Estudo da biocompatibilidade e do potencial osteogênico de biosílicas e biovidros derivados de esponjas marinhas
Data
2021-09-29
Tipo
Dissertação de mestrado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
O ambiente marinho é amplamente favorável ao fornecimento de matéria prima para produtos biotecnológicos, como os biomateriais empregados na área de engenharia de tecidos. Um dos organismos que vem ganhando destaque, nesse contexto, são as esponjas marinhas. Elas apresentam, na composição de suas espículas, a biosílica, um composto inorgânico que vem sendo descrito como osteoindutor, por estimular a diferenciação de células osteoprogenitoras em osteoblastos e a consequente neoformação de tecido ósseo. Nosso grupo recentemente demonstrou que seus efeitos osteogênicos podem ser até mesmo superiores aos do biovidro padrão-ouro em bioatividade, o Bioglass®45S5. Com base nisso, este estudo teve como objetivo avaliar as biosílicas extraídas de dois tipos de esponjas marinhas (Dragmacidon reticulatum e Amphimedon viridis) para melhor entender suas propriedades, e então, desenvolver um biovidro utilizando essas biosílicas. Devido às particularidades das espículas que caracterizam cada esponja e ao grande número de espécies presentes na costa brasileira, o primeiro capítulo deste trabalho visou analisar e comparar os diferentes tipos de biosílica e a sílica de origem não marinha. Por meio de difração de raios-x (XRD), microscopia eletrônica de varredura (MEV) e espectroscopia dispersiva de raios-x (EDS), foi realizada a caracterização físico-química destas biosílicas, demonstrando que as espículas de biosílica apresentam padrão amorfo como descrito nas bibliografias, além da presença de elementos químicos de grande interesse para o presente estudo. Além disso, testes in vitro (alamarBlue) demonstraram que, na concentração de 0.05 g/mL, ambas não apresentaram citotoxicidade. Com isso, iniciou-se o segundo capítulo desse trabalho, que envolveu o desenvolvimento de um novo biovidro do sistema SiO2-CaO-Na2O-P2O5, a partir da biosílica extraída das esponjas marinhas. Os testes de caracterização mostraram que os biovidros marinhos apresentam padrão amorfo e com uma granulometria similar ao Bioglass®45S5. Os testes in vitro mostraram que os biovidros marinhos foram capazes de aumentar a redução dos compostos alamarBlue e MTT, indicando um aumento na viabilidade celular. Já os testes de RT-PCR indicaram um aumento na expressão dos genes RUNX2 e BMP4, genes de grande interesse na área de reparo do tecido ósseo. Esses resultados mostram que os biovidros marinhos possuem um grande potencial na área da engenharia tecidual, além de abrir caminhos para novos estudos visando o aprofundamento de suas propriedades e de seus efeitos, principalmente na esfera pré-clínica.
The marine environment is largely favorable to the supply of raw materials for biotechnological products, such as biomaterials used in tissue engineering. One of the organisms that have been gaining prominence, in this context, is marine sponges. They have, in the composition of their spicules, biosilica, an inorganic compound that has been described as osteoinductive, for stimulating the differentiation of osteoprogenitor cells in osteoblasts and the consequent neoformation of bone tissue. Our group recently demonstrated that its osteogenic effects may be even greater than those of the gold standard bioglass in bioactivity, Bioglass®45S5. Based on this, this study aimed to evaluate the biosilica extracted from two types of marine sponges (Dragmacidon reticulatum and Amphimedon viridis) to better understand their properties, and then develop a bioglass using these biosilica. Due to the particularities of the spicules that characterize each sponge, the first part of this work aimed to analyze the different types of biosilica, including sintetic silica, for purposes of comparison. By means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray dispersive spectroscopy (EDS), the physico-chemical characterization of these biosilics was performed, demonstrating that the biosilic spicules have an amorphous pattern as described in the bibliographies, in addition to the presence of chemical elements of great interest for the present study. In addition, in vitro tests (alamarBlue) demonstrated that, at specific concentrations, they did not show cytotoxicity. With that, the second part of this work began, which involved the development of a new bioglass of the SiO2-CaO-Na2O-P2O5 system, from the biosilica extracted from marine sponges. Characterization testes showed that the marine bioglass have an amorphous pattern and a granulometry that is similar to the Bioglass®45S5 particles. In vitro analysis suggested that marine bioglass increased the alamarBlue and MTT reduction rates, indicating a higher cell viability. The RT-PCR tests showed that marine bioglass induced a higher expression of the RUNX2 and BMP4 genes. These results indicates that the marine bioglass have a great potential to the tissue engineering field, thus it will open the path for new studies to better understand this material.
The marine environment is largely favorable to the supply of raw materials for biotechnological products, such as biomaterials used in tissue engineering. One of the organisms that have been gaining prominence, in this context, is marine sponges. They have, in the composition of their spicules, biosilica, an inorganic compound that has been described as osteoinductive, for stimulating the differentiation of osteoprogenitor cells in osteoblasts and the consequent neoformation of bone tissue. Our group recently demonstrated that its osteogenic effects may be even greater than those of the gold standard bioglass in bioactivity, Bioglass®45S5. Based on this, this study aimed to evaluate the biosilica extracted from two types of marine sponges (Dragmacidon reticulatum and Amphimedon viridis) to better understand their properties, and then develop a bioglass using these biosilica. Due to the particularities of the spicules that characterize each sponge, the first part of this work aimed to analyze the different types of biosilica, including sintetic silica, for purposes of comparison. By means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray dispersive spectroscopy (EDS), the physico-chemical characterization of these biosilics was performed, demonstrating that the biosilic spicules have an amorphous pattern as described in the bibliographies, in addition to the presence of chemical elements of great interest for the present study. In addition, in vitro tests (alamarBlue) demonstrated that, at specific concentrations, they did not show cytotoxicity. With that, the second part of this work began, which involved the development of a new bioglass of the SiO2-CaO-Na2O-P2O5 system, from the biosilica extracted from marine sponges. Characterization testes showed that the marine bioglass have an amorphous pattern and a granulometry that is similar to the Bioglass®45S5 particles. In vitro analysis suggested that marine bioglass increased the alamarBlue and MTT reduction rates, indicating a higher cell viability. The RT-PCR tests showed that marine bioglass induced a higher expression of the RUNX2 and BMP4 genes. These results indicates that the marine bioglass have a great potential to the tissue engineering field, thus it will open the path for new studies to better understand this material.
Descrição
Citação
PRADO, João Paulo dos Santos. Estudo da biocompatibilidade e do potencial osteogênico de biosílicas e biovidros derivados de esponjas marinhas. 2021. 83 f. Dissertação (Mestrado em Bioprodutos e Bioprocessos) - Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, 2021.