Navegando por Palavras-chave "Copolímeros"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
- ItemSomente MetadadadosDesenvolvimento de blendas de polímeros estímulo-resposta baseadas em Poli (N-vinilcaprolactama-co-acrilato de N-butila) e poli(3-hexiltiofeno)(Universidade Federal de São Paulo (UNIFESP), 2019-02-20) Nahra, Sara Robert [UNIFESP]; Cristovan, Fernando Henrique [UNIFESP]; Universidade Federal de São Paulo (UNIFESP)Conductive polymers discovered in the late 1970s allowed a revolution in the construction of electronic devices, such as rechargeable batteries, photovoltaic cells, among others. Today, these materials have been extensively studied to replace traditional materials in the construction of such devices. In addition, these materials stimulate the adhesion and proliferation of several cell types in biocompatible materials, being able to be used in tissue engineering. However, there are no studies reported for this application. A good material for use as a biomaterial is poly(Nvinylcaprolactam) (PNVCL), which is biocompatible, temperature sensitive and has good mechanical strength, together with poly (3-hexylthiophene), P3HT, which allowed conductive properties to the blend. Due to the characteristics that result in high flexibility, the production of the copolymer with N-vinylcaprolactam (NVCL) and butyl acrylate (Abu) monomer result in high stiffness of NVCL resulting in a more flexible material suitable for health applications. In this project, the syntheses of PNVCL, poly(N-vinylcaprolactam-co-butyl acrylate) [P(NVCL-co-ABu)] and poly(3- hexylthiophene) (P3HT) were performed. The polythiophene (PT) blends were prepared with P(NVCL-co-ABu) by solution, films were obtained by casting and mats were processed by electrospinning. From Fourier Transform Infrared (FT-IR) analysis it was confirmed that blends were formed between P3HT and PNVCL. Through the electrical tests, it showed the samples to be quite resistive. The cytotoxicity tests showed that the conductive polymer increased the cellular viability of the material, even the blends with no electrical conductivity. From the DTG plot, it was found that the presence of P3HT in the copolymer or polymer did not significantly affect the degradation of the material. DSC analysis showed that the presence of P3HT significantly decreased the Tg (from 120 °C to 80 °C) for the polymers with the highest proportion of NVCL in the copolymer and significantly increased the Tg value for the polymers with the highest ABu ratio. It was possible to find the formation of mats for PNVCL, for P3HT/PNVCL and for P3HT/P(NVCL-co-ABu) blends with 25 and 20% ABu using appropriated processing conditions.