Navegando por Palavras-chave "otimização"
Agora exibindo 1 - 3 de 3
Resultados por página
Opções de Ordenação
- ItemAcesso aberto (Open Access)Adaptive biased random-key genetic algorithm with local search for the capacitated centered clustering problem(Elsevier, 2018) Chaves, Antonio Augusto [UNIFESP]; http://lattes.cnpq.br/4973949421738244This paper proposes an adaptive Biased Random-key Genetic Algorithm (A-BRKGA), a new method with on-line parameter control for combinatorial optimization problems. A-BRKGA has only one problem-dependent component, the decoder and all other parts can be reused. To control diversification and intensification, a novel adaptive strategy for parameter tuning is introduced. This strategy is based on deterministic rules and self-adaptive schemes. For exploitation of specific regions of the solution space we propose a local search in promising communities. The proposed method is evaluated on the Capacitated Centered Clustering Problem (CCCP), which is an NP-hard problem where a set of n points, each having a given demand, is partitioned into m clusters each with a given capacity. The objective is to minimize the sum of the Euclidean distances between the points and their geometric cluster centroids. Computational results show that the A-BRKGA with local search is competitive with other methods of literature.
- ItemAcesso aberto (Open Access)Enhancing artificial neural networks for smarter applications on low-cost resource-constrained microcontrollers(Universidade Federal de São Paulo, 2024-03-21) Nascimento, Alexandre [UNIFESP]; Basgalupp, Márcio [UNIFESP]; Melo, Vinicius; http://lattes.cnpq.br/5205741481605855; http://lattes.cnpq.br/4922142296922435A convergência da Inteligência Artificial (IA) com a Internet das Coisas (IoT), AIoT, torna os dispositivos mais capazes em áreas como saúde, cidades inteligentes e agricultura, desempenhando um papel crucial na promoção de práticas sustentáveis e na melhoria dos esforços de conservação ambiental. No entanto, a incorporação da IA em nós computacionais de borda da IoT apresenta desafios, como a necessidade de microcontroladores superiores, que aumentam os custos e impedem soluções em larga escala. Esta tese propõe novas abordagens para lidar com três lacunas principais no uso de redes neurais artificiais (ANN, do inglês Artificial Neural Networks) em dispositivos de borda baseados em microcontroladores de baixo custo. A primeira lacuna é que as estratégias existentes para executar ANN em dispositivos de borda frequentemente resultam em acurácia reduzida e ainda exigem microcontroladores poderosos. A segunda lacuna é que os grandes conjuntos de dados necessários para treinar ANN aumentam o custo de retreino e tornam qualquer iniciativa de retreino em dispositivos de borda inviável. Finalmente, a execução de aplicacões utilizando ANN em dispositivos de borda é limitada devido à sua capacidade computacional restrita. Para abordar essas lacunas, esta tese propõe novas estratégias de treino e sintonia fina de ANN para melhorar a precisão de pequenas ANNs. As estratégias de treino propostas se baseiam na troca de otimizadores de treinamento e de pequenos sub conjuntos de dados derivados do conjunto original. Com isso, se foi possível alcançar qualidade semelhante à obtida com conjuto de dados maiores, mas utilizando conjuntos de dados menores. Por exemplo, em um experimento, foi possível atingir 80% de acurácia com apenas 52% dos dados utilizados num treino convencional. Além disso, propõe-se uma técnica para fazer a sintonia fina da ANN e adaptá-la à ANN para executar em microcontroladores de baixo-custo (ex: 8 bits), permitindo desempenho às vezes superior em comparação com benchmarks em processadores mais poderosos. Neste trabalho, um total de 16 hipóteses foram formuladas e, para testá-las, um total de 7,392,380 ANNs foram treinadas e avaliadas em 9 datasets distintos. Os resultados contribuem para o desenvolvimento de ANNs mais leves e melhores para dispositivos de borda menos poderosos, bem como criam uma agenda de pesquisa sobre a mistura de otimizadores para o treinamento de ANNs. Este trabalho estabelece o primeiro benchmark de IA para microcontroladores de 8 bits compatíveis com a plataforma Arduino.
- ItemAcesso aberto (Open Access)Método híbrido com detecção de regiões promissoras baseado em densidade para o problema de localização de rótulos cartográficos(Universidade Federal de São Paulo (UNIFESP), 2016-02-15) Araujo, Eliseu Junio [UNIFESP]; Chaves, Antonio Augusto [UNIFESP]; Universidade Federal de São Paulo (UNIFESP)Metaheuristcs have been the subject of research with the aim to find those having greater efficiency for solving optimization problems. It was noted during this operation, the hybrid metaheuristics are a good choice to accentuate the qualities of these methods. This project is focused on hybrid method Clustering Search (CS), focusing on the improvement and development of a new alternative for him, trying to make it an efficient, robust and flexible method in terms of quality solutions as well as computational time. CS seeks to combine heuristics and meta-heuristics for local search, intensifying the search for regions of space solutions considered promising. In this project we propose a new way to detect promising regions, based on clustering techniques DBSCAN, Label-propagation and NGI. To analyze this approach is proposed to solve a combinatorial optimization problem with many practical applications, the problem of location of map labels. In computational tests are used test problems from the literature. The results were satisfactory for Label-clusters made with propagation and NGI, showing better results than the CS, and showing that they are a good alternative to changing the method.