Desenvolvimento de sílicas mesoporosas para a liberação controlada e prolongada de fármacos

No Thumbnail Available
Date
2016-02-05
Authors
Costa, Marcela Bloise [UNIFESP]
relationships.isAdvisorOf
Bizeto, Marcos Augusto [UNIFESP]
item.page.type-of
Dissertação de mestrado
Journal Title
Journal ISSN
Volume Title
Abstract
Ordered mesoporous silicas has been considered one of the most promising inorganic systems to transport and control / sustain the release of drugs aiming to provide enhanced efficiency and reduced side effects in treatments of diseases like cancer. In this context, the present study had as main objective the production of systems for controlled and sustained release of drugs using the mesoporous silica MCM-41. Different types of chemical modification were produced in the inorganic matrix in order to enable the ibuprofen immobilization that is an anti inflammatory drug used as model in this study. MCM-41 modified with alkyl groups, such as MCM-41 mesophase, which has pores filled by cetyltrimethylamonium cation and C16-MCM-41, a structure which is not yet described in literature, prepared by co-condensation of hexadecyltrimetoxysilane on the silica walls, was used for the ibuprofen immobilization by adsorption as studied as sustained release systems. Controlled release systems were created by immobilization of ibuprofen in MCM-41 by covalent ester and amide bonds. These bonds can be broken by pH change or by enzymes action. These are possible external stimuli to control the drug release. The ester bond was formed by the reaction of ibuprofen carboxylic acid group with the epoxy ring of the glycidyloxipropyl group anchored to the surface of MCM-41, or by coupling of ibuprofen to glycidyloxipropiltrimetoxysilane and subsequent post-functionalization of MCM-41. The amide bond formation ibuprofen was produced by the reaction of amino groups of an APTES grafted silica with the carboxylic acid residue of ibuprofen by using the coupling agents EDC/NHS. The materials prepared and the intermediaries were previously characterized to confirm the immobilization of the drug as it was proposed. The release process of ibuprofen immobilized by adsorption on the MCM-41, C16-MCM-41 and MCM-41mesof matrices was performed in simulated body fluid and the results showed that the release profile was slower for the inorganic matrices with pores modified with alkyl chains when compared to the MCM-41 with empty pores. C16-MCM-41 showed a more prolonged release process, releasing about 10% of the ibuprofen immobilized after 300 minutes, while MCM-41 released about 25% of the drug after the same period. The mathematical model that best fit the release curves was Higuchi?s, indicating that the rate-limiting step of the process is the drug diffusion through the pores of the materials. For materials containing ibuprofen immobilized by ester bond the release tests were performed in phosphate buffer solution pH 6,6; 7,0 and 7,4. The drug release occurred at any pH , but it was slower in acid pH, yet relying on the influence of the lower solubility of ibuprofen in this condition. Considering the higher pH condition, where ibuprofen is more soluble, the slower release process was observed in the matrix produced by post-functionalization with pre-modified silane with ibuprofen. This material released about 5% of the immobilized drug after 300 minutes e the mathematical model that best fit the release curves was Kormeyer-Peppas?, indicating that although there is the additional contribution of the breaking the covalent bond, the process continues to be dominated by diffusion of the drug throught the pores. This work demonstrated the synthesis of a novel mesoporous silica matrix containing alkyl chains with 16 carbon atoms covalently attached to the silica walls, and different ways to control and prolong the release of ibuprofen. Besides that, the procedure developed for the immobilization of ibuprofen by covalent bonding should work for other types of drugs that containing carboxylic acid groups in the molecular structure.
As sílicas mesoporosas ordenadas são consideradas um dos sistemas inorgânicos mais promissores para atuarem no transporte e na liberação prolongada e/ou controlada de fármacos visando propiciar maior eficiência e redução de efeitos colaterais em tratamentos de doenças como o câncer. Neste caminho, o presente estudo teve como objetivo principal a produção de sistemas de liberação prolongada e controlada de fármacos utilizando a sílica mesoporosa MCM-41. Diferentes tipos de modificação química foram produzidas na matriz inorgânica para viabilizar a imobilização do ibuprofeno, que é um fármaco anti-inflamatório, que foi utilizado como modelo para este estudo. Os sistemas com propriedades de liberação prolongada foram produzidos pela imobilização do ibuprofeno por adsorção nos poros da MCM-41 modificada com grupos alquílicos, como a mesofase da MCM-41, que tem os poros preenchidos pelo cátion cetiltrimetilamônio e a C16-MCM-41, que é uma estrutura ainda não descrita na literatura, a qual foi preparada pela co-condensação do hexadeciltrimetóxisilano nas paredes da sílica. Os sistemas para liberação controlada foram produzidos pela imobilização do ibuprofeno na MCM-41 por ligações covalentes do tipo éster e amida. Essas ligações podem ser quebradas por alteração do pH do meio ou pela ação de enzimas, os quais são os possíveis processos para servirem como estímulos para controle da liberação do fármaco. A ligação éster foi formada pela reação do grupo ácido carboxílico do ibuprofeno com o anel epóxi do grupo glicidilóxipropil ancorado à superfície da MCM-41, ou pelo acoplamento do ibuprofeno ao glicidilóxipropiltrimetoxisilano e posterior pós-funcionalização da MCM-41. Para formação da ligação amida, o ibuprofeno foi acoplado à sílica previamente modificada com grupos aminopropil utilizando o agente de acoplamento EDC/NHS. Os materiais preparados bem como os intermediários foram devidamente caracterizados para confirmar a imobilização do fármaco como proposto. O processo de liberação do ibuprofeno imobilizado por adsorção nas matrizes MCM-41, C16-MCM e MCM-41mesof foi realizado em fluído corporal simulado e os resultados mostraram que a liberação do fármaco foi mais lenta nas matrizes com poros preenchidos com as cadeias alquílicas em relação à MCM-41 com poros vazios. A C16-MCM-41 apresentou o processo de liberação mais prolongado, liberando cerca de 10% do ibuprofeno imobilizado após 300 min., enquanto que a MCM-41 liberou cerca de 25% do fármaco após o mesmo período. O modelo matemático que mais se ajustou às curvas de liberação foi o de Higuchi, indicando que a etapa limitante do processo é a difusão do fármaco pelos poros dos materiais. Para os materiais contendo o ibuprofeno imobilizado por ligação éster os ensaios de liberação foram realizados em solução de tampão fosfato com pH 6,6; 7,0 e 7,4. A liberação do fármaco ocorreu em qualquer valor de pH, mas foi mais lenta em pH ácido, contando ainda com a influência da menor solubilidade do ibuprofeno nesta condição. Considerando a condição de maior pH, onde o ibuprofeno é mais solúvel, o processo mais lento de liberação foi observado na matriz produzida por pós-funcionalização com o silano pré-modificado com o ibuprofeno. Este material liberou cerca de 5% do fármaco imobilizado após cerca de 300 min. e o modelo matemático que mais se ajustou às curvas de liberação foi o de Korsmeyer-Peppas, indicando que embora haja a contribuição adicional da quebra da ligação covalente, o processo continua sendo dominado pela difusão do fármaco pelos poros. Este trabalho mostrou a síntese de uma matriz de sílica mesoporosa inédita contendo cadeias alquílicas com 16 átomos de carbono covalentemente ligadas às paredes de sílica, além de diferentes formas para prolongar e controlar o processo de liberação do ibuprofeno. Além disso, o procedimento desenvolvido para a imobilização do ibuprofeno por ligação covalente deve funcionar para outros tipos de fármacos que contenham grupos ácido carboxílico na estrutura molecular.
Description
Citation
COSTA, Marcela Bloise. Desenvolvimento de sílicas mesoporosas para a liberação controlada e prolongada de fármacos. 2016. 68 f. Dissertação (Mestrado) - Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, 2016.