Navegando por Palavras-chave "poly (lactic acid)"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
- ItemSomente MetadadadosEletrofiação e caracterização dos compósitos de pla/-tcp e pcl/-tcp visando aplicações na engenharia tecidual(Universidade Federal de São Paulo (UNIFESP), 2015-01-29) Siqueira, Lilian de [UNIFESP]; Triches, Eliandra de Sousa Triches [UNIFESP]; Universidade Federal de São Paulo (UNIFESP)Studies related to poly (lactic acid) (PLA) and polycaprolactone (PCL) as a biomaterial have been widespread in recent decades. These polymers are characterized by its form of degradation and biocompatibility. However, they have some limitations such as the lack of bioactivity, hydrophobic surface and degradation in long term in vivo. These limitations can be apprimorated by incorporating inorganic fillers in the polymer matrix. Beta-tricalcium phosphate (?-TCP) has been recognized as an attractive biomaterial due to their similar chemical composition to the mineral component of bone. Moreover, it is bioactive, biodegradable and osteoinductive. This work aimed to produce and characterize porous mats composed of PLA/?-TCP and PCL/?-TCP composites by electrospinning. This is a simple and versatile method, and promotes the production of porous mats in micro and nano scale with great potential to applications in tissue engineering, mainly in bone regeneration. In order to do so, ?-TCP particles were synthesized by solid state reaction and different concentrations (1, 5 and 8 wt-%) were incorporated into the polymers matrices. The PLA/?-TCP and PCL/?-TCP mats were obtained by electrospinning. The samples were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Cell viability assays (MTT) were also performed. The mats presented porous, fibrous and interconnected structure. A wide range of average fiber diameter was observed for both polymers. The average diameter of the fibers varied in the range of 260 ± 51 to 546 ± 136 nm for the PLA and PLA/?-TCP mats and 640 ± 20 to 867 ± 40 nm for PCL and PCL/?-TCP mats. The presence of ?-TCP particles promoted changes in the mat?s degree of crystallinity. PLA/?-TCP and PCL/?-TCP mats exhibited biocompatibility showing up non cytotoxic as well as promoted a favorable inviroments. Simulated body fluid (SBF) results showed that PCL and PCL/?-TCP composite mats containing higher contents of ?-TCP presented a homogeneous apatite layer deposited on their surfaces.