Route to chaos and some properties in the boundary crisis of a generalized logistic mapping

dc.citation.volume486
dc.contributor.authorda Costa, Diogo Ricardo
dc.contributor.authorMedrano-T, Rene O. [UNIFESP]
dc.contributor.authorLeonel, Edson Denis
dc.coverageAmsterdam
dc.date.accessioned2020-09-01T13:21:17Z
dc.date.available2020-09-01T13:21:17Z
dc.date.issued2017
dc.description.abstractA generalization of the logistic map is considered, showing two control parameters a and,8 that can reproduce different logistic mappings, including the traditional second degree logistic map, cubic, quartic and all other degrees. We introduce a parametric perturbation such that the original logistic map control parameter R changes its value periodically according an additional parameter omega = 2/q. The value of q gives this period. For this system, an analytical expression is obtained for the first bifurcation that starts a period-doubling cascade and, using the Feigenbaum Universality, we found numerically the accumulation point R-c where the cascade finishes giving place to chaos. In the second part of the paper we study the death of this chaotic behavior due to a boundary crisis. At the boundary crisis, orbits can reach a maximum value X = X-max, = 1. When it occurs, the trajectory is mapped to a fixed point at X = 0. We show that there exist a general recursive formula for initial conditions that lead to X = X-max. 2017 Elsevier B.V. All rights reserved.en
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Fis, Av 24A,1515, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUNIFESP Univ Fed Sao Paulo, Dept Ciencias Exatas & Terra, Rua Sao Nicolau,210 Ctr, BR-09913030 Diadema, SP, Brazil
dc.description.affiliationUnifespUNIFESP Univ Fed Sao Paulo, Dept Ciencias Exatas & Terra, Rua Sao Nicolau,210 Ctr, BR-09913030 Diadema, SP, Brazil
dc.description.sourceWeb of Science
dc.description.sponsorshipCenter for Scientific Computing (NCC/GridUNESP) of the Sao Paulo State University (UNESP)
dc.format.extent674-680
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2017.05.074
dc.identifier.citationPhysica A-Statistical Mechanics And Its Applications. Amsterdam, v. 486, p. 674-680, 2017.
dc.identifier.doi10.1016/j.physa.2017.05.074
dc.identifier.issn0378-4371
dc.identifier.urihttps://repositorio.unifesp.br/handle/11600/58173
dc.identifier.wosWOS:000406988000056
dc.language.isoeng
dc.publisherElsevier Science Bv
dc.relation.ispartofPhysica A-Statistical Mechanics And Its Applications
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBoundary crisisen
dc.subjectFeigenbaum universalityen
dc.subjectGeneralized logistic mappingen
dc.titleRoute to chaos and some properties in the boundary crisis of a generalized logistic mappingen
dc.typeinfo:eu-repo/semantics/article
Arquivos
Coleções