Técnicas de Aprendizado Profundo de Métrica baseadas em Mixup para Supervisão Incompleta.

dc.contributor.advisorFaria, Fabio Augusto [UNIFESP]
dc.contributor.advisorLatteshttp://lattes.cnpq.br/3828728429230356pt_BR
dc.contributor.authorBuris, Luiz Henrique [UNIFESP]
dc.contributor.authorLatteshttp://lattes.cnpq.br/1837287108723885pt_BR
dc.coverage.spatialSão José dos Campos, SPpt_BR
dc.date.accessioned2022-10-10T12:05:43Z
dc.date.available2022-10-10T12:05:43Z
dc.date.issued2022-08-19
dc.description.abstractAs técnicas de Aprendizado Profundo (do inglês, Deep Learning) mais especificamente, aquelas baseadas em Redes Neurais Convolucionais (CNN) têm alcançado resultados surpreendentes em diferentes áreas do conhecimento (e.g., medicina, agricultura e segurança). No entanto, a utilização dessas técnicas, em muitas das aplicações de mundo real, se torna desafiadora, por causa da necessidade de grandes coleções de dados rotulados na etapa de treinamento, as quais nem sempre são possíveis de se obter, devido aos elevados custos e tempo gasto. Vários trabalhos na literatura têm buscado soluções para superar tais desafios, propondo estratégias e técnicas que podem aprender modelos satisfatórios com menos dados, como os aprendizados fracamente supervisionado e semi-supervisionado, porém essas abordagens geralmente não incluem o desafio de memorização das redes neurais durante etapa de treinamento. Além disso, o uso de abordagens de aumento de dados (do inglês, Data Augmentation) também aparece como alternativa para a falta de dados rotulados, aumentando esse conjunto de dados rotulados por meio de simples operações geométricas (rotação, translação, espelhamento e recortes) ou utilizando de técnicas complexas de regularização de conjunto de dados de treinamento da literatura (Mixup). Neste sentido, esse trabalho de mestrado propôs melhorar os resultados de classificação de imagens em cenários de treinamentos reduzidos (supervisão incompleta), propondo três novas abordagens supervisionadas (MbDML 1, MbDML 2 e MbDML 3) e uma abordagem semi-supervisionada (MbDML 4) baseadas em uma técnica de aprendizado de métrica (NNGK) e um método de aumento virtual de dados (Mixup). Nos experimentos realizados é possível observar que as abordagens de última geração em aprendizado profundo de métrica podem não funcionar bem nos cenários de supervisão incompleta. Além disso, as abordagens MbDML propostas superam essas abordagens existentes na literatura em duas famosas bases de imagens (Cifar10 e Cifar100) e conseguem resultados similares em outras duas bases (MNIST e Flowers17). Finalmente, todas as abordagens supervisionadas conseguem melhorar os resultados da versão original da técnica NNGK na tarefa de classificação de imagens tradicional (supervisão completa) em todas as três bases (Flowers102, Cars196 e LeafsnapFields), com ganhos relativos que vão de 2,96% a 6,91%.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorshipID2021/01870-5pt_BR
dc.emailadvisor.customffaria@unifesp.brpt_BR
dc.format.extent87 f.pt_BR
dc.identifier.urihttps://repositorio.unifesp.br/handle/11600/65718
dc.languageporpt_BR
dc.publisherUniversidade Federal de São Paulopt_BR
dc.rightsinfo:eu-repo/semantics/openAccesspt_BR
dc.subjectAprendizado de Máquinapt_BR
dc.subjectAprendizado Profundopt_BR
dc.subjectAprendizado Métricopt_BR
dc.subjectAprendizado Profundo de Métricapt_BR
dc.subjectClassificação de Imagenspt_BR
dc.titleTécnicas de Aprendizado Profundo de Métrica baseadas em Mixup para Supervisão Incompleta.pt_BR
dc.title.alternativeMixup-based Deep Metric Learning Approaches for Incomplete Supervision.pt_BR
dc.typeinfo:eu-repo/semantics/masterThesispt_BR
unifesp.campusInstituto de Ciência e Tecnologia (ICT)pt_BR
unifesp.graduateProgramCiência da Computaçãopt_BR
unifesp.knowledgeAreaCiência da Computaçãopt_BR
unifesp.researchAreaSistemas inteligentespt_BR
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Luiz Henrique Buris (1).pdf
Tamanho:
6.62 MB
Formato:
Adobe Portable Document Format
Descrição:
Dissertação Luiz Buris
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
5.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: