Chitin-Like Molecules Associate with Cryptococcus neoformans Glucuronoxylomannan To Form a Glycan Complex with Previously Unknown Properties

Nenhuma Miniatura disponível
Data
2012-09-01
Autores
Ramos, Caroline L.
Fonseca, Fernanda L.
Rodrigues, Jessica
Guimaraes, Allan J.
Cinelli, Leonardo P.
Miranda, Kildare
Nimrichter, Leonardo
Casadevall, Arturo
Travassos, Luiz R. [UNIFESP]
Rodrigues, Marcio L.
Orientadores
Tipo
Artigo
Título da Revista
ISSN da Revista
Título de Volume
Resumo
In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. the structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. in this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-alpha). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties.
Descrição
Citação
Eukaryotic Cell. Washington: Amer Soc Microbiology, v. 11, n. 9, p. 1086-1094, 2012.
Palavras-chave
Coleções