.br/handle/11600/38473 | |
dc.identifier.wos | WOS:000345907800007 | |
dc.language.iso | eng | |
dc.publisher | Ieee-inst Electrical Electronics Engineers Inc | |
dc.relation.ispartof | Ieee Transactions On Evolutionary Computation | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dc.subject | Automatic algorithm design | en |
dc.subject | classification | en |
dc.subject | decision trees | en |
dc.subject | evolutionary algorithms | en |
dc.subject | hyper-heuristics | en |
dc.subject | machine learning | en |
dc.title | Evolutionary Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression Data Sets | en |
dc.type | info:eu-repo/semantics/article |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000345907800007.pdf
- Tamanho:
- 3.81 MB
- Formato:
- Adobe Portable Document Format
- Descrição: