Functional roles of C-terminal extension (CTE) of salt-dependent peptidase activity of the Natrialba magadii extracellular protease (NEP)

Nenhuma Miniatura disponível
Data
2018
Autores
Marem, Alyne [UNIFESP]
Okamoto, Débora Noma [UNIFESP]
Oliveira, Lilian Caroline Gonçalves de [UNIFESP]
Ruiz, Diego M.
Paggi, Roberto A.
Kondo, Marcia Yuri [UNIFESP]
Gouvea, Iuri Estrada [UNIFESP]
Juliano, Maria Aparecida [UNIFESP]
Castro, Rosana E. de
Juliano, Luiz [UNIFESP]
Orientadores
Tipo
Artigo
Título da Revista
ISSN da Revista
Título de Volume
Resumo
Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon Natrialba magadii. Many extracellular proteases have been characterized from archaea to bacteria as adapted to hypersaline environments retaining function and stability until 4.0 M NaCI. As observed in other secreted halolysins, this stability can be related to the presence of a C-terminal extension (CTE) sequence. In the present work, we compared the biochemical properties of recombinant Nep protease with the truncated form at the 134 amino acids CTE (Nep Delta KTE), that was more active in 4 M NaCI than the non-truncated wild type enzyme. Comparable to the wild type, Nep Delta CTE protease is irreversibly inactivated at low salt solutions. The substrate specificity of the truncated Nep Delta CTE was similar to that of wild type form as demonstrated by a combinatorial library of FRET substrates. The enzyme stability, the effect of different salts and the thermodynamics assays using different lengths of substrates demonstrated similarities between the two forms. Altogether, these data provide further information on the stability and structural determinants of halolysins under different salinities, especially concerning the enzymatic behavior. (C) 2018 Elsevier B.V. All rights reserved.
Descrição
Citação
International Journal Of Biological Macromolecules. Amsterdam, v. 113, p. 1134-1141, 2018.
Coleções