Data complexity meta-features for regression problems
dc.citation.issue | 1 | |
dc.citation.volume | 107 | |
dc.contributor.author | Lorena, Ana C. [UNIFESP] | |
dc.contributor.author | Maciel, Aron I. [UNIFESP] | |
dc.contributor.author | de Miranda, Pericles B. C. | |
dc.contributor.author | Costa, Ivan G. | |
dc.contributor.author | Prudencio, Ricardo B. C. | |
dc.coverage | Dordrecht | |
dc.date.accessioned | 2020-07-02T18:52:11Z | |
dc.date.available | 2020-07-02T18:52:11Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In meta-learning, classification problems can be described by a variety of features, including complexity measures. These measures allow capturing the complexity of the frontier that separates the classes. For regression problems, on the other hand, there is a lack of such type of measures. This paper presents and analyses measures devoted to estimate the complexity of the function that should fitted to the data in regression problems. As case studies, they are employed as meta-features in three meta-learning setups: (i) the first one predicts the regression function type of some synthetic datasets; (ii) the second one is designed to tune the parameter values of support vector regressors; and (iii) the third one aims to predict the performance of various regressors for a given dataset. The results show the suitability of the new measures to describe the regression datasets and their utility in the meta-learning tasks considered. In cases (ii) and (iii) the achieved results are also similar or better than those obtained by the use of classical meta-features in meta-learning. | en |
dc.description.affiliation | Univ Fed Sao Paulo, Inst Ciencia Tecnol, Unidade Parque Tecnol, BR-12247014 Sao Jose Dos Campos, SP, Brazil | |
dc.description.affiliation | Univ Fed Pernambuco, Ctr Informat, BR-50740560 Recife, PE, Brazil | |
dc.description.affiliation | Rhein Westfal TH Aachen, IZKF Res Grp Bioinformat, Aachen, Germany | |
dc.description.affiliationUnifesp | Univ Fed Sao Paulo, Inst Ciencia Tecnol, Unidade Parque Tecnol, BR-12247014 Sao Jose Dos Campos, SP, Brazil | |
dc.description.source | Web of Science | |
dc.description.sponsorship | FAPESP | |
dc.description.sponsorship | CNPq | |
dc.description.sponsorship | CAPES | |
dc.description.sponsorship | DAAD | |
dc.description.sponsorship | IZKF Aachen | |
dc.description.sponsorshipID | FAPESP: 2012/22608-8 | |
dc.description.sponsorshipID | CNPq: 482222/2013-1 | |
dc.description.sponsorshipID | CNPq: 308858/2014-0 | |
dc.description.sponsorshipID | CNPq: 305611/2015-1 | |
dc.format.extent | 209-246 | |
dc.identifier | http://dx.doi.org/10.1007/s10994-017-5681-1 | |
dc.identifier.citation | Machine Learning. Dordrecht, v. 107, n. 1, p. 209-246, 2018. | |
dc.identifier.doi | 10.1007/s10994-017-5681-1 | |
dc.identifier.file | WOS000419684700008.pdf | |
dc.identifier.issn | 0885-6125 | |
dc.identifier.uri | https://repositorio.unifesp.br/handle/11600/53930 | |
dc.identifier.wos | WOS:000419684700008 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Machine Learning | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Meta-learning | en |
dc.subject | Meta-features | en |
dc.subject | Complexity measures | en |
dc.title | Data complexity meta-features for regression problems | en |
dc.type | info:eu-repo/semantics/article |