RENATA CARMONA E FERREIRA

Análise da adaptação dos códons como uma ferramenta para predizer a abundância de uma proteína e sua correlação com o ruído na expressão gênica

Tese apresentada à Universidade Federal de São Paulo – Escola Paulista de Medicina, para obtenção do Título de Doutor em Ciências.

SÃO PAULO 2007

RENATA CARMONA E FERREIRA

Análise da adaptação dos códons como uma ferramenta para predizer a abundância de uma proteína e sua correlação com o ruído na expressão gênica

Tese apresentada à Universidade Federal de São Paulo – Escola Paulista de Medicina, para obtenção do Título de Doutor em Ciências.

Orientador: Prof. Dr. Marcelo Ribeiro da Silva

Briones

Co Orientador: Prof. Dr. Francisco de Assis Ribas

Bosco

SÃO PAULO 2007

Ferreira, Renata Carmona

Análise da adaptação dos códons como uma ferramenta para predizer a abundância de uma proteína e sua correlação com o ruído na expressão gênica / Renata carmona e

Ferreira.-- São Paulo, 2004.

xx, 165f.

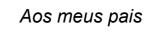
Tese (Doutorado) – Universidade Federal de São Paulo. Escola Paulista de Medicina. Programa de Pós-graduação em Microbiologia e Imunologia.

Título em inglês: Analysis os codon adptation as a tool for predicting protein abundance and the correlation with the noise in gene expression.

1. Candida albicans 2. Índice de adaptação dos códons 3.

UNIVERSIDADE FEDERAL DE SÃO PAULO ESCOLA PAULISTA DE MEDICINA DEPARTAMENTO DE MICROBIOLOGIA IMUNOLOGIA E PARASITOLOGIA

Chefe do Departamento: Prof. Dr. José Daniel Lopes


Coordenador do Curso de Pós-graduação: Prof. Dr. Renato Arruda Mortara

Chefe da Disciplina de Microbiologia: Prof. Dra. Silvia Luisa P. C. Leão

RENATA CARMONA E FERREIRA

Análise da adaptação dos códons como uma ferramenta para predizer a abundância de uma proteína e sua correlação com o ruído na expressão gênica

Presidente da banca: Pi	rof. Dr
	BANCA EXAMINADORA
Prof. Dr	
Prof. Dr	
Prof. Dr	
	Aprovada em://

Agradecimentos

Uma tese multidisciplinar como essa não teria sido realizada sem a colaboração e influência de muitas pessoas. Porém, devido ao caráter sucinto dos agradecimento não posso agradecer detalhadamente a todos como gostaria. Levando isso em consideração, gostaria de agradecer especialmente:

Ao Prof. Dr. Marcelo Ribeiro da Silva Briones, pela orientação desta tese, seu exemplo de competência e talento, e por confiar em minha capacidade mesmo quando eu duvidei dela.

Ao Prof. Dr. Francisco de Assis Ribas Bosco, pela co-orientação indispensável na segunda parte deste trabalho. Obrigada pela paciência em me explicar a matemática da dinâmica dos sistemas abertos fora do equilíbrio... Sem você essa tese não seria metade do que ela é.

Ao Prof Dr. Paulo Paiva, do Departamento de Informática por todo ajuda com a parte computacional.

Aos colegas e amigos de laboratório que me ajudaram em diferentes fases desde trabalho: Ana Carolina B. Padovan, Silvia Kawashita, Analy Melo, Bruno Giordano, Richard Cardoso, Melissa Mitne, Luiz Fernando Alvarez, Paloma Hernandez, Viviane Bernardo, Larissa Carnevalli, Tatiana Ricca, Viviane S. Alves e Maria Carolina S. Moraes. Obrigada por tornar esse período inesquecível.

À Vitória A. P. Dias, por toda a força e amizade neste período.

À Paola Rossi, pela amizade, conselhos e por colocar ordem e administrar o laboratório.

À Magda J. Nisti, secretária da disciplina e Mércia V. Maia, secretária do programa de pós-graduação em Microbiologia e Imunologia, pela ajuda em todos os aspectos burocráticos da pós-graduação

À todos os professores, pós-graduandos e funcionários da Disciplina de Miccrobiologia.

Aos meus amigos Bianca Bragato, Aline Ranieri, Rosana Brito, Priscila Russo, Rosana Santarosa, Claudia V. de Carvalho, Fernanda B. F. de Andrade e Renée vD. Misciasci, pela amizade, carinho e apoio.

Aos irmãos que eu escolhi Marcella S. L. Pirró e Fabio Nogueira. Amo muuuuuuuito vocês dois. Não tenho nem como agradecer por tudo.

A minha família pelo amor, admiração e apoio. Sem vocês não teria terminado essa etapa!

A todas as pessoas que não foram citadas aqui por imperdoável esquecimento, mas que contribuíram de alguma forma para a realização desse trabalho. Muito obrigada!

"It is probably true quite generally that in the history of human thinking the most fruitful developments frequently take place at those points where two different lines of though meet. These lines may have their roots in quite different parts of human nature, in different times or different cultural environments or different religious traditions: hence if they actually meet, that is, if they are at least so much related to each other that a real interaction can take place, then one may hope that new and interesting developments may follow"

(Werner Heisenberg)

"Do not worry about your difficulties in mathematics. I can assure you mine are still greater"

(Albert Einstein)

Sumário

Dedicatória	V
Agradecimentos	vi
Lista de Figuras	xii
Lista de Tabelas	xiv
Lista de Abreviaturas	XV
Resumo	xviii
Abstract	xx
1. INTRODUÇÃO GERAL	1
2. OBJETIVOS	7
3. CARACTERIZAÇÃO DE GENES HIPOTÉTICOS NA LEVEDURA	Candida
albicans	9
3.1. Introdução	9
3.1.1. O padrão de uso dos códons	13
3.1.1.1. Índices que medem o padrão de uso dos códons	18
3.2. Material e Métodos	24
3.2.1. Microorganismo	24
3.2.2. Seleção dos Genes Hipotéticos	24
3.2.3. Caracterização dos Genes Hipotéticos	24
3.2.4. Oligonucleotídeos	25
3.2.5. Indução de hifas em <i>C. albicans</i>	26
3.2.6. Extração do RNA total de <i>C. albicans</i>	26
3.2.7. Quantificação do RNA total	27
3.2.8. Verificação da integridade do RNA total em gel de agarose	27
3.2.9. Tratamento do RNA com DNAse	28
3.2.10. Reação de Transcriptase Reversa (RT-PCR)	28
3.2.11. Verificação da integridade do cDNA por PCR	29
3.2.12. Verificação da expressão dos genes por Reação de Polimerase e	m Cadeia
(PCR)	29
3.3. Resultados	30
3.3.1. Seleção dos genes hipotéticos	30
3.3.2. Caracterização dos genes hipotéticos	30

3.3.3. Seleção dos genes hipotéticos para estudo de função	30
3.3.4 Caracterização da ORF CaYdr187c	34
3.3.5 Caracterização da ORF CaYlr339c	39
3.3.6 As ORFs selecionadas são transcritas	44
3.4. Discussão	45
4. O PROBLEMA DO RUÍDO TRANSCRICIONAL	51
4.1. Introdução	51
4.2. Material e Métodos	54
4.2.1. Fonte dos dados	54
4.2.2. Cálculo da flutuação relativa dos níveis de expre	essão (ruído
transcricional temporal)4.3. Resultado e Discussão	
4.3.1. Analise do genoma total	
4.3.2. O problema da essencialidade	
4.3.3. Ohnólogos	
4.3.4. Correlação entre o ruído e o CAI	
4.3.5. Modelando a expressão gênica de único gene	
4.3.6. Comparação entre o modelo e o dado experimental	
5. CONCLUSÃO	75
6. PERSPECTIVAS FUTURAS	77
7. REFERÊNCIAS BIBLIOGRÁFICAS	79
8. ANEXOS	93

Lista de figuras

Figura	1: Morfologia da Candida albicans	.12
Figura	2: Diagrama ilustrando a relação entre a freqüência relativa do uso dos cód e a abundância das espécies de tRNA	
Figura	3: Resultado do programa ProtFun para a ORF CaYdr187c	34
Figura	4: Predição da estrutura secundária da proteína putativa CaYdr187c	.35
Figura	5: Resultado do programa SignalP para a ORF CaYdr187	.37
Figura	6: Resultado do programa TMHMM para a ORF CaYdr187c	38
Figura	7: Resultado do programa ProtFun para a ORF CaYlr339c	.39
Figura	8: Predição da estrutura secundária da proteína putativa CaYlr339c	.40
Figura	9: Resultado do programa SignalP para a ORF CaYlr339c	.42
Figura	10: Resultado do programa TMHMM para a ORF CaYlr339c	.43
Figura	11: PCR feito a partir do RT-PCR para as ORFs CaYdr187c e CaYlr339c	.44
Figura	12: Esquema do fluxo de informação no genoma	.51
Figura	13: Esquema das 17 medidas do nível de expressão em dois cion celulares	
Figura	14: Tipos de ruído	58

Figura 15: Distribuição de probabilidade do nível médio de expressão e do nível d
ruído para o genoma59
Figura 16: Mapa cromossômico do ruído temporal6
Figura 17: Distribuição de probabilidade do nível de ruído para os genes essenciais não essenciais6
Figura 18: Distribuição de probabilidade do nível médio de expressão para os gene ohnólogos e não ohnólogos6
Figura 19: Correlação entre o ruído temporal e o CAI6
Figura 20: Diagrama do $\overline{\alpha}$ x η. Minimização do ruído como uma função de $\overline{\alpha}$ 7

Lista de tabelas

Tabela 1: Padrão do uso dos cóo	dons em quatro espécies16
Tabela 2: Oligonucleotídeos	25
·	ue medem o padrão do uso dos códons nos genes31
Tabela 4: Valores de RSCU para	o conjunto dos genes hipotéticos33
	edidas do nível de expressão para alguns genes do siae55
•	uído temporal e do nível de expressão para o genoma ossomo60
· ·	ruído temporal e do nível de expressão para cada

Lista de abreviaturas e símbolos

micrograma μg °C graus Celsius microlitro μl μM micromolar picomol pmol 5-FC 5-fluocitosina 5-FU 5-fluorouracil Α adenina aminoácido aa

AIDS síndrome da imunodeficiência adquirida

AlaalaninaArgargininaAsnasparaginaAspácido aspártico

C citosina

CAI índice de adaptação dos códons (do inglês "codon adaptation

index")

CBI codon bias index

cDNA ácido desoxiribonucleico complementar

cm centímetro

CpG dinucleotideos citosina guanina

Cys cisteina

DEPC dietil pirocarbonato
DNA ácido desoxiribonucleico

dNTP 5'-trifosfato de 2'-desoxinnucleotídeo

DTT ditiotreitol

EDTA ácido etilenodiaminotetracético EN_c número efetivo de códons F_{op} freqüência de códons ótimos g aceleração da gravidade

G guanina

G+C conteúdo de guanina e citosina nas três posições do códon GC3s freqüência dos nucleotídeos G ou C na terceira posição dos

códons sinônimos

Gln glutamina

Glu ácido glutâmico

Gly glicina
H₀ hipótese nula
His histidina

HMM cadeia de markov escondida ("do inglês "hiden markov chain")

Ile isoleucinaLeu leucinaLys lisina

Mb milhões de pares de base

Met metionina

mg miligramas mililitros

mRNA ácido ribonucléico mensageiro

ng nanôgrama nm nanômetro

NN redes neurais (do inglês "neural networks")

ORF fase aberta de leitura (do inglês "open reading frame")

P codon preference plot

pb pares de base PBS tampão fosfato

PCR reação em polimerase da polimerase (do inglês "polymerase chain

reaction)

pH potencial de hidrogênio

Phe fenilalanina Pro prolina

rDNA gene do RNA ribossômico

RNA ácido ribonucléico rpm rotações por minuto

RSCU uso relativo dos códons sinônimos (do inglês "Relative

Synonymous Codon Usage"

RT-PCR Reação de transcriptase reversa

S⁴U 4-tiouridina SD desvio padrão

SerserinaTtiminaThrtreonina

TMHMM transmembrane hidden markov chain tRNA ácido ribonucléico transportador

Trp triptofano
Tyr tirosina
U uracila
Val valina

w fitness relativo

Resumo

Os índices que medem adaptação dos códons são amplamente utilizados para predizer o nível de expressão de um gene. Para verificar se: (i) o índice de adaptação dos códons (CAI) pode ser utilizado para ordenar e caracterizar genes hipotéticos em seqüências de genomas completos; (ii) a variação estocástica da expressão gênica entre as células (ruído) pode ser utilizada como um marcador quantitativo para diferenciar genes essenciais de não essenciais e (iii) qual a correlação existente entre o ruído e o CAI, subdividiu-se esse trabalho em duas partes. Na primeira parte analisei os índices de padrão de uso dos códons como preditores do nível de expressão de genes hipotéticos da levedura Candida albicans. Foram selecionados 744 genes hipotéticos que satisfazem três características simultaneamente sendo elas: (i) ORFs maiores que 500bp; (ii) fases abertas de leitura sem sobreposição com outras ORFs e (iii) ORFs com similaridade ≥ 60% com genes de Saccharomyces cerevisiae e Schizosaccharomyces pombe. O padrão de uso dos códons para os genes hipotéticos apresenta uma grande variedade nos diferentes genes selecionados, porém nota-se uma tendência a um baixo e médio nível de expressão independente do índice analisado. Os valores de CAI variam entre 0,044 e 0,540 com média de 0,170 (± 0,051). ORFs com baixo nível de expressão e potencialmente essenciais são ótimas candidatas para serem alvos para drogas potenciais. Essas características são importantes uma vez que um baixo nível de expressão implicaria numa menor dosagem da droga, e o gene de ser potencialmente essencial uma vez que se deseja a morte do fungo causando a infecção. Baseando-se nessas duas características selecionou-se duas ORFs hipotéticas para estudo de função: CaYdr187c (CAI = 0,084) e CaYlr339c (CAI = 0,088). A ORF CaYdr187c é uma possível proteína do envelope celular, com ontologia de resposta imune; e apresenta tanto peptídeo sinal quanto regiões transmembrana. De acordo com o RT-PCR esse gene é transcrito apenas na fase de levedura do fungo. A ORF CaYlr339c é uma possível proteína relacionada com a tradução, com ontologia de resposta imune; e não apresenta nem peptídeo sinal e nem regiões transmembrana. De acordo com o RT-PCR esse gene é transcrito tanto na fase de levedura quanto na de hifa do fungo. Na segunda parte, analisei a distribuição do ruído transcricional e sua possível utilização como classificador para a essencialidade dos genes. Para se estudar as distribuições estatísticas do ruído

temporal no sistema eucariótico modelo Saccharomyces cerevisiae, nós analisamos dados de microarray correspondendo à um ciclo celular para 6.200 genes. Nós descobrimos que o ruído temporal segue uma distribuição log-normal com invariância de escala nos níveis genômico, cromossômico e sub-cromossômico. A correlação do ruído temporal com o índice de adaptação dos códons sugere que pelo menos 70% dos genes codificadores de proteínas são o centro de minimização de ruído do genoma. Nós propusemos um modelo matemático da dinâmica da expressão de um único gene, utilizando a teoria de operadores, o qual revela condições rígidas para a variabilidade do ruído e uma estratégia possível para a minimização / otimização do ruído em nível genômico. Nosso modelo e dados mostram que o ruído mínimo não corresponde a genes obedecendo a uma dinâmica estritamente determinística. A estratégia natural de minimização do ruído consiste em igualar o ruído (η) com a média do valor absoluto da variação relativa do nível de expressão (α). Nós hipotetizamos que o padrão do ruído temporal é uma propriedade emergente do genoma e mostra como a dinâmica da expressão gênica pode estar relacionada com a organização cromossômica. Os índices utilizados neste estudo foram validados como preditores do nível de expressão, caso do CAI para a Candida albicans, e de essencialidade, caso do ruído da expressão gênica. O índice de adaptação dos códons (CAI) é válido como preditor do nível de ruído bem como da dinâmica da expressão gênica.

Abstract

The indices that measure the codon adaptation are widely used for predicting the expression level of a gene. To verify if: (i) the codon adaptation index (CAI) can be used to characterize hypothetical genes in complete genomes; (ii) the variation of gene expression within cells (noise) can be used as a quantitative marker for essentiality and (iii) what's the correlation between noise and CAI, this work is divided in two parts. In first section we analyzed the indices that measure the codon adaptation as predictors of the expression level in hypothetical genes in the yeast Candida albicans. We selected 744 hypothetical ORFs that satisfied three characteristic: (i) ORFs longer than 500bp (bp); (ii) open reading frames not superposed with other ORFs and (iii) ORFs with similarity ≥ 60% with Saccharomyces cerevisiae and Schizosaccharomyces pombe genes. The codon usage for the hypothetical genes vary a lot between the selected ORFs, regardless the index. The CAI vary between 0,044 and 0,540 with average 0,170 (±0,051). ORFs with low expression level and that are possibly essential are good candidates to be new drug targets. Based on this two characteristics we selected two hypothetical ORFs for function studies: CaYdr187c (CAI=0,084) and CaYlr339c (CAI=0,088). The ORF CaYdr187c is a possible cell envelope protein, with gene ontology of immune response, and prediction of both signal peptide and transmembrane regions. Based on the RT-PCR this gene is expressed only in the yeast fase. The ORF CaYlr339c is a possible protein involved in translation, with gene ontology of immune response, and no prediction of both signal peptide and transmembrane regions. Based on the RT-PCR this gene is expressed both in the yeast and hypha fases. In the second section, I analyzed the transcription noise and its possible use as a classifier of gene essentiality. The analysis of transcriptional temporal noise could be an interesting means to study gene expression dynamics and stochasticity in eukaryotes. To study the statistical distributions of temporal noise in the eukaryotic model system Saccharomyces cerevisiae, we analyzed microarray data corresponding to one cell cycle for 6,200 genes. We found that the temporal noise follows a lognormal distribution with scale invariance at the genome, chromosomal and sub-chromosomal levels. Correlation of temporal noise with the codon adaptation index suggests that at least 70% of all protein-coding genes are a noise minimization core of the genome. Accordingly, a mathematical model of individual gene expression dynamics was proposed, using an operator theoretical approach, which reveals strict conditions for noise variability and a possible global noise minimization/optimization strategy at the genome level. Our model and data show that minimal noise does not correspond to genes obeying a strictly deterministic dynamics. The natural strategy of minimization consists in equating the mean of the absolute value of the relative variation of the expression level (α) with noise (η). We hypothesize that the temporal noise pattern is an emergent property of the genome and shows how the dynamics of gene expression could be related to chromosomal organization.

Este trabalho está dividido em duas partes. Na primeira parte analisei os índices de padrão de uso dos códons como preditores do nível de expressão. Na segunda parte, analisei a distribuição do ruído transcricional e sua possível utilização como classificador para a essencialidade dos genes.

1. Introdução Geral

Na perspectiva da teoria da informação, genomas podem ser entendidos como um grupo de unidades informacionais interdependentes (genes) organizados seqüencialmente em estruturas lineares (cromossomos) os quais compõem um conjunto maior. Portanto, é relevante perguntar: O que é um gene?

A etiologia do termo deriva do grego *genesis* (nascimento) ou *genos* (origem). O conceito de gene evoluiu e tornou-se mais complexo desde que foi inicialmente proposto. Existem várias definições para o termo, ainda que a descrição inicial comum inclua a capacidade de determinar uma característica particular de um organismo e a hereditariedade dessa característica. A palavra gene foi usada pela primeira vez por Wilhelm Johannsen em 1909 e foi baseada no conceito desenvolvido por Gregor Mendel em 1866 (Mendel 1866). O termo é um derivativo de *pangene*, o qual foi utilizado por Hugo De Vries para entidades envolvidas na *pangenesis*, mecanismo hereditário proposto por Darwin (Heimans 1962). Johannsen chamou de gene as "condições especiais, bases e determinantes as quais estão presentes nos gametas de forma única, separada e independente pelas quais muitas características dos organismos são especificadas" (Johannsen 1909).

Mendel mostrou que no cruzamento de plantas, alguns traços como cor da flor e altura da planta não aparecem combinados na próxima geração, ou seja, esses traços são passados como entidades distintas e discretas (Mendel 1866). A Teoria Mendeliana da herança foi uma das primeiras Teorias quantitativas em Biologia. Foi somente depois da redescoberta dos trabalhos de Mendel por Carl Correns, Erich von Tschermak-Seysenegg e Hugo De Vries no início do século 1900 que os trabalhos sobre a natureza da unidade da herança realmente começaram (De Vries 1900; Tschermak 1900; Rheinberger 1995).

O primeiro mapa genético foi criado em 1913 por Sturtevant (1913). Em 1915

Thomas Hunt Morgan, ao estudar a segregação das mutações em *Drosophila melanogaster*, foi capaz de explicar os dados observados de acordo com um modelo onde os genes estariam linearmente arranjados com capacidade de recombinação proporcional à distância que os separam (Morgan, Sturtevant et al. 1915). Nesta época, o gene era uma entidade abstrata cuja existência era o reflexo de como os fenótipos eram transmitidos entre as gerações. Devido à metodologia empregada, os genes eram essencialmente um *locus* cujo tamanho era determinado por mutações que inativam ou ativam uma determinada característica de interesse ou pelo tamanho da região de recombinação. O fato da distância genética (*linkage*) corresponder à localização física nos cromossomos foi demonstrada em 1929 por Barbara McClintock em seus estudos de citogenética em milho (McClintock 1929).

Mais tarde, Beadle e Tastum (1941) descobriram que mutações em genes podem causar defeitos em passos de vias metabólicas em *Neurospora*. Esta descoberta levou à hipótese da associação "um gene – uma enzima". Por esse ponto de vista, os genes são considerados, implicitamente, como a informação por trás da molécula em uma via bioquímica.

Somente após a solução da estrutura do DNA por Watson e Crick (1953) que foi explicado como o DNA poderia funcionar como a "molécula da hereditariedade". A partir da década de 1960 a biologia molecular se desenvolveu rapidamente. O código genético foi resolvido por Nirenberg e Leder (1964) e Söll e colaboradores (1966); Francis Crick (1968) resumiu a passagem da informação genética como sendo do ácido nucleico \rightarrow proteína. Nesta época, podia se definir o gene como sendo um código existente no DNA que dá origem a um produto funcional.

O desenvolvimento de técnicas de clonagem e sequênciamento, combinadas com o conhecimento do código genético revolucionou a biologia molecular fornecendo uma grande quantidade de informação sobre a organização e expressão dos genes. O primeiro gene a ser seqüenciado foi do bacteriófago MS2, sendo também o primeiro genoma completamente seqüenciado (Fiers, Contreras et al. 1976). Paralelamente, o desenvolvimento de ferramentas computacionais levou a algoritmos para a identificação de genes baseado nas características da sua seqüência. Em muitos casos, pode se utilizar a seqüência de DNA para inferir a estrutura e a função de um gene e seu produto. A identificação da maioria dos genes nos genomas seqüenciados é baseada ou na sua similaridade com genes conhecidos ou como uma seqüência que

possui uma assinatura de "codificador de proteína" com uma alta significância estatística (revisão em Rogic, Mackworth et al. 2001). Essa situação criou um novo conceito de gene, "gene nominal", o qual é definido por sua seqüência predita ao invés de um *locus* gênico responsável por um fenótipo (Griffiths e Stotz 2006). A definição de gene utilizada nesta tese é a de gene nominal, onde um gene é uma fase aberta de leitura (ORF, do inglês "Open Reading Frame") retirando-se os introns quando existentes, entre as seis fases possíveis de um segmento de DNA, iniciando em um códon de iniciação e finalizando em um códon de terminação, podendo ambos serem não canônicos (Peabody 1989; Gordon, Fütterer et al. 1992).

Uma vez definido o que é um gene, a informação genética contida nessa ORF, ou seja, sua seqüência, pode ser caracterizada através da função da proteína putativa e nível de expressão, entre outros.

Indicadores do nível de expressão de uma ORF são utilizados numa grande variedade de contextos como, na anotação de genomas onde serve como um preditor da probabilidade de uma ORF ser transcrita e traduzida, e na expressão heteróloga de proteínas com a finalidade de se encontrar um hospedeiro onde a expressão seja maximizada. Esses índices baseiam-se no fato de genes com alto nível de expressão exibirem uma tendência a um uso não aleatório dos códons sinônimos. Uma das explicações para isso é a correlação existente entre a freqüência dos tRNAs e a freqüência dos códons sinônimos lido por cada espécie de tRNA (Ikemura 1981; Dong, Nilsson et al. 1996). Em genes altamente expressos, um códon, dentro de uma família de códons sinônimos, tende a dominar em freqüência, e esse códon é, na maioria das vezes lido pela espécie de tRNA mais abundante (Post, Strycharz et al. 1979; Elf, Nilsson et al. 2003).

Em 1987 o índice de adaptação dos códons (CAI, do inglês "Codon Adaptation Index") foi proposto como uma maneira quantitativa de se predizer o nível de expressão de um gene e assim classificá-lo exclusivamente baseado em sua seqüência (Sharp e Li 1987). Entretanto, a definição desse índice foi baseada em premissas qualitativas sobre o nível de expressão de um gene, e o número de seqüências utilizadas para definir os parâmetros foi baseado na composição dos códons de apenas 24 genes com suposto alto nível de expressão. De qualquer forma, trabalhos posteriores utilizando um número maior de seqüências acabaram por corroborar a relação entre o nível de transcrição de um gene e o CAI, sugerindo que esse índice em particular é robusto em predizer o nível de expressão de um gene

(Fuglsang 2003; Jansen, Bussemaker et al. 2003; Friberg, von Rohr et al. 2004; Goetz e Fuglsang 2005).

Outra importante classificação possível é em termos de propriedades fundamentais do gene, como essencialidade. A definição de essencialidade atualmente empregada em Biologia é fenomenológica, não-quantitativa e, portanto não-científica, numa visão filosófica positivista. Um gene essencial é definido como aquele que quando ausente ("deletado") confere fenótipo letal ao organismo. Como o fenótipo é por definição uma relação, não-linear, entre genótipo e ambiente, a discussão de essencialidade só tem sentido dentro dos parâmetros superficialistas empregados hoje em Biologia, quando feita em relação a uma dada condição de crescimento. Atualmente a definição se refere ao meio rico, *in vitro*. Genes essenciais são alvo de um grande número de estudos uma vez que, entre outras coisas, tais genes são importantes potenciais alvos para drogas antimicrobianas e antitumorais (Liu, Healy et al. 2006; Hu, Sillaots et al. 2007; Lerner, Hajduk et al. 2007).

Existem várias técnicas para identificar genes essenciais. Um dos mais efetivos é o método em larga escala de interrupção de genes ("Deleção Sistemática"). Foi através desses estudos que foram determinados a maioria dos genes essenciais em *Saccharomyces cerevisiae* (17,8% do genoma) (Winzeler, Shoemaker et al. 1999; Giaever, Chu et al. 2002) e *Schizosaccharomyces pombe* (17,5% do genoma) (Decottignies, Sanchez-Perez et al. 2003). Entretanto, esses estudos são demorados e caros. Por exemplo, estudos desse porte em *Candida albicans* são especialmente difíceis devido à presença somente da fase diplóide e de diferenças no "*mating type*". Mais ainda, estudos recentes de sequênciamento de genomas de comunidades sugeriram que menos de 1% das espécies de microorganismos são cultiváveis em laboratório (Reisenfeld, Schloss et al. 2004; Chen e Pachter 2005). Portanto, é necessário que se procure métodos alternativos aos experimentais para a identificação de genes essenciais na maioria dos patógenos.

Os primeiros estudos de genômica comparativa envolviam a comparação de vários genomas para encontrar um genoma mínimo conservado entre as espécies e marcar os componentes essenciais desse genoma mínimo (Mushegian e Koonin 1996; Arigoni, Talabot et al. 1998; Bruccoleri, Dougherty et al. 1998). Utilizando um método de aprendizagem computacional (*machine learning system*) onde foram integrados tanto dados genômicos quanto experimentais, Jeong e colaboradores (2003) foram capazes de identificar os genes essenciais em *S. cerevisiae*, demonstrando a

capacidade de se predizer genes essenciais através de métodos computacionais, porém, a aplicabilidade da predição não foi testada em outros genomas. Seringhaus e colaboradores (2007) utilizaram um método baseado apenas na seqüência das ORFs para predizer genes essenciais em *Saccharomyces mikatae* e foram os primeiros a verificar uma predição heterogênomica de genes essenciais. Eles identificaram possíveis 14 características na seqüência de genes, tais como presença de sinais de localização, conteúdo de G+C e o CAI e utilizaram-nas para treinar um classificador a partir dos dados disponíveis para o *S. cerevisiae*. Com esse método eles foram capazes de identificar cerca de 18% de genes essenciais em *S. mikatae*. Essas duas espécies de fungo são filogenéticamente próximas e possuem um alto grau de similaridade entre as seqüências (Kellis, Patterson et al. 2003), portanto é esperada a presença de ortólogos da maioria dos genes essenciais do *S. cerevisiae* no *S. mikatae*. A capacidade desse método em predizer genes essenciais em organismos que não são filogenéticamente próximos ainda precisa ser testada.

Os genes, entretanto não são entidades isoladas e é preciso ter em mente que eles estão todos interconectados numa rede, seja ela metabólica ou regulatória. Desta forma a célula pode ser vista como um sistema complexo onde uma parte, ou um gene isolado, desse sistema não pode ser tratado de maneira isolada. O conceito de emergência é a formação de padrões complexos a partir de partes, ou comportamentos, mais elementares, os quais constituem um sistema (Anderson 1972; Bar-Yam 2004). Para ser dito emergente, um fenômeno deve ser imprevisível a partir de um nível de descrição mais básico ou elementar das partes e comportamentos. Em sistemas complexos, a emergência é um conceito central.

O padrão de expressão gênica definido como o conjunto de reações que controla a abundância dos produtos gênicos, o qual pode ser visto como uma propriedade emergente dos genes influencia aspectos do comportamento celular e são muitas vezes invocados para explicar as diferenças fenotípicas observadas numa população de células. Essa variabilidade pode ser devida a diferenças genéticas, entretanto, mesmo células carregando o mesmo genoma apresentam variação no nível de expressão gênica. Uma vez que o número moléculas de DNA, RNA e proteínas é baixo por célula, a abundância desses componentes está sujeita a flutuações estocásticas ao longo do tempo, portanto, o efeito da estocasticidade na expressão gênica deve ser grande quando observamos variações entre as células de populações isogênicas (McAdams e Arkin 1997).

Existem quatro possíveis fontes de variação no nível de expressão gênica que devem ser considerados: (i) a estocasticidade inerente aos processos biológicos; (ii) variação na expressão gênica devido a diferenças no estado interno das células, tais como fase do ciclo celular; (iii) diferenças ambientais; e (iv) mutações genéticas. A variação da expressão gênica entre as células dentro de uma população isogênica é denominada "ruído".

2. Objetivo

Verificar se os índices CAI e ruído podem ser utilizados como preditores do nível de expressão e de essencialidade. Para isso tentaremos responder as seguintes perguntas:

- O CAI pode ser utilizado para caracterizar genes hipotéticos em seqüências de genomas completos?
- O ruído na expressão gênica pode ser utilizado como um marcador quantitativo para diferenciar genes essenciais de não essenciais?
- Qual a correlação existente entre o ruído e o CAI?

3. Caracterização de genes hipotéticos na levedura Candida albicans

3.1. Introdução

A levedura *Candida albicans* faz parte da microbiota de indivíduos sadios onde predominantemente coloniza a pele, mucosa gastrointestinal e vagina. Alterações nos mecanismos de defesa do hospedeiro podem transformar sua biota fúngica em patógenos oportunistas, o que pode causar desde micoses superficiais até infecções disseminadas (Odds 1994) com a taxa de mortalidade atribuída de 38% (Wey, Mori et al. 1988). Infecções sistêmicas, apesar de relativamente menos comuns, mostram a versatilidade do gênero *Candida* em alcançar vísceras (Pfaller 1994).

Segundo dados de hospitais dos Estados Unidos, as espécies de *Candida* ocuparam o 4º lugar como agente etiológico em infecções de corrente sanguínea em pacientes hospitalizados entre abril de 1995 e junho de 1996, sendo responsável por 8% dos casos (Pfaller, Jones et al. 1998). Vários estudos recentes apontam *C. albicans* como a espécie mais freqüentemente isolada (Pfaller, Diekema et al. 2001; St-Germain, Laverdière et al. 2001; Diekema, Messer et al. 2002), apesar do aumento das infecções por espécies "não-*Candida albicans*" (Wenzel 1995; Jarvis 1996; Sullivan, Henman et al. 1996), assim podemos citar aqui alguns exemplos.

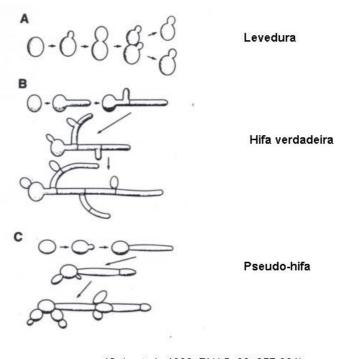
Em amostras de cavidade oral de pacientes com AIDS no Brasil, Milan e colaboradores (1998) encontraram 78% de *C. albicans*, entre 1995 e 1996, sendo que as espécies não-albicans mais freqüentes foram *C. glabrata* (9,2 %) e *C. krusei* (6,4%).

Estudo da freqüência das espécies de Candida em onicomicose revelou que *C. albicans* foi a espécie predominante (prevalência de 60,9%), seguida de *C. parapsilosis* (19,6%), *C. tropicalis* (9,8%), *C. krusei* (4,9%), *C. guilliermondii* e *C. zeylanoides* (2,4% cada) (Dorko, Jautova et al. 2002).

Acredita-se que a maioria dos casos de candidemia seja adquirida por via endógena, pela translocação do patógeno através do trato gastrointestinal, local onde há rica colonização por *Candida spp* em até 70% da população normal (Nucci e Colombo 2002; Colombo e Guimarães 2003). Sendo assim, fatores que aumentem a colonização intestinal por *Candida* (uso de antibiótico, oclusão intestinal) ou determinem atrofia ou lesão de mucosa intestinal (jejum prolongado, nutrição parenteral total, hipotensão, quimioterapia) podem potencializar o fenômeno de

translocação do tubo gastrintestinal (Alexander, Boyce et al. 1990; Colombo e Guimarães 2003). Infecções hematogênicas por *Candida spp* podem ser adquiridas por via exógena, através do contato das mãos de profissionais de saúde, com pacientes portadores de cateteres vasculares em posição central, implante de próteses contaminadas, bem como pela administração parenteral de soluções contaminadas (Wenzel 1995; Pfaller 1996; Colombo e Guimarães 2003).

C. albicans é naturalmente sensível a todas as drogas antifúngicas de uso sistêmico, mas casos de resistência adquirida a azólicos, os compostos mais comumente utilizados, são conhecidos em pacientes que foram expostos prolongadamente a estes medicamentos (Colombo e Guimarães 2003). Os primeiros relatos de resistência a antifúngicos ocorreram em pacientes com candidíase mucocutânea tratados com cetoconazol (Horsburgh e Kirkpatrick 1983), mas desde o começo da epidemia de AIDS, este problema ganhou relevância clínica. O fator crítico para o desenvolvimento de resistência a azólicos é o uso prolongado e repetido de fluconazol, o que se verifica no monitoramento de candidíase oral e esofágica em pacientes com AIDS (Ruhnke, Eigler et al. 1994) e na profilaxia de infecções fúngicas, principalmente em indivíduos imunocomprometidos (Wroblewska, Swoboda-Kopec et al. 2002). Em contrapartida, em regiões onde o uso de triazoles não é tão freqüente, a resistência a estes antifúngicos é menor (Coghlan e Wolfe 2000; Safdar, Chaturvedi et al. 2001).


Novos alvos para quimioterapia têm sido estudados, como é o caso de MK-0991 (caspofungina), LY303366 (V-equinocandina) e FK466 (micafungina) que são lipopeptídeos cíclicos pertencentes à classe das equinocandinas. Estas drogas são inibidoras da beta-1,3 glucana sintetase que atua na síntese das beta-glucanas, componentes fundamentais da parede celular. As sordarinas, como GM 222712 e GM 237354, que têm como alvo a biossíntese de proteínas de fungos, também estão em estudo. Além destes, alguns variantes do grupo dos azoles como: voriconazol (UK-109496), ravuconazol (BMS-207147) e posaconazol (SCH-56592), que interagem na síntese do ergosterol, estão em desenvolvimento (Sanglard e Bille 2002). Entretanto, o número de agentes antifúngicos ainda é limitado, o que dificulta a terapia, sobretudo de linhagens resistentes, indicando a necessidade do desenvolvimento de novos alvos para drogas.

Uma característica importante de *C. albicans* é a sua versatilidade de poder ser um organismo comensal ou patógeno, o que inclui sua habilidade de sobreviver e

infectar vários sítios anatômicos distintos, cada um deles com suas pressões ambientais específicas (Brown 2002). A complexidade da interação entre *C. albicans* e o hospedeiro humano sugere que este fungo tem numerosos mecanismos que o torna capaz de se adaptar a diversos sítios do hospedeiro, e em muitos casos, colonizá-lo sem causar doença.

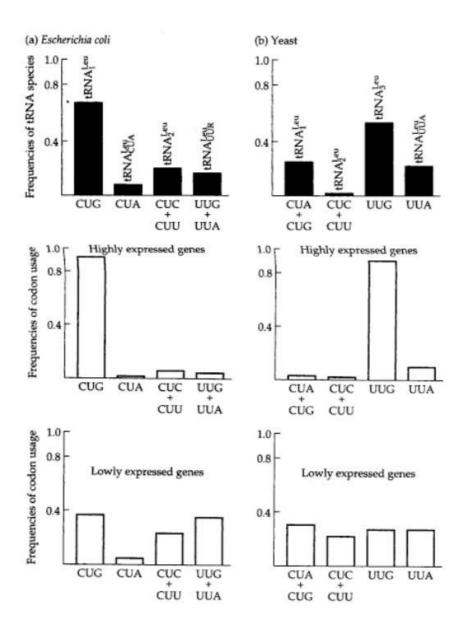
C. albicans pode crescer com diversas formas como: levedura (célula oval que se reproduz por brotamento), pseudo-hifa (cadeia de células alongadas cuja separação da célula filha e da célula mãe não ocorreu durante o processo de brotamento, com constrições visíveis na junção célula-célula) e hifa (filamento linear formado de células separadas por septos, sem constrições visíveis nestes locais) (Mitchell 1998) (Figura 1). As formas de levedura, pseudo-hifa e hifa podem ser encontradas durante a infecção, sendo esta a razão deste fungo ser mais bem denominado como polimórfico, ao invés de dimórfico (Magee 1997; Kobaiashi e Cutler 1998).

Já foi postulado que a habilidade da mudança de morfologia da forma de levedura para a forma de hifa contribui para a virulência de *C. albicans* sendo a hifa a forma mais invasiva e a mais freqüentemente identificada em tecidos infectados (Lo, Kohle et al. 1997; Stoldt, Sonneborn et al. 1997; Calderone e Fonzi 2001; Gow, Brown et al. 2002; Rooney e Klein 2002). A descrição de mutantes defectivos na formação de hifa serem avirulentos corrobora para a relevância da transição levedura-hifa na patogenicidade de *C. albicans* (Leberer, Harcus et al. 1996; Lo, Kohle et al. 1997).

(Gale et al., 1996, PNAS, 93: 357-361)

Figura 1. Morfologia da *C. albicans*. Levedura: célula oval que se reproduz por brotamento. Hifa verdadeira: células separadas por septos. Pseudo-hifa: cadeia de células com constrições na junção célula-célula.

O fungo *Candida albicans* é obrigatoriamente diplóide com um genoma de aproximadamente 16 milhões de pares de base, cerca de 33% maior que *Saccharomyces cerevisiae*. Estudos identificaram 8 pares de cromossomos homólogos com tamanhos variando de 1,03Mb à 4,3Mb. Os cromossomos são numerados de 1 (maior) a 7 (menor), e o cromossomo que possui o DNA ribossomal (rDNA) é denominado R, sendo que este varia de tamanho dependendo do número de repetições do rDNA.


A linhagem SC5314 foi escolhida para o sequênciamento devido ao seu grande uso em análises moleculares, virulência em modelos animais e cariótipo diplóide em experimentos de eletroforese. A seqüência diplóide final está distribuída em 412 supercontigs (montagem 19) (Jones, Federspiel et al. 2004). O genoma haplóide contém cerca de 7.700 ORFs que codificam proteínas putativas com 100 aminoácidos ou mais, sendo que aproximadamente 60% possui similaridade com ORFs de Saccharomyces cerevisiae e 22% são ORFs sem nenhuma similaridade com genes de S. cerevisiae, Schizosaccharomyces pombe ou Homo sapiens (Jones, Federspiel et al.

3.1.1. O padrão de uso dos códons

Devido à degenerescência do código genético, a maioria dos aminoácidos é codificada por mais de um códon. Uma vez que mutações sinônimas não causam mudança na seqüência de aminoácidos, propôs-se que elas seriam as candidatas para a ação da seleção neutra (Kimura 1968; King e Jukes 1969). Entretanto, se todas as mutações sinônimas fossem selecionadas neutramente, o uso dos códons sinônimos para um dado aminoácido seria mais ou menos parecida (freqüências iguais), a não ser que a composição das bases fosse desigual. Com o aumento das seqüências de DNA ficou evidente que o uso dos códons sinônimos não era randômico, tanto em genes procarióticos quanto em eucarióticos (Grantham, Gautier et al. 1980). De fato, para muitos genes da bactéria *E. coli* e da levedura *S. cerevisiae* essa tendência no uso dos códons é evidente.

Observou-se que genes em um organismo ou espécies relacionadas geralmente possuem o mesmo padrão no uso dos códons, o que levou Grantham e colaboradores (1980) a propor a "hipótese do genoma", postulando que os genes em um dado genoma usam a mesma estratégia na escolha entre os códons sinônimos, ou seja, a tendência do uso dos códons é espécie especifica. Essa hipótese é, em geral, verdadeira, embora exista uma heterogeneidade considerável no padrão do uso dos códons em genes de um mesmo genoma.

Estudos do uso dos códons em *E. coli* e no *S. cerevisiae* aumentaram o nosso entendimento sob os fatores que afetam a escolha dos códons sinônimos. Post e colaboradores (1979) mostraram que os genes que codificam para as proteínas ribossomais em *E. coli* são reconhecidos pelas espécies de tRNAs mais abundantes. Eles sugeriram que essa preferência era resultado da seleção natural porque utilizando o códon que é traduzido pela espécie de tRNA mais abundante a tradução seria mais eficiente. Ikemura (1981; 1982) mostrou uma correlação positiva entre a freqüência relativa dos códons sinônimos em um gene e a abundancia relativa das espécies de tRNAs em *E. coli* e em *S. cerevisiae* (Figura 2). Essa correlação é maior em genes altamente expressos.

Figura 2: Diagrama ilustrando a relação entre a freqüência relativa do uso dos códons para o aminoácido lisina (barras abertas) e a abundância da espécie de tRNA (barras cheias) correspondente em (a) *E. coli* e (b) *S. cerevisiae*. (Li 1997)

A importância da eficiência da tradução em determinar o padrão do uso dos códons em genes altamente expressos foi corroborada por outras observações (Ikemura 1981). O pareamento códon – anticódon envolve *wobbling* na terceira posição do códon. Esse fenômeno também é possível uma vez que alguns tRNAs possuem bases modificadas na primeira posição do anticódon. Interessantemente, a maioria dos tRNAs que podem reconhecer mais de um anticódon são utilizados em freqüências diferentes. Por exemplo, a presença da 4-tiouridina (S⁴U) na posição

wobble do anticódon pode reconhecer tanto A quanto G; entretanto, ele prefere códons terminando em A em vez dos terminando em G. Tais preferências devem estar refletidas no uso desses códons em genes altamente expressos. Os códons AAA e AAG, os quais codificam para uma lisina, são reconhecidos por moléculas de tRNAs que possuem S⁴U na posição wobble do anticódon na *E. coli*. De fato, no gene *opm*A, 15 dos 19 códons para lisina são AAA, e apenas 4 são AAG.

A tabela 1 mostra parte de uma compilação feita por Sharp e colaboradores (1988). Para cada grupo de códons sinônimos, se o uso for igual, o uso relativo dos códons sinônimos (RSCU, do inglês "Relative Synonymous Codon Usage") para cada códon será 1, o que claramente não acontece na maioria dos casos. Mais ainda, tanto em E. coli quanto em S. cerevisiae o bias no uso dos códons é muito maior em genes com alto nível de expressão que em genes com baixo nível de expressão. Uma explicação para essa diferença é que em genes altamente expressos, a seleção para eficiência na tradução é suficientemente forte para que essa tendência esteja pronunciada. Já em genes com baixo nível de expressão a seleção é fraca, então o padrão é afetado pela pressão de seleção e pela deriva genética, e, portanto, menos tendenciosa (Sharp e Li 1986; Bulmer 1988). Essa explicação é conhecida como hipótese "seleção – mutação – deriva", a qual postula que o padrão no uso dos códons é determinado por um balanço entre a seleção para o códon ótimo de cada aminoácido e as mutações juntamente com a deriva genética para a manutenção dos códons nãoótimos, em populações finitas. De acordo com essa teoria, os códons não-ótimos estão presentes nos genes pouco expressos porque a seleção contra eles é fraca. Essa visão é diferente da hipótese "expressão – regulação", a qual postula que os códons não-ótimos são mantidos nos genes pouco expressos como um mecanismo de manutenção do seu baixo nível de expressão (Grosjean e Fiers 1982; Konigsberg e Godson 1983). Um argumento contra essa hipótese é que seria muito mais eficiente modular o nível de expressão de um gene através da troca de seu promotor ou do sítio de ligação do ribossomo.

Tabela 1: PADRÃO DO USO DOS CÓDONS EM QUATRO ESPÉCIES

		Escherichia coli		Saccharomyces cerevisiae		Drosophila		Homo sapiens	
Aminoácido	Códon	Alto	Baixo	Alto	Baixo	Alto	Baixo	G + C	A + T
Leu	UUA	0,06	1,24	0,49	1,49	0,03	0,62	0,05	0,99
	UUG	0,07	0,87	5,34	1,48	0,69	1,05	0,31	1,01
	CUU	0,13	0,72	0,02	0,73	0,25	0,80	0,20	1,26
	CUC	0,17	0,65	0,00	0,51	0,72	0,90	1,42	0,80
	CUA	0,04	0,31	0,15	0,95	0,06	0,60	0,15	0,57
	CUG	5,54	2,20	0,02	0,84	4,25	2,04	3,88	1,38
Val	GUU	2,41	1,09	2,07	1,13	0,56	0,74	0,09	1,32
	GUC	0,08	0,99	1,91	0,76	1,59	0,93	1,03	0,69
	GUA	1,12	0,63	0,00	1,18	0,06	0,53	0,11	0,80
	GUG	0,40	1,29	0,02	0,93	1,79	1,80	2,78	1,19
lle	AUU	0,48	1,38	1,26	1,29	0,74	1,27	0,45	1,60
	AUC	2,51	1,12	1,74	0,66	2,26	0,95	2,43	0,76
	AUA	0,01	0,50	0,00	1,05	0,00	0,78	0,12	0,64
Phe	UUU	0,34	1,33	0,19	1,38	0,12	0,86	0,27	1,20
	UUC	1,66	0,67	1,81	0,62	1,88	1,14	1,73	0,80
Met	AUG	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

^{*} Alto e baixo referem-se à genes com alto ou baixo nível de expressão. "G + C" significa as regiões ricas em GC e "A + T" as ricas em AT. (Sharp, Cowe et al. 1988)

Um estudo teórico mostrou que um *bias* forte no uso dos códons ocorre em um gene se a desvantagem seletiva (s) contra os códons não-ótimos for maior que 2/N, onde N é o tamanho efetivo da população haplóide (Li 1987). Dado que o tamanho efetivo da população para organismos unicelulares é, provavelmente, maior que 10^6 , "s" tem que ser apenas da ordem de 10^{-6} ou menor para que esse forte bias no padrão do uso dos códons aconteça. (Hartl, Moriyama et al. 1994) estimou que $s=7 \times 10^{-9}$ para o gene gnd da E. coli. Portanto, esse forte bias observado em genes altamente expressos de organismos unicelulares pode realmente exigir uma pequena vantagem seletiva para o códon ótimo. Por outro lado, o fato do padrão do uso dos códons em genes com baixo nível de expressão ser pouco tendencioso sugere que a diferença seletiva entre o códon ótimo e o não-ótimo nesses genes é extremamente baixa.

Códons raros podem ser definidos com base no padrão geral do uso dos códons ou no padrão do uso dos códons dos genes com alto nível de expressão (Zhang, Zubay et al. 1991; Kane 1995). Códons raros em *E. coli* incluem AGG (Arg), AGA (Arg), AUA (IIe), CGA (Arg), CUA (Leu) e GGA (Lys) (Grosjean e Fiers 1982; Sharp, Cowe et al. 1988). A escolha dos códons com padrão de uso baixo é relativamente insensível à composição bruta das bases, com alguns códons sendo pouco freqüentes em um grande número de espécies incluindo *E. coli*, *S. cerevisiae*, *Drosophila* e primatas (Zhang, Zubay et al. 1991).

A freqüência de códons raros é maior em genes pouco expressos. Muitas vezes, isso é atribuído à pressão adaptativa que modula a expressão gênica. A presença dos códons raros é explicada por modelos onde a taxa de elongação da cadeia polipeptídica é regulada pela freqüência desses códons. Geralmente esses modelos supõem a existência de uma "seleção estabilizadora" mantendo um certo nível na tendência do uso dos códons. Esses modelos foram denominados de padrão de uso dos códons pan-selecionistas (Kimura 1983), e possuem grande aceitação na comunidade científica. Muitos experimentos para se determinar o padrão de uso dos códons leva em conta a proposição que os códons raros regulam a expressão gênica, regulando a taxa da tradução (Grosjean e Fiers 1982; Konigsberg e Godson 1983; Robinson, Lilley et al. 1984; Varenne, Buc et al. 1984; Hoekema, Kastelein et al. 1987). Os geneticistas de população freqüentemente desafiam esses modelos argumentando que a presença de códons raros é devido a deriva genética (Ikemura 1985; Holm 1986; Sharp e Li 1986; Li 1987; Shields 1989; Bulmer 1991; Kurland 1993).

Existe grande evidência corroborando a hipótese de que a freqüência maior de códons raros em genes pouco expressos reflete um *bias* mutacional, ao invés de uma seleção positiva para os códons raros. Códons raros em genes pouco expressos não estão sob forte pressão de seleção (Sharp e Li 1986). As substituições são acumuladas na mesma taxa tanto em genes regulatórios, como em outros genes com baixo *bias* (Sharp e Li 1987). Ao invés de estarem sendo selecionados positivamente em genes pouco expressos, os códons raros estão sob forte pressão negativa de seleção em genes altamente expressos. O nível de expressão determina o uso dos códons raros e não o contrário.

Algumas proteínas as quais contém um grande percentual de códons raros foram descritas como pertencentes a famílias onde o excesso de proteína pode ser deletério para o *fitness* (Zhang, Zubay et al. 1991) . Saier (1995) discute como a expressão

inapropriada de certos genes pode ser globalmente regulada pela alteração da gama de tRNAs em diferentes estágios de crescimento. Por exemplo, o padrão do uso dos códons em genes que codificam proteínas do aparato fotossintético da bactéria *Rhodobacter sheroides* diferem dos genes que codificam para proteínas da via da frutose (Wu e Saier 1991). Isso pode ser devido, em parte, à diferenças na gama de tRNAs nas fases de crescimento fotossintético e heterotrófico (Saier 1995).

A compilação dos dados do padrão do uso dos códons tem um valor limitado devido à complexidade da informação genética. Muitas vezes, a tabulação dos dados do padrão do uso dos códons é a única análise apresentada, mesmo quando existem dados suficientes para uma análise mais profunda (Winkler e Wood 1988; Wada, Wada et al. 1991; Wada, Wada et al. 1992). As primeiras análises do padrão do uso dos códons foram feitas a partir de um grupo de genes diferentes e então a tendência do uso foi calculada e comparada (Berger 1978). Tais análises necessitam ou de um agrupamento *a priori* de genes ou de um número proibitivo de comparações par-a-par. A significância desses testes foi fortemente influenciada pelo tamanho da amostra e é dependente das premissas utilizadas nos agrupamentos. Com o aumento no número de següências esse tipo de análise se tornou impraticável. Um dos maiores avanços para a análise do padrão do uso dos códons foi o trabalho de (Grantham, Gautier et al. 1980a; Grantham, Gautier et al. 1980b) em que técnicas de análise multivariadas foram feitas para o estudo do padrão do uso dos códons. Outro avanço foi a aplicação de índices que resumem o padrão do uso dos códons em variáveis descritivas, facilitando a comparação desses padrões entre os genes (Bennetzen e Hall 1982; Gouy e Gautier 1982; Sharp e Li 1987).

3.1.1.1. Índices que medem o padrão de uso dos códons

Os índices que medem o padrão de uso dos códons são utilizados para ajudar na tabulação e análise desse padrão. Existem dois tipos básicos de índices: um mede o desvio do padrão de uso dos códons de um valor esperado, e o outro mede o desvio do padrão de uso dos códons na tendência de um grupo de códons ótimos ou preferenciais.

As duas principais hipóteses nulas utilizadas para estimar as distribuições estatísticas dos índices que medem o desvio do padrão de uso dos códons de um valor esperado são:

- 1. H₀: O padrão do uso dos códons esperado é determinado pelo *bias* mutacional.
- 2. H₀*: Um caso especial de H₀ que assume que os códons são utilizados igualmente.

 H_0^* é mais utilizado como a hipótese nula uma vez que possui as premissas mais simples.

1. Índice P2

O índice P2 (Gouy e Gautier 1982) calcula a proporção de códons que obedecem à regra da força média da interação códon-anticódon (Grosjean e Fiers 1982).

$$P2 = \frac{(WWC + SSU)}{(WWY + SSY)} ,$$

onde W=A ou U; S=G ou C, Y=C ou U

Esse índice não é independente do padrão de uso dos códons raros. Uma modificação desse índice P2' que exclui CCY (o códon CCC é raro em $E.\ coli$) foi utilizada para quantificar o padrão de uso dos códons em $E.\ coli$ (Sharp and Li 1986). Sob padrão de uso dos códons uniforme (H_0^*), P2 é igual a 0,5.

2. Codon Preference Plot (P)

O índice "codon preference plot" (P) (Gribskov, Devereux et al. 1984) é calculado como:

$$P = \frac{\left(\frac{f_x}{F_x}\right)}{\left(\frac{r_x}{R_x}\right)},$$

onde f_x é a freqüência dos códons; F_x é a freqüência da família dos códons sinônimos; r_x e R_x são as freqüências esperadas pelo uso randômico desses códons assumindo que as seqüências possuem a mesma composição de bases. P pode ser considerado como a probabilidade relativa de um códon ser encontrado em um gene ao invés de uma seqüência qualquer de DNA.

3. Número Efetivo de Códons (EN_c)

O número efetivo de códons (EN_c) usados por um gene (Wright 1990) é uma medida simples da tendência de uso dos códons. É a medida do número "verdadeiro" de códons utilizados por um gene. Se um gene for extremamente tendencioso e utilizar apenas um códon para cada aminoácido o EN_c seria 20, e num gene sem tendência nenhuma seria 61, assumindo que os códons são utilizados igualmente (H_0 *).

4. GC3s

O índice GC3s é a freqüência dos nucleotídeos G ou C na terceira posição dos códons sinônimos, excluindo-se os aminoácidos metionina e triptofano e os códons de terminação.

5. GC

O índice GC é a freqüência dos nucleotídeos G ou C nas três posições do códon, excluindo-se os aminoácidos metionina e triptofano e os códons de terminação.

6. Uso Relativo dos Códons Sinônimos (RSCU)

O uso relativo dos códons sinônimos (RSCU) (Sharp, Tuohy et al. 1986) é calculado como a razão da freqüência observada de um códon pela freqüência esperada se o uso dos códons sinônimos fosse uniforme (Hastings e Emerson 1983).

$$RSCU_i = \frac{X_i}{\frac{1}{n} \sum_{i=1}^{n} X_i},$$

onde X_i é o número de ocorrências de um códon i para um aminoácido, n é o número de códons sinônimos (de 1 a 6).

Valores de RSCU perto de 1 indicam uma falta de tendência no uso dos códons e são independentes da composição de aminoácidos. O RSCU é útil na comparação do padrão do uso dos códons entre os genes, ou grupo de genes que diferem em tamanho e na composição de aminoácidos.

Em muitas espécies, os genes altamente expressos usam preferencialmente um grupo de códons (códons ótimos). Vários índices medem o quanto o uso dos códons de um gene foi alterado na direção do uso dos códons ótimos.

7. Codon Bias Index (CBI)

O "codon bias index" (CBI) é a medida da tendência do uso dos códons na direção de um grupo de códons ótimos (Bennetzen e Hall 1982).

$$CBI = \frac{N_{opt} - N_{ran}}{N_{tot} - N_{ran}},$$

onde o N_{opt} é o número de códons ótimos, N_{tot} é o número de códons sinônimos, N_{ran} é o número esperado de códons ótimos se o uso fosse randômico. CBI é similar ao F_{op} (Ikemura 1985) com exceção que o N_{ran} é utilizado como fator de escala. Num gene com alta tendência no uso dos códons o CBI é igual a 1; se o padrão do uso dos códons fosse randômico o CBI seria 0; e se N_{opt} for menor que o N_{ran} o índice será negativo.

8. Freqüência de Códons Ótimos (Fop)

Índice que mede a freqüência de códons ótimo (F_{op}) de um gene (Ikemura 1981; Ikemura e Ozeki 1982; Ikemura 1985). É uma medida espécie específica da tendência do uso dos códons na direção dos códons ótimos. É a razão entre a freqüência dos códons ótimos e o número total de códons sinônimos. Seu valor varia de 0 (quando o gene não possui nenhum códon ótimo) e 1 (quando o gene é composto somente de códons ótimos).

9. Índice de Adaptação dos Códons (CAI)

O índice de adaptação dos códons (CAI) (Sharp e Li 1987) é a medida mais usada da tendência do uso dos códons tanto em procariotos (Eyre-Walker e Bulmer 1993; Gutierrez, Casadesus et al. 1994; Perriere, Gouy et al. 1994) quanto em eucariotos (Akashi 1994; Frohlich e Wells 1994; Morton 1994). Ele resume a adaptação do uso dos códons na direção dos códons utilizados pelos genes altamente expressos. A freqüência do uso dos códons nos genes altamente expressos é utilizada para definir o valor de *fitness* relativo para cada códon sinônimo. Esses valores são calculados com base no RSCU e, portanto independentes da composição de aminoácidos.

$$CAI = \frac{\left(\prod_{k=1}^{L} RSCU_{K}\right)^{1/L}}{\left(\prod_{k=1}^{L} RSCU_{K \max}\right)^{1/L}}$$

,onde $RSCU_k$ é o valor de RSCU para o códon k num gene, $RSCU_{kmax}$ é o valor de RSCU máximo para um aminoácido codificado por um codon k, e L é o número de códons no gene.

O CAI evita a dicotomia inerente tanto no CBI quanto no F_{op} onde os códons são ou ótimos ou não-ótimos. Entretanto, os valores de CAI para um gene não são comparáveis entre as espécies porque os valores relativos de *fitness* são diferentes. Se o grupo de referência dos genes altamente expressos muda, o valor de relativo do *fitness* também muda e o CAI deve ser recalculado.

3.2. Material é Métodos

3.2.1. Microorganismo

A linhagem de *Candida albicans* SC5314 (proveniente do Stanford Genome Technology Center) foi utilizada para a busca dos genes hipotéticos, assim como para a extração do RNA das fases de levedura e de hifa.

3.2.2. Seleção dos Genes Hipotéticos

Os 104 contigs da montagem 19 do genoma da *C. albicans* linhagem SC5314 foram inspecionados manualmente. As fases abertas de leitura (ORF) selecionadas para análise posterior seguiram os seguintes critérios:

- 1. ORFs maiores que 500bp.
- 2. Fases abertas de leitura sem sobreposição com outras ORFs.
- ORFs com similaridade ≥ 60% com genes de Saccharomyces cerevisiae e Schizosaccharomyces pombe.

3.2.3. Caracterização dos Genes Hipotéticos

As ORFs selecionadas a partir dos critérios apontados no item anterior foram caracterizadas através de índices que medem o padrão do uso dos códons, O programa CodonW (http://bioweb.pasteur.fr/seqanal/interfaces/codonw.html) foi utilizado para tal. Os índices selecionados para esse estudo foram:

- 1. Índice de Adaptação dos Códons (CAI) (Sharp e Li 1987)
- 2. Codon Bias Index (CBI) (Bennetzen e Hall 1982)
- 3. Frequência de Códons ótimos (Fop) (Ikemura 1981; Ikemura e Ozeki 1982; Ikemura 1985)
- 4. Número Efetivo de Códons (EN_c) (Wright 1990)
- 5. Freqüência de G + C nas três posições do Códon (GC)
- 6. Freqüência de G + C na terceira posição do Códon (GC_{3S})
- 7. RSCU (Sharp, Tuohy et al. 1986)

As ORFs que possuírem baixo nível de expressão (CAI menor que a média do CAI dos hipotéticos) e cujo homólogo em *Saccharomyces cerevisiae* for essencial (baseado em dados da deleção sistemática do banco de dados do genoma do Saccharomyces (http://yeastgenome.org) serão selecionadas para análise *in silico* da estrutura secundária da proteína putativa, predição da função, predição de peptídeo sinal e predição de região transmembrana.

3.2.4. Oligonucleotídeos

Os oligonucleotídeos utilizados nesse estudo são mostrados na tabela 2:

Tabela 2: OLIGONUCLEOTÍDEOS

Nome	Sequência	Região amplificada
EXYDR187-F	5' CTC GGA TCC ATG GGG TTG GTA AAC AC 3'	Toda a ORF CaYDR187c
EXYDR187-R	5' CTG CTC GAG TCA TTG CCC ACC AAT GT 3'	(738 pb)
EXYLR339-F	5' CTC GGA TCC ATG TTC AAC ATG TTC AA 3'	Toda a ORF CaYLR339c
EXYLR339-R	5' CTG CTC GAG TCA ATA CTT CTC CAA AT 3'	(507 pb)
Act1	5' AGA ATT GAT TTG GCT GGT AGA GAC 3'	Gene da Actina
Act2	5' AGA AGA TGG AGC CAA AGC AGT AAT 3'	Gene da Actina

3.2.5. Indução de hifas em C. albicans

A linhagem *C. albicans* SC5314 foi cultivada em 10 ml de meio YPD líquido a 37°C "overnight" sob agitação contínua. Um ml desta cultura foi colocado em "eppendorfs", centrifugado por 5 minutos a 6.000 rpm, lavados 3 vezes com PBS e ressuspensos em 1 ml de PBS. A absorbância foi medida a 660 nm para se obter a concentração das leveduras. A concentração foi estimada a partir da curva préestabelecida de densidade ótica x concentração de leveduras. As células foram então diluídas para a concentração de 1,0 x 10⁷ células/ml no soro fetal bovino com dextrose 5mg/ml. As leveduras foram incubadas por 3 horas a 37°C sob agitação. Após esta incubação, as células foram observadas ao microscópio para aferir a proporção hifas x leveduras. Foi encontrada a porcentagem aproximada de 80% de hifas em relação às leveduras. As hifas assim induzidas foram lavadas com PBS e submetidas à extração e quantificação do RNA total.

3.2.6. Extração do RNA total de C. albicans

Para extração de RNA total, uma colônia da levedura foi cultivada em meio YPD à 37°C "overnight" sob agitação. Após este período, 1,5ml foram centrifugados a 5.000 rpm por 5 minutos e desprezado o sobrenadante. As células foram lavadas com 1,5ml de EDTA 10mM (pH 8,0), ressuspensas em 200 µl de solução contendo sorbitol 1M, EDTA 100mM, DTT 50mM (pH 7,5) e acrescido de zimoliase 20.000 Ul dissolvida em 200µl de sorbitol 1M. Esta solução foi incubada a 37°C por 60 a 120 minutos com agitação ocasional, novamente centrifugada a 5.000 rpm e adicionado 1.000µl de Trizol (Life Technologies, Gre Isle, NY, USA) ao precipitado. Para homogeneização, o material foi agitado em vortex por 30 segundos por 5 vezes, 200µl de clorofórmio foi acrescentado, homogeneizado suavemente por 15 segundos e incubado por 2 minutos à temperatura ambiente. Centrifugou-se a 12.000 g por 15 minutos à 4°C, a fase aquosa foi transferida para um novo tubo e precipitada com isopropanol (500µl de isopropanol para cada 1.000µl de Trizol). Após incubação de 10 minutos à temperatura ambiente, a suspensão foi centrifugada a 12.000 g por 10 minutos a 4°C. Descartado o sobrenadante, o precipitado de RNA foi lavado em etanol 70% (1ml de etanol para

cada 1ml de Trizol usado) e centrifugado a 7.500 g por 5 minutos a 4°C. O sobrenadante foi descartado e o precipitado seco por 5 a 10 minutos à temperatura ambiente. O RNA foi ressuspenso em 20µl de água DEPC e imediatamente congelado à -80°C.

As hifas induzidas foram processadas da mesma maneira para extração do RNA total.

3.2.7. Quantificação do RNA total

Para a quantificação do RNA, 5μl da suspensão foi diluída em 1ml de água bidestilada esterilizada. A absorbância foi medida em comprimento de onda de 260nm e obedecida a proporção de 40μg/ml de RNA para absorbância de 1. Também foram efetuadas medidas a 280nm para avaliar a pureza do RNA. A relação dos valores obtidos a 260 e 280nm (razão 260nm/280nm) deveria estar em torno de 1,9 para que o material fosse considerado puro o bastante para análise. Caso esta relação não fosse atingida, procedia-se uma nova extração de RNA.

3.2.8. Verificação da integridade do RNA total em gel de agarose

Verificou-se a integridade do RNA total extraído de hifa e de levedura de *C. albicans* pela visualização em gel de eletroforese contendo 1,5% de agarose em tampão fosfato e formaldeído. Para 50ml de gel, 0,75g de agarose foi acrescentado a 41,5 ml de água Milli-Q tratada com DEPC e 0,5 ml de tampão fosfato de sódio 1M pH 7,5. Esta solução foi aquecida até a dissolução completa da agarose. Utilizando a capela, foram então acrescentados 8 ml de formaldeído e o gel colocado no suporte, deixado esfriar por 1 hora à temperatura ambiente. Na preparação das amostras utilizou-se aproximadamente 5ng de RNA, 3 vezes o volume de tampão de amostra para RNA e 1µl de brometo de etídio 400µg/ml. As amostras foram desnaturadas a 65°C por 5 minutos, esfriadas no gelo e colocadas no gel. O tampão fosfato de sódio 0,01M foi utilizado na corrida eletroforética sob as condições de 60 volts por 2 horas. O tampão era circulado a cada 15 minutos para reequilibrar o pH. Quando o corante estava a 3cm do final do gel, a foto era tirada .

3.2.9. Tratamento do RNA com DNAse

O RNA extraído foi tratado com DNAse livre de RNAse para eliminação de eventual contaminação do RNA por DNA. Nesta reação foi utilizado 4µg de RNA, 1µl de DNAse livre de RNAse (Promega, Madison, WI, USA), 0,8µl de MgCl₂ 50mM, 2,5ml de tampão para DNAse 10 vezes concentrado, 2,8µl de RNAguard (Amersham Pharmacia Biotech Piscataway, NJ, USA) e completado o volume com água MilliQ DEPC para 25µl. A mistura foi incubada por 10 minutos a 37°C. A concentração final de RNA era de 160ng/µl. Para a reação de RT-PCR foi utilizado 6,25 a 8,0µl desta mistura que continha aproximadamente 1µg de RNA.

3.2.10.Reação de Transcriptase Reversa (RT-PCR)

RNA total extraído de levedura e de hifa foram tratados com DNAse antes de serem submetidos ao ensaio de RT-PCR para a síntese da primeira fita de cDNA (DNA complementar).

Na RT-PCR foi utilizada a enzima Superscript II (Life Technologies) utilizando o protocolo sugerido pelo fabricante. Nesta reação adicionou-se a 1μg de RNA, 1μl de oligonucleotídeo dT₁₂₋₁₈ 50μM, 1μl da mistura dNTP 10mM, incubou-se a 65°C por 5 minutos e esfriou-se no gelo. Foi adicionado 10μl da mistura: 4μl de 5x First-Stre Buffer, 2μl de MgCl₂ 10mM, 2μl de DTT 0,1M, 1,4μl de RNAguard[™] RNAse Inhibitor (Porcine) (Amersham Pharmacia Biotech Piscataway, NJ, USA) e 1μl da enzima SuperScript[™] II (RNAse H Reverse Transcriptase) (Life Technologies, Gre Isle, NY, USA). A mistura foi incubada à 42°C por 50 minutos, em seguida à 70°C por 15 minutos. O material era estocado à -20°C até a realização da PCR.

3.2.11. Verificação da integridade do cDNA por PCR

Para verificação da presença e integridade do cDNA, o produto do ensaio de RT-PCR foi submetido a PCR utilizando-se oligonucleotídeos que hibridizam o gene da actina.

Para volume final de 25μl foi utilizado 2μl de cDNA, 2x do PCR MasterMix (Promega), 10 ρmol de cada oligonucleotídeo e água para completar o volume. As condições do PCR foram: 1 ciclo de 94°C por 5 minutos; 35 ciclos de 94°C por 45 segundos, 54°C por 1 minuto, 72°C por 1 minuto; e extensão final de 72°C por 10 minutos. Os produtos destas reações foram visualizados em gel de agarose 1%.

As amostras de RNA tratadas com DNAse foram submetidas a esta reação para verificarmos se estavam livres de contaminação com DNA antes de serem submetidas à RT-PCR.

3.2.12. Verificação da expressão dos genes por Reação de Polimerase em Cadeia (PCR)

Para volume final de 25μl foi utilizado 2μl de cDNA, 2x do PCR MasterMix (Promega), 10 ρmol de cada oligonucleotídeo e água para completar o volume. As condições do PCR foram: 1 ciclo de 94°C por 5 minutos; 35 ciclos de 94°C por 45 segundos, 54°C por 1 minuto, 72°C por 1 minuto; e extensão final de 72°C por 10 minutos. Os produtos destas reações foram visualizados em gel de agarose 1%.

3.3. Resultados

3.3.1. Seleção dos genes hipotéticos

Para a seleção dos genes hipotéticos todos os *contigs* do genoma diplóide foram inspecionados manualmente. Para tanto foi usada a montagem 19 da *C. albicans* (AACQ01000001 – AACQ01000413) e foram selecionados 744 genes hipotéticos com as características descritas no Material e Métodos.

3.3.2. Caracterização dos genes hipotéticos

Para a caracterização dos 744 genes hipotéticos selecionados calcularam-se os índices CAI, CBI, Fop, ENc, GC e GC3s, bem como a característica apresentada pela deleção do gene correspondente em *S. cerevisiae* (viável ou inviável). A média das 744 ORFs para cada índice, bem como a média de cada índice separando-se as ORFs em viáveis e inviáveis e por cromossomo estão na Tabela 3. Os índices para as 744 ORFs separadamente estão contidos no Anexo 1. Os valores de RSCU para o conjunto das 744 ORFs está na Tabela 4.

3.3.3. Seleção dos genes hipotéticos para estudo de função

De todos os genes hipotéticos selecionados, 90 são potencialmente essenciais, sendo que desses, 50 possuem CAI abaixo da média dos hipotéticos. Desses 50 genes, apenas 4 (CaYbr070c, CaYdr187c, CaYlr339c e CaYgr251w) possuem o CAI menor que a média menos o desvio padrão. Os genes CaYdr187c e CaYlr339c foram selecionados para posterior estudo de função uma vez que seus CAIs são os menores entre esses 4 (0,084 e 0,088 respectivamente), apontando uma baixa expressão gênica, e porque deleções dos genes similares em *S. cerevisiae* indicam que esses são genes essenciais.

Tabela 3: MÉDIA E DESVIO PADRÃO (SD) DOS ÍNDICES QUE MEDEM O PADRÃO DE DESVIO DO CÓDONS PARA OS 744 GENES HIPOTÉTICOS

		G	enes Hipotét	icos		
Média SD	CAI 0,170 0,051	CBI 0,138 1,998	Fop 0,449 0,056	ENc 44,002 5,948	GC 0,349 0,042	GC3s 0,267 0,089
		Genes I	lipotéticos I	Essenciais		
Média SD	CAI 0,169 0,050	CBI 0,067 0,289	Fop 0,449 0,055	ENc 44,050 5,948	GC 0,350 0,042	GC3s 0,267 0,089
		Genes Hi	potéticos Não	o Essenciais		
Média SD	CAI 0,178 0,059	CBI 0,057 0,112	Fop 0,451 0,061	ENc 43,599 5,966	GC 0,342 0,044	GC3s 0,266 0,091
			Cromossomo	o 1		
Média SD	CAI 0,169 0,045	CBI 0,063 0,098	Fop 0,453 0,054	ENc 44,174 5,495	GC 0,351 0,044	GC3s 0,275 0,092
			Cromossomo	o 2		
Média SD	CAI 0,175 0,053	CBI 0,143 0,656	Fop 0,461 0,060	ENc 44,164 5,830	GC 0,358 0,037	GC3s 0,274 0,082
			Cromossomo	o 3		
Média SD	CAI 0,170 0,055	CBI 0,047 0,109	Fop 0,445 0,060	ENc 43,385 6,838	GC 0,342 0,046	GC3s 0,255 0,093
			Cromossomo			
Média SD	CAI 0,171 0,059	CBI 0,049 0,117	Fop 0,446 0,064	ENc 43,773 6,355	GC 0,347 0,045	GC3s 0,258 0,088
			Cromossomo	o 5		
Média SD	CAI 0,173 0,050	CBI 0,053 0,098	Fop 0,449 0,056	ENc 43,222 5,496	GC 0,346 0,032	GC3s 0,256 0,080
			Cromossomo	o 6		
Média SD	CAI 0,156 0,036	CBI 0,030 0,070	Fop 0,434 0,042	ENc 44,300 5,357	GC 0,349 0,046	GC3s 0,259 0,098

cont. tabela 3

			Cromossomo	7		
	CAI	CBI	Fop	ENc	GC	GC3s
Média	0,173	0,044	0,444	43,386	0,341	0,246
SD	0,057	0,098	0,056	6,240	0,042	0,085
			Cromossomo	R		
	CAI	CBI	Fop	ENc	GC	GC3s
Média	0,166	0,052	0,446	45,042	0,354	0,288
SD	0,052	0,088	0,048	5,912	0,044	0,087

Tabela 4: VALORES DE RSCU PARA OS GENES HIPOTÉTICOS

		Mais	Menos			Mais	Menos
aa	códon	Expresso	Expresso	aa	códon	Expresso	Expresso
Phe	UUU*	1.52 (555)	1.25 (502)	Ser	UCU*	1.68 (344)	0.91 (175)
	UUC	0.48 (175)	0.75 (300)		UCC	0.33 (68)	1.04 (201)
Leu	UUA*	3.56 (1080)	0.81 (292)		UCA	2.87 (588)	1.32 (255)
	UUG	0.87 (265)	2.09 (754)		UCG	0.23 (47)	1.22 (235)
	CUU	0.46 (140)	0.67 (243)	Pro	CCU*	1.41 (323)	0.54 (105)
	CUC	0.03 (9)	0.62 (222)		CCC	0.28 (46)	1.02 (199)
	CUA	0.07 (22)	0.81 (293)		CCA	2.18 (359)	1.71 (332)
Ser	CUG	0.26 (53)	0.70 (136)		CCG	0.13 (21)	0.73 (141)
lle	AUU*	2.11 (1000)	1.07 (448)	Thr	ACU*	2.14 (582)	0.88 (233)
	AUC	0.30 (142)	1.03 (430)		ACC	0.60 (164)	1.28 (341)
	AUA	0.59 (282)	0.90 (375)		ACA	1.1 (300)	1.31 (349)
Met	AUG	1.00 (286)	1.00 (388)		ACG	0.15 (42)	0.53 (140)
Val	GUU*	2.42 (493)	1.01 (284)	Ala	GCU*	2.11 (371)	0.96 (213)
	GUC	0.36 (73)	0.81 (228)		GCC	0.63 (110)	1.14 (255)
	GUA	0.83 (170)	0.75 (211)		GCA	1.16 (203)	1.41 (315)
	GUG	0.39 (80)	1.42 (399)		GCG	0.10 (18)	0.48 (108)
Tyr	UAU*	1.91 (540)	0.86 (298)	Cys	UGU*	2.00 (148)	1.09 (139)
	UAC	0.09 (24)	1.14 (394)		UGC	0.00(0)	0.91 (116)
TER	UAA	2.11 (26)	1.26 (31)	TER	UGA	0.16 (2)	0.89 (22)
	UAG	0,73 (9)	0.85 (21)	Trp	UGG	1.00 (162)	1.00 (212)
His	CAU*	1.87 (358)	0.86 (190)	Arg	CGU*	1.16 (99)	0.75 (89)
	CAC	0.13 (25)	1.14 (252)		CGC	0.01 (1)	0.42 (50)
Gln	CAA*	1.95 (737)	1.13 (360)		CGA	1.10 (94)	0.97 (115)
	CAG	0.05 (20)	0.87 (277)		CGG	0.12 (10)	0.52 (61)
Asn	AAU*	1.74 (1161)	0.87 (421)	Ser	AGU*	1.55 (317)	0.92 (177)
	AAC	0.26 (174)	1.13 (552)		AGC	0.07 (15)	0.89 (172)
Lys	AAA*	1.80 (1202)	1.22 (690)	Arg	AGA*	3.45 (294)	2.37 (280)
	AAG	0.20 (134)	0.78 (442)		AGG	0.16 (14)	0.96 (114)
Asp	GAU*	1.88 (1067)	0.92 (433)	Gly	GGU*	2.31 (496)	0.93 (191)
	GAC	0.1 (67)	1.08 (504)		GGC	0.11 (24)	0.92 (189)
Glu	GAA*	1.88 (1048)	1.11 (574)		GGA	1.26 (270)	0.97 (198)
	GAG	0.12 (69)	0.89 (460)		GGG	0.33 (70)	1.18 (242)

^{*} Indica os códons ótimos para cada aminoácido, aa: aminoácido

A separação dos genes mais ou menos expressos foi feita a partir do valor do ENc. Os número total de códons para os genes mais expressos é 16997 e para os menos expressos, 17368.

3.3.4 Caracterização da ORF CaYdr187c

3.3.4.1. Predição da função

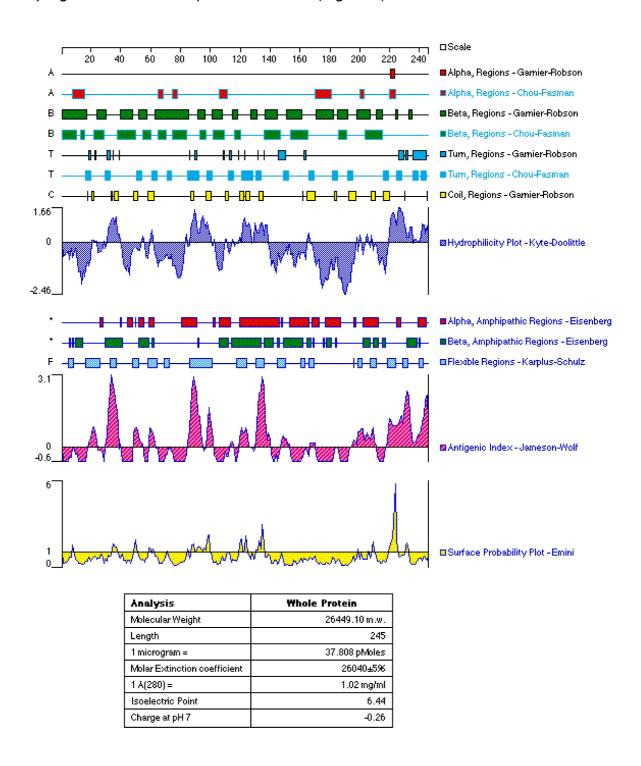
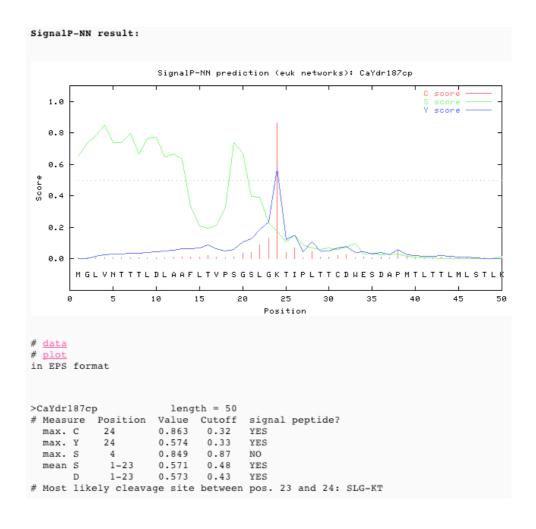
A predição da função da proteína putativa feita através do *site* ProtFun (http://www.cbs.dtu.dk/services/ProtFun/) (Figura 3). Este programa combina dois métodos, um utiliza a seqüência predita da proteína para identificar características relevantes como classe funcional, e se é ou não enzima, o outro prediz uma possível função baseada na classificação da ontologia do gene. A proteína putativa codificada pela ORF CaYdr187c é uma possível proteína do envelope celular, não é uma enzima e sua ontologia é de resposta imune.

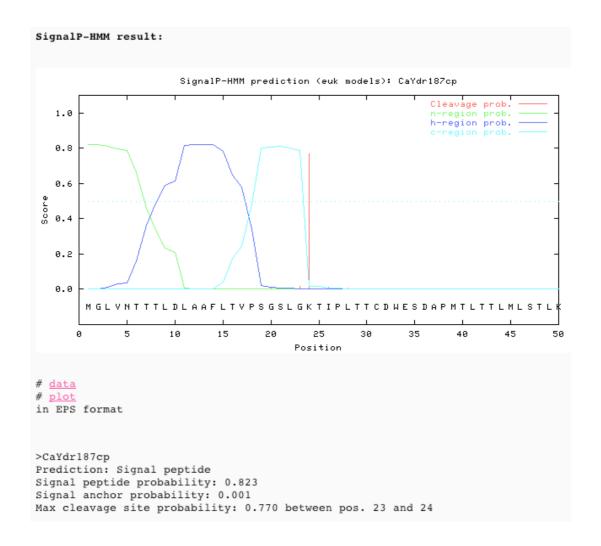
>(CaYdr187cp			
#	Functional category		Prob	0dds
	Amino_acid_biosynthesis		0.027	1.23
	Biosynthesis_of_cofactors		0.099	1.37
	Cell_envelope	=>	0.333	5.45
	Cellular_processes		0.027	0.37
	Central_intermediary_metabolism		0.043	0.68
	Energy_metabolism		0.067	0.74
	Fatty_acid_metabolism		0.016	1.26
	Purines_and_pyrimidines		0.221	0.91
	Regulatory_functions		0.034	0.21
	Replication_and_transcription		0.062	0.23
	Translation		0.030	0.68
	Transport_and_binding		0.721	1.75
*	Enzyme/nonenzyme		Prob	0dds
	Enzyme		0.284	0.99
	Nonenzyme	=>	0.716	1.00
¥	Enzyme class		Prob	0dds
	Oxidoreductase (EC 1)		0.061	0.29
	Transferase (EC 2)		0.045	0.13
	Hydrolase (EC 3)		0.200	0.63
	Lyase (EC 4)		0.035	0.74
	Isomerase (EC 5)		0.015	0.45
	Ligase (EC 6)		0.018	0.35
ŧ	Gene Ontology category		Prob	Odds
	Signal_transducer		0.104	0.48
	Receptor		0.051	0.30
	Hormone		0.001	0.20
	Structural_protein		0.001	0.04
	Transporter		0.025	0.22
	Ion_channel		0.008	0.14
	Voltage-gated_ion_channel		0.002	0.11
	Cation_channel		0.010	0.21
	Transcription		0.037	0.28
	Transcription_regulation		0.035	0.28
	Stress_response		0.055	0.63
	Immune_response	=>	0.118	1.39
	Growth_factor Metal ion transport		0.005	0.37
			0.020	0.04

Figura 3: Resultado do programa ProtFun. A proteína putativa codificada pela ORF CaYdr187c é uma possível proteína do envelope celular, não é uma enzima e sua categoria ontológica é de resposta imune.

3.3.4.2. Predição da estrutura secundária

A predição da estrutura secundária da proteína codificada pela ORF foi feita através programa Proteam do pacote DNAStar (Figura 4).


Figura 4: Predição da estrutura secundária da proteína putativa CaYdr187c.

3.3.4.3. Predição de peptídeo sinal

A predição da presença ou ausência de peptídeo sinal foi feita através do *site* SignalP (http://www.cbs.dtu.dk/services/SignalP/). Este programa utiliza os métodos de redes neurais (NN) (Figura 5A) e de cadeia de markov escondida (HMM) (Figura 5B) para encontrar um possível sítio de clivagem do peptídeo sinal. Ambos os métodos identificaram um possível sítio de clivagem entre as posições 23 (glicina) e 24 (lisina).

A-)

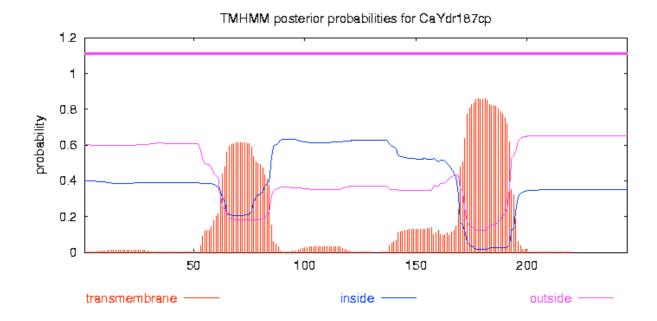


Figura 6: Resultado do programa SignalP. Tanto o método de (A) redes neurais quanto (B) de cadeia de markov escondida identificou um possível sítio de clivagem entre as posições 23 (glicina) e 24 (lisina).

3.3.4.4 Predição de região de hélices transmembrana

A predição da presença ou ausência e regiões de hélice transmembrana foi feita através do site TMHMM (http://www.cbs.dt.dk/services/TMHMM/) (Figura 6). O programa mostrou a possível presença de duas hélices transmembrana entre as posições 50 - 100 e 150 – 200 da seqüência putativa da proteína.

```
# CaYdr187cp Length: 245
# CaYdr187cp Number of predicted TMHs: 0
# CaYdr187cp Exp number of AAs in TMHs: 37.21361
# CaYdr187cp Exp number, first 60 AAs: 1.32207
# CaYdr187cp Total prob of N-in: 0.39893
CaYdr187cp TMHMM2.0 outside 1 245
```


Figura 6: Resultado do programa TMHMM. O programa mostrou a possível presença de duas hélices transmembrana entre as posições 50 - 100 e 150 – 200 da seqüência putativa da proteína.

3.3.5 Caracterização da ORF CaYIr339c

3.3.5.1. Predição da função

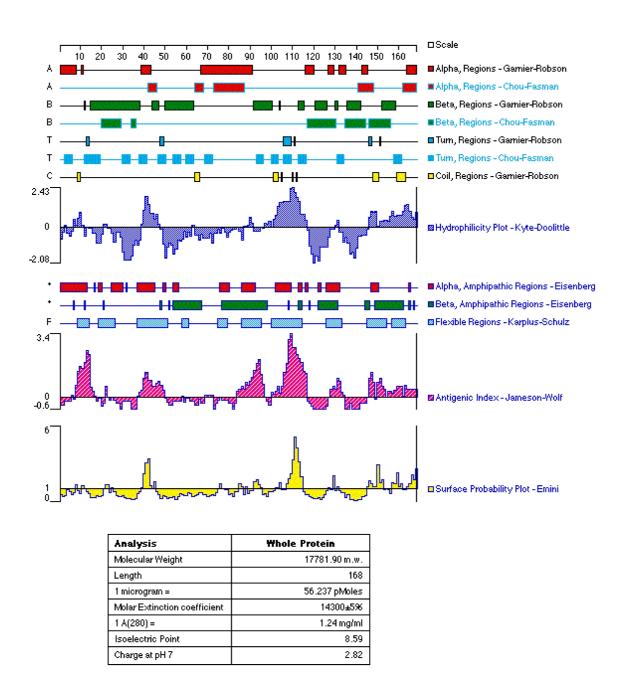
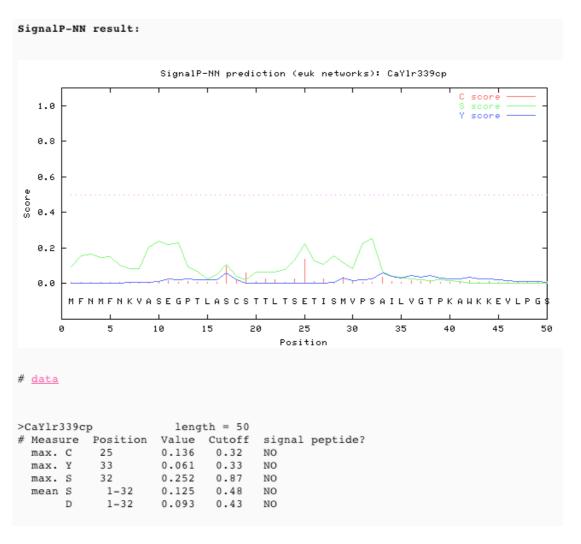
A predição da função da proteína codificada pela ORF foi feita através do *site* ProtFun (http://www.cbs.dtu.dk/services/ProtFun/) (Figura 7). A proteína putativa codificada pela ORF CaYlr339c é uma possível proteína envolvida na tradução, não é uma enzima e sua ontologia é de resposta imune.

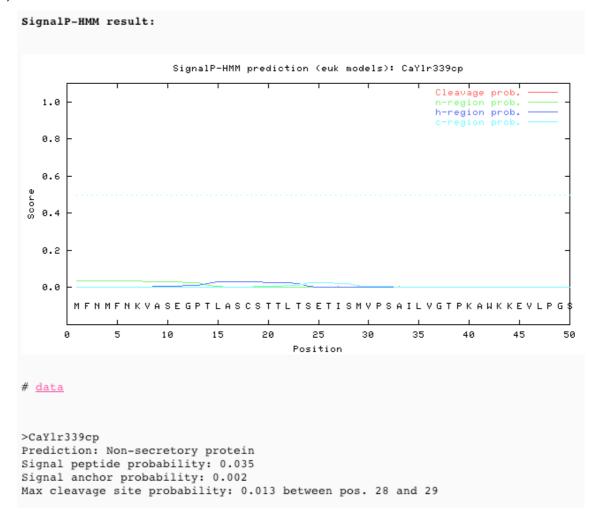
Transport_and_binding # Enzyme/nonenzyme Enzyme	Prob 0.011 0.079 0.032 0.027 0.067 0.050 0.017 0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047 0.035	Odds 0.509 1.091 0.529 0.373 1.056 0.560 1.308 0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103
Amino_acid_biosynthesis Biosynthesis_of_cofactors Cell_envelope Cellular_processes Central_intermediary_metabolism Energy_metabolism Fatty_acid_metabolism Purines_and_pyrimidines Regulatory_functions Replication_and_transcription Translation => Transport_and_binding # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.011 0.079 0.032 0.027 0.067 0.050 0.017 0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787	0.509 1.091 0.529 0.373 1.056 0.560 0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103
Biosynthesis_of_cofactors Cell_envelope Cellular_processes Central_intermediary_metabolism Energy_metabolism Fatty_acid_metabolism Fatty_acid_metabolism Purines_and_pyrimidines Regulatory_functions Replication_and_transcription Translation => Transport_and_binding # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.079 0.032 0.027 0.067 0.050 0.017 0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047	1.091 0.529 0.373 1.056 0.560 1.308 0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103
Cell_envelope Cellular_processes Central_intermediary_metabolism Energy_metabolism Fatty_acid_metabolism Purines_and_pyrimidines Regulatory_functions Replication_and_transcription Translation => Transport_and_binding # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.032 0.027 0.067 0.050 0.017 0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047	0.529 0.373 1.056 0.560 1.308 0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103
Cellular_processes Central_intermediary_metabolism Energy_metabolism Fatty_acid_metabolism Purines_and_pyrimidines Regulatory_functions Replication_and_transcription Translation => Transport_and_binding => # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.027 0.067 0.050 0.017 0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047	0.373 1.056 0.560 1.308 0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103
Central_intermediary_metabolism Energy_metabolism Fatty_acid_metabolism Purines_and_pyrimidines Regulatory_functions Replication_and_transcription Translation => Transport_and_binding => # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.067 0.050 0.017 0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787	1.056 0.560 1.308 0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103
Energy_metabolism Fatty_acid_metabolism Purines_and_pyrimidines Regulatory_functions Replication_and_transcription Translation => Transport_and_binding => # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.050 0.017 0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047	0.560 1.308 0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103
Fatty_acid_metabolism Purines_and_pyrimidines Regulatory_functions Replication_and_transcription Translation => Transport_and_binding # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.017 0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047	1.308 0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103
Fatty_acid_metabolism Purines_and_pyrimidines Regulatory_functions Replication_and_transcription Translation => Transport_and_binding # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.108 0.112 0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047	0.444 0.693 0.736 1.157 0.458 Odds 0.743 1.103 Odds 0.226
Regulatory_functions Replication_and_transcription Translation => Transport_and_binding # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.112 0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047	0.693 0.736 1.157 0.458 Odds 0.743 1.103 Odds 0.226
Replication_and_transcription Translation => Transport_and_binding # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.197 0.051 0.188 Prob 0.213 0.787 Prob 0.047	0.736 1.157 0.458 Odds 0.743 1.103 Odds 0.226
Replication_and_transcription Translation => Transport_and_binding # Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.051 0.188 Prob 0.213 0.787 Prob 0.047	1.157 0.458 Odds 0.743 1.103 Odds 0.226
# Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.188 Prob 0.213 0.787 Prob 0.047	0.458 Odds 0.743 1.103 Odds 0.226
# Enzyme/nonenzyme Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	Prob 0.213 0.787 Prob 0.047	Odds 0.743 1.103 Odds 0.226
Enzyme Nonenzyme => # Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.213 0.787 Prob 0.047	0.743 1.103 Odds 0.226
# Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.787 Prob 0.047	1.103 Odds 0.226
# Enzyme class Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	Prob 0.047	Odds 0.226
Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.047	0.226
Transferase (EC 2) Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer		
Hydrolase (EC 3) Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.035	
Lyase (EC 4) Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer		0.101
Isomerase (EC 5) Ligase (EC 6) # Gene Ontology category Signal_transducer	0.081	0.255
Ligase (EC 6) # Gene Ontology category Signal_transducer	0.020	0.430
# Gene Ontology category Signal_transducer	0.010	0.321
Signal_transducer	0.017	0.326
	Prob	0dds
Receptor	0.127	0.595
	0.028	0.165
Hormone	0.001	0.206
Structural_protein	0.006	0.210
Transporter	0.025	0.232
Ion_channel	0.009	0.166
Voltage-gated_ion_channel	0.005	0.233
Cation_channel	0.010	0.215
Transcription	0.074	0.578
Transcription_regulation	0.086	0.686
Stress_response	0.060	0.685
	0.392	4.617
Growth_factor	0.013	0.950
Metal_ion_transport	0.009	0.020
//		

Figura 7: Resultado do programa ProtFun. A proteína putativa codificada pela ORF CaYlr339c é uma possível proteína envolvida na tradução, não é uma enzima e sua característica ontológica é de resposta imune.

3.3.5.2. Predição da estrutura secundária

A predição da estrutura secundária da proteína codificada pela ORF foi feita através programa Proteam do pacote DNAStar (Figura 8).


Figura 8: Predição da estrutura secundária da proteína putativa CaYlr339c

3.1.5.3. - Predição de peptídeo sinal

A predição da presença ou ausência de peptídeo sinal foi feita através do *site* SignalP (http://www.cbs.dtu.dk/services/SignalP/) (Figura 9A e 9B). O programa não encontrou nenhum sítio de clivagem e, portanto a proteína putativa não apresenta peptídeo sinal.

A-)

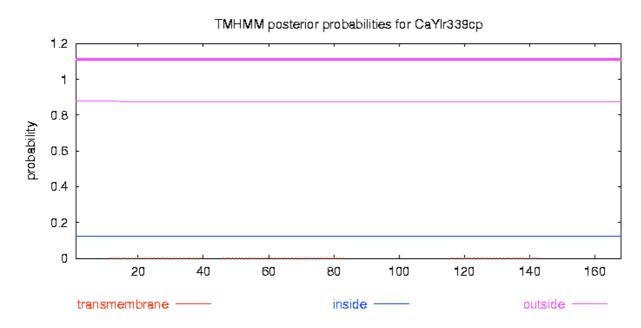


Figura 9: A proteína CaYll339c não possui peptídeo sinal tanto utilizando-se (A) o método de redes neurais quanto (B) de cadeia de Markov escondida.

3.3.5.4 Predição de região de hélices transmembrana

A predição da presença ou ausência e regiões de hélice transmembrana foi feita através do *site* TMHMM (http://www.cbs.dt.dk/services/TMHMM/) (Figura 10). A proteína putativa não possui regiões transmembrana.

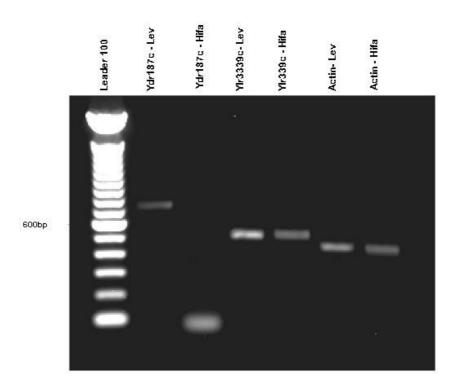

```
# CaYlr339cp Length: 168
# CaYlr339cp Number of predicted TMHs: 0
# CaYlr339cp Exp number of AAs in TMHs: 0.1728
# CaYlr339cp Exp number, first 60 AAs: 0.09665
# CaYlr339cp Total prob of N-in: 0.12318
CaYlr339cp TMHMM2.0 outside 1 168
```


Figura 10: Resultado do programa TMHMM. A proteína putativa não possui regiões transmembrana.

3.3.6 As ORFs selecionadas são transcritas

Para verificar se as ORFs selecionadas são transcritas, foi feito um RT-PCR utilizando-se os oligonucleotídeos específicos pra cada uma duas ORFs e a actina como controle positivo (Figura 11). O gene CaYdr187c é transcrito apenas na fase de levedura, enquanto o gene CaYlr339c é transcrito tanto na fase de levedura quanto na fase de hifa.

Figura 11: PCR feito a partir do RT-PCR para verificar se as ORFs selecionadas são transcritas.

3.4. Discussão

Recentemente, a freqüência de infecções fúngicas tem aumentado. Embora essas infecções sejam em menor número que as infecções bacterianas, existem pelo menos dois aspectos que as tornam relevantes: (i) infecções fúngicas oportunistas em hospedeiros imunocomprometidos são uma causa crescente de mortalidade e morbidade (Fisher Hoch e Hutwagner 1995; Groll, Piscitelli et al. 1998), (ii) embora existam algumas drogas antifúngicas, essas drogas possuem muitas vezes uso limitado devido a sua toxicidade e efeitos colaterais (Georgopapadakou e Walsh 1994). Existem basicamente três classes de drogas antifúngicas: anfotericina B, os azólicos e as equinocandinas, entretanto, na última década, estudos clínicos têm mostrado um aumento da resistência dos fungos, especialmente da levedura *Candida albicans* (Smith, Boag et al. 1991; Johnson, Warnock et al. 1995; Boschman, Bodnar et al. 1998; Colombo e Guimarães 2003), portanto novos alvos para drogas são necessários.

Na tentativa de se caracterizar novos genes que possam ser novos alvos para drogas, os estudos têm se concentrado na caracterização de genes com expressão diferencial nas fases de levedura e hifa utilizando-se basicamente bibliotecas de cDNA (Nantel, Dignard et al. 2002; Sohn, Urban et al. 2003; Melo, Padovan et al. 2006), porém, esse método falha em descobrir genes novos ainda não bem caracterizados. Para descobrir novos genes em *C. albicans*, utilizou-se um método de triagem dos genes hipotéticos existentes no genoma següenciado dessa levedura.

Para a análise dos genes hipotéticos foi feita uma triagem manual dos *contigs* do genoma da *C. albicans*. Esse método, apesar de mais trabalhoso e demorado garante que as três características selecionadas sejam observadas, sem a necessidade de uma conferência posterior dos dados. As três características para a seleção dos genes hipotéticos são necessárias para minimizar a probabilidade dos genes hipotéticos selecionados sejam pseudogenes.

Da análise dos 104 *contigs* da montagem 19 foram selecionados 744 genes hipotéticos. Esses genes possuem tamanhos diversos, variando de 501pb até mais de 3500pb (Tabela 3). Esses genes foram então caracterizados através de índices que medem o padrão do uso dos códons. Estudos em procariotos (Ikemura 1981; Gouy e Gautier 1982), eucariotos unicelulares (Bennetzen e Hall 1982; Ikemura 1985; Sharp e Devine 1989; Sharp e Cowe 1991; Coghlan e Wolfe 2000) e eucariotos multicelulares

(Stenico, Lloyd et al. 1994; Duret e Mouchiroud 1999; Hey e Kliman 2002) tem indicado uma correlação entre o padrão de uso dos códons e o nível de expressão do gene. Nos organismos onde os dados estão disponíveis, os códons usados em genes com alto nível de expressão, existe uma tendência em se utilizar os códons ótimos, os quais tendem a corresponder as espécies de tRNAs mais abundantes (Figura 2) (Ikemura 1985; Moriyama e Powell 1997; Coghlan e Wolfe 2000). Uma vez que os dados de *fitness* relativo (w) para os códons da *C. albicans* são baseados em apenas 28 genes, nesta tese foram utilizados os valores de w do organismo *Saccharomyces cerevisiae*. Apesar das duas leveduras possuírem diferentes conteúdos de G+C, o conjunto de códons ótimos é o mesmo entre elas (Sharp e Cowe 1991). Portanto, no que diz respeito aos códons ótimos, não existe evidencia que as duas espécies divergiram (Lloyd e Sharp 1992) sendo assim possível à utilização dos valores de referência do *S. cerevisiae*.

Os valores de RSCU para os genes hipotéticos (Tabela 4) são consistentes com aqueles calculados previamente por Lloyd e Sharp (1992) tanto para os genes considerados como alto quanto para os de baixo nível de expressão. Pode-se notar que nos genes considerados como alto nível de expressão existe uma maior tendência em se utilizar o códon ótimo. Já nos genes considerados com baixo nível de expressão, existe uma tendência maior a uniformização no uso dos códons sinônimos, corroborando estudos anteriores que mostram uma correlação entre o nível de expressão e o uso de códons ótimos.

O padrão de uso dos códons para os genes hipotéticos apresenta uma grande variedade nos diferentes genes selecionados, porém nota-se uma tendência a um baixo e médio nível de expressão independente do índice analisado (Tabela 3). Foi demonstrado por diversos estudos que o índice de adaptação dos códons (CAI) é o que melhor correlaciona o padrão de uso dos códons com o nível de expressão do gene em diversas espécies (Sharp e Li 1987; Li e Luo 1996; Jansen, Bussemaker et al. 2003; Liu 2006) quando comparado com os índices CBI e Fop. Os valores de CAI variam entre 0,044 e 0,540 com média de 0,170 (± 0,051). Ao separarmos os genes em essenciais e não essenciais e por cromossomos podemos notar um primeiro sinal de invariância de escala sendo os valores conservados desde o genoma até o nível cromossômico (Tabela 2). Essa invariância de escala também pode ser notada ao analisarmos os outros índices desse estudo. É importante ressaltar que a separação

em essenciais e não essenciais é baseada na deleção sistemática dos genes similares em *S. cerevisiae* e deve ser confirmada em *C. albicans*.

Drouin (1991) foi um dos primeiros pesquisadores a notar uma baixa freqüência de dinucleotideos CpG no gene da actina em diversas espécies de fungos, incluindo-se *C. albicans*. O mesmo foi notado posteriormente por Lloyd e Sharp (1992) para um conjunto maior de genes, especialmente em genes com alto nível de expressão. Nos genes hipotéticos aqui analisados essa tendência foi corroborada, principalmente quando observamos os genes aqui considerados como altamente expressos (Tabela 4). Os códons NCG e CGN são especialmente mais raros nos genes mais expressos que nos menos expressos. Essa observação é consistente com o fato do genoma da *C. albicans* ser mais rico em A+T quando comparado ao genoma do *S. cerevisiae*.

Os valores de G+C na terceira posição do códon (GC_{3S}) também refletem essa característica do genoma da *C. albicans* ser rico em A+T. A média dos valores de GC_{3S} (0,267) para os genes hipotéticos é essencialmente a mesma encontrada por Lloyd e Sharp (1992) (0,250).

Uma vez que um dos objetivos dessa tese é encontrar possíveis novos alvos para drogas em *C. albicans* os genes selecionados para posterior estudo de função devem possuir um baixo nível de expressão (baixo CAI) e devem ser potencialmente essenciais. Essas características são importantes uma vez que um baixo nível de expressão implicaria numa menor dosagem da droga, e o gene de ser potencialmente essencial uma vez que se deseja a morte do fungo causando a infecção. Baseando-se nessas duas características selecionou-se dois genes hipotéticos. São eles CaYdr187c (CAI = 0,084) e CaYlr339c (CAI = 0,088). A função desses dois genes no *S. cerevisiae* também é desconhecida, fazendo dessas duas ORFs ótimos candidatos para a descoberta de novas funções.

Para se determina as possíveis funções dessas duas ORFs foram feitas análises computacionais utilizando programas que comparam a seqüência predita da proteína com seqüências de proteínas com seqüências conhecidas em um banco de dados. A categoria funcional predita pelo programa ProtFun para o ORF CaYdr187c é a de uma proteína do envelope celular. A predição de um peptídeo sinal e de regiões transmembranas é concordante com a categoria funcional predita para essa ORF. A ontologia predita pelo ProtFun é a da pertencente à categoria de resposta imune. Essa predição é concordante em parte com os dados de hidrofilicidade e índice antigênico apresentados pelo Protean.

Para a ORF CaYlr339c a função predita pelo programa ProtFun foi a de um possível papel na tradução. Por ser uma possível proteína intracelular, era de se esperar que não houvesse a presença tanto de peptídeo sinal quanto de regiões transmembranas o que foi observado tanto na predição feita pelo programa SignalP quanto pelo TMHMM. A ontologia predita pelo ProtFun para essa ORF também é a de pertencente a categoria de resposta imune. Neste caso, a predição feita pelo ProtFun está concordante com os dados de hidrofilicidade e índice antigênico apresentados pelo Protean.

Com o objetivo de se determinar se as ORFs hipotéticas são genes, foi feito um RT-PCR com oligonucleotídeos específicos desenhados a partir da seqüência depositada no genoma. Uma vez que a levedura *C. albicans* é polimórfica, o RT-PCR foi feito tanto na fase de levedura quanto de hifa. O gene CaYlr339c é transcrito em ambas as fases do fungo. Já o gene CaYdr187c é transcrito apenas na fase de levedura.

Um fator essencial para a virulência e patogenicidade da *C. albicans* é a transição levedura-hifa. Diferentes vias de sinalização e fatores de transcrição parecem convergir para um grupo de genes hifa-específico que codificam algumas proteínas as quais contribuem direta ou indiretamente para a patogenicidade e virulência da levedura (Liu 2002).

A maioria dos agentes antifúngicos usados na medicina tem como alvo a via de biossíntese do ergosterol, incluindo os polienos, os azoles e as alilaminas. O ergosterol é o componente predominante na membrana celular dos fungos (Parks e Casey 1991). Dentre as drogas antifúngicas de uso corrente, 5-fluocitosina (5-FC) e as equinocandinas não interferem diretamente na biossíntese do ergosterol (Sanglard e Bille 2002). Os polienos de cadeia grande, como a anfotericina B, interagem com esteróis da membrana resultando na produção de poros permeáveis formados por anéis de 8 moléculas de anfotericina B (de Kuijff e Demel 1974; Holz 1974). Esta configuração dá origem a um poro que altera a permeabilidade, o que leva à perda de componentes citoplasmáticos vitais e à morte do organismo (Ghannoum e Rice 1999). Os derivados triazólicos mais recentes, como fluconazol, itraconazol e voriconazol, devem suas atividades antifúngicas à inibição da enzima 14α-esterol demetilase, envolvida na síntese do ergosterol (Sanati, Belanger et al. 1997). A inibição desta enzima leva à falta de ergosterol e ao acúmulo do precursor 14α-metil lanosterol, o que

resulta na membrana plasmática com estrutura e funções alteradas. As alilaminas agem inibindo os primeiros passos da biossíntese do ergosterol. Esta inibição provoca o acúmulo de esqualeno, um precursor do ergosterol, e à ausência dos outros esteróis intermediários (Ghannoum e Rice 1999). Neste caso, a morte celular está mais relacionada ao acúmulo do esqualeno do que à deficiência de ergosterol (Ryder e Favre 1997) porque altos níveis de esqualeno podem aumentar a permeabilidade da membrana, levando assim à desorganização celular (Lanyi, Plachy et al. 1974). A 5-FC pertence à classe dos análogos das pirimidinas que ao ser capturada pela citosina permease é deaminada originando 5-fluorouracil (5-FU), um potente antimetabólito. A 5-FU pode ser convertida a nucleosídeo-trifosfato que ao ser incorporado ao RNA provoca erro na tradução do código genético (Polak e Scholer 1975; Diasio, Bennett et al. 1978). As equinocandinas são lipopeptídeos grandes que inibem a síntese de α -1,3-D-glucana, ação que danifica a parede celular (Denning 2003).

Mecanismos de resistência já foram descritos para a grande maioria dos antifúngicos (Sanglard e Bille 2002). A resistência à anfotericina B pode ser devido à diminuição da quantidade de ergosterol presente na membrana celular (Capek, Simek et al. 1974; Dick, Merz et al. 1980) ou a sua substituição por outro esterol modificado (Fryberg 1974), já que a anfotericina B necessita do ergosterol para se ligar à membrana. Quanto aos azoles, os mecanismos envolvidos na resistência podem ser resultado de: (i) aumento do efluxo da droga mediado por transportadores multidrogas (Sanglard, Kuchler et al. 1995), (ii) diminuição da afinidade à 14α -demetilase devido a mutações nesta enzima (Marichal, Koymans et al. 1999), (iii) superexpressão da 14α demetilase (Vanden-Bossche, Marichal et al. 1992) ou (iv) alterações na biossíntese do ergosterol (Ghannoum e Rice 1999). A resistência à 5-FC pode ser intrínseca ou adquirida, pode ocorrer devido a deficiência ou falta de enzimas envolvidas no metabolismo de 5-FC, ou ainda ser devido a alterações na via de biossíntese de pirimidinas, cujos produtos podem competir com metabólitos fluorinados de 5-FC (Whelan 1988). Resistência a equinocandinas decorre de perda da função da enzima β-1,3 glucan sintetase (Douglas, D'Ippolito et al. 1997). Os transportadores multidrogas quando altamente expressos podem ser responsáveis pela resistência a múltiplos compostos não relacionados (Sanglard e Bille 2002).

Devido à ocorrência de resistência aos antifúngicos de uso corrente, novos alvos de drogas que escapem a estes mecanismos, principalmente aos transportadores

multidrogas, necessitam serem desenvolvidos. As proteínas selecionadas neste estudo, principalmente a proteína putativa CaYdr187c podem ser ótimos candidatos para serem alvos para o desenvolvimento de novas drogas antifúngicas uma vez que elas podem estar ausentes das vias metabólicas utilizadas pelos antifúngicos de uso corrente.

Os genes CaYdr187c e CaYlr339c ainda estão em estudo em nosso laboratório. Esses genes serão expressos em *E. coli*. A proteína obtida será purificada para a obtenção de anticorpos que serão utilizados em estudos posteriores, entre eles localização celular para corroborar os dados aqui apresentados de categoria funcional. Os mutantes nulos serão gerados para confirmar a essencialidade do gene.

4. O problema do ruído transcricional

4.1. Introdução

Genomas consistem de unidades informacionais interdependentes (genes) organizados seqüencialmente em estruturas lineares (cromossomos), os quais compõe um conjunto maior. Nesta visão, os níveis celular e de organismo podem ser considerados como propriedades emergentes desse conjunto. Na raiz dessa emergência estão a transcrição e a tradução; a informação segue dos genes para as proteínas levando a estruturas de maior ordem com aumento de complexidade (Adami, Ofria et al. 2000). A transcrição e a tradução podem ser vistas como um canal de transmissão de informação que pode ser afetado pelas flutuações estocásticas dos níveis de expressão, ou ruído transcricional (Figura 12).

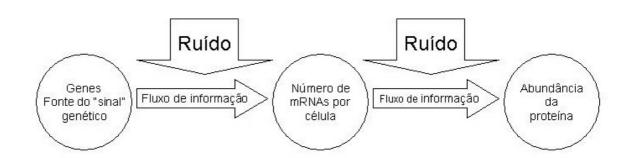


Figura 12: Esquema do fluxo de informação no genoma. A transcrição e a tradução podem ser vistas como um canal de transmissão de informação que pode ser afetado pelo ruído.

Uma importante fonte de estocasticidade em sistemas biológicos é o ruído transcricional e o traducional, o qual pode resultar em diferentes taxas de síntese de uma proteína específica em células geneticamente idênticas. Diversos estudos tratam do ruído transcricional e traducional, e dos mecanismos estocásticos da expressão gênica tanto em procariotos quanto em eucariotos (Elowitz, Levine et al. 2002; Blake, Kaern et al. 2003). Dados de microarray têm sido utilizados para estudar a organização

da expressão gênica em grande escala e revelaram um grande complexo de redes gênicas (Tong, Lesage et al. 2004; Davierwala, Haynes et al. 2005; Pan, Ye et al. 2005). Análises do genoma demonstraram que a dinâmica da expressão gênica é conservada desde a *E. coli* até *H. sapiens*, onde a variação da expressão gênica é inversamente proporcional ao seu nível de expressão inicial (Ueda, Hayashi et al. 2004). Entretanto, o nível inicial de transcrição varia de célula para célula. Esse tipo de ruído pode ser classificado como populacional, uma vez que corresponde a uma variação célula-a-célula no nível da expressão gênica. A levedura *Saccharomyces cerevisiae* minimiza o ruído da síntese de proteínas (ruído traducional) durante a expressão da maioria dos seus genes. O ruído traducional é minimizado em genes essenciais e em genes que codificam proteínas envolvidas em complexos protéicos (Fraser, Hirsh et al. 2004). É de fundamental importância descrever os mecanismos básicos do ruído e de responder a questão de como a célula lida com esse ruído. Em outras palavras, como a célula otimiza o ruído de uma maneira que a expressão gênica tenha a flexibilidade necessária para realizar os ajustes adaptativos.

É relevante notar que, além dos estudos que tentam descrever os mecanismos de como o ruído afeta a expressão gênica, esse ruído pode ser descrito como uma propriedade emergente do genoma, ou pode ao menos favorecer o conceito da célula como uma rede auto-organizada (Nicolis e Prigogine 1977; Kauffman 1993; Bar-Yam 2004). A auto-organização é um processo dinâmico e adaptativo onde sistemas, geralmente abertos, adquirem e mantém, eles mesmos, sua ordem interna onde a complexidade aumenta sem nenhuma influência externa (Adami 2002). Sistemas autoorganizados são conhecidos na física, química (auto-montagem), economia, antropologia e matemática (autômato celular). Porque o fenômeno biológico se manifesta em escalas que variam do nível sub-celular até o ecossistema, o conceito de auto-organização tem um papel central na descrição desse fenômeno. De acordo com a teoria dos hiperciclos e das redes autocataliticas, a origem da vida pode ser um produto de sistemas químicos auto-organizados (Eigen 1971; Ycas 1999). Sistemas biológicos exibem aumento da ordem, autonomia, adaptabilidade, controle autoregulado (feedback), dinâmica fora do equilíbrio, as quais são assinaturas da autoorganização (De Wolf e Holvoet 2005). Diversos comportamentos complexos e autoorganizados incluem a formação da bicamada lipídica, dobra espontânea das proteínas, morfogênese e estruturas sociais animais. Tipicamente, sistemas autoorganizados exibem propriedades emergentes.

Os conceitos de auto-organização e emergência são muitas vezes utilizados erroneamente como sinônimos (De Wolf e Holvoet 2005). A conexão entre emergência e auto-organização é um problema cientifico muito interessante e com grandes implicações para a genômica. A identificação e caracterização das assinaturas da auto-organizacao e emergência usando dados de genomas eucarióticos é uma ampla área de pesquisa e pode ser essencial para entendermos quantitativamente como a informação genética direciona e controla a formação das células, organismos e outros comportamentos biológicos. O ruído da expressão gênica pode ser essa assinatura.

4.2. Material e Métodos

4.2.1. Fonte dos dados

Os dados de microarray do *Saccharomyces cerevisiae* foram obtidos a partir do banco de dados de expressão em um ciclo celular (http://genomics.steford.edu/yeast_cell_cycle/cellcycle.html) e consiste de 17 medidas de expressão (igualmente distribuídas ao longo de dois ciclos celulares em células sincronizadas) dos 6.200 genes do *S. cerevisiae*, linhagem K3445 (Cho, Campbell et al. 1998) (Figura 13, Tabela 5).

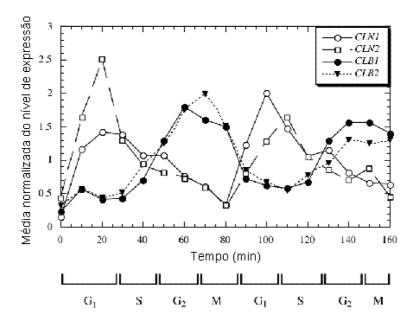


Figura 13: Esquema das 17 medidas do nível de expressão em dois ciclos celulares.

Baseado nos dados de deleção sistemática do banco de dados do genoma do Saccharomyces (http://yeastgenome.org), os dados de todos os genes foram divididos em gene não essenciais (4.683) e essenciais (1.116). Genes sem dados de deleção sistemática foram excluídos da análise.

A lista dos 554 pares de genes ohnólogos (genes que permaneceram duplicados após a duplicação total do genoma) foram obtidos do *Yeast Gene Order Browser project* (http://www.gen.tcd.ie/~khwolfe/yeast/) (Byrne e Wolfe 2005).

A lista dos genes que são regulados pelo ciclo celular foi obtida a partir dos dados do .

Tabela 5: DADOS BRUTOS DAS MEDIDAS DO NÍVEL DE EXPRESSÃO PARA ALGUNS GENES DO Saccharomyces cerevisiae

Gene	Medidas do Valor Bruto do Nível de Expressão Gênica																
	zero	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
YAL001c	108	72	109	108	134	96	84	117	122	125	148	172	222	117	104	125	131
YAR043c	16	4	5	7	6	3	12	16	12	23	2	15	24	15	10	16	14
YBL001c	1145	1180	1610	974	1045	785	1199	968	849	1732	994	959	813	1087	1201	958	1305
YCL005w	641	592	593	709	827	607	682	586	557	601	612	648	542	646	645	614	614
YCR013c	2190	1642	2894	2026	3418	1563	2472	2268	1813	7280	3721	3769	1957	3899	4418	4005	5085
YDL110c	848	509	279	351	387	437	317	380	503	852	787	747	561	690	608	631	900
YDR012w	5054	5087	7095	5302	7142	3480	5194	4759	3512	13573	7530	6387	3795	7750	7862	8498	8215
YEL060c	339	181	174	186	223	156	198	197	161	234	214	198	230	198	196	172	188
YER150w	686	280	120	97	46	51	52	97	118	105	82	61	56	43	34	59	85
YFL048c	515	505	514	495	583	540	545	516	469	587	476	547	568	615	415	752	676
YGL034c	1	3	9	8	3	8	7	8	7	5	6	7	4	8	6	5	8
YGR135w	713	647	663	684	539	532	768	785	670	887	958	738	704	617	804	704	818
YHL048w	985	598	672	717	770	789	801	729	508	979	724	764	815	685	476	706	837
YIL052C/_ex1	984	1037	1478	1409	1218	1136	1227	1117	1067	2981	1409	1299	1010	1289	1599	1412	1312
YIR033W/	176	342	245	272	327	233	167	127	161	104	115	126	103	127	134	126	116
YJL130C/URA2	1008	1298	1489	1250	1291	1262	1316	1352	1423	2017	1049	1278	1260	1614	1403	1594	1650
YKR085C/MRPL20	555	709	406	343	437	517	448	613	567	588	717	657	553	592	685	654	667
YLR029c/RPL13A	3561	2336	5047	3274	4323	2646	3107	3476	2583	11225	4124	4000	2837	5206	4044	5042	4418
YML114C/	950	923	942	809	821	849	745	722	716	1049	992	669	532	1107	721	813	748
YMR081C/ISF1	280	207	132	218	185	222	211	264	160	205	208	148	127	170	257	189	166
YNL071W/LAT1	1006	1092	1143	974	1076	765	990	940	1014	1702	1249	1368	1019	1042	965	1402	915
YOR353C/	157	149	172	187	238	260	243	228	237	210	210	232	211	189	202	199	191
YPL040C/ISM1	103	78	71	83	83	95	76	95	93	97	92	77	106	82	97	96	114
YPR146C/	818	690	692	601	732	753	733	776	855	1013	977	890	688	996	947	925	1158

4.2.2. Cálculo da flutuação relativa dos níveis de expressão (ruído transcricional temporal)

A média aritmética do nível de expressão (média amostral) $\overline{\mathbb{E}}$ e o desvio padrão correspondente S foram calculados para cada ORF. O ruído transcricional (η) da expressão gênica $\mathbb{E}_{i}(t)$ do gene j (Elowitz, Levine et al. 2002) é definido por

$$\eta_{j} = \frac{S_{j}}{E_{j}} \qquad \text{(Eq. 1)}$$

A definição de ruído temporal como a flutuação relativa do nível de expressão é conveniente devido ao aspecto estocástico da dinâmica da expressão. Além disso, o caráter da variável η permite o esclarecimento de sua importância para a dinâmica da expressão gênica. Esta definição de ruído contempla todas as possíveis contribuições para a variabilidade transcricional, desde a influência de mecanismos baseados em auto-regulação da transcrição até as flutuações intrínsecas relacionadas com as reações químicas de síntese do mRNA. Esta definição também permite predições teóricas baseadas no conhecimento das propriedades estatísticas estacionárias da expressão gênica para cada gene individual.

Outro parâmetro relevante a ser considerado é a média do valor absoluto da variação relativa da expressão gênica, definido como:

$$\overline{\alpha}_{j} = \frac{1}{n-1} \sum_{l=1}^{n} \frac{\left| E_{l+1}^{(j)} - E_{l}^{(j)} \right|}{E_{l}^{(j)}}$$
 (Eq. 2)

Onde *j* é cada gene, *l* cobre todas as medidas experimentais para cada gene, e *n* é o número total de medidas por gene no experimento. A relação entre esse parâmetro e o nível de ruído é importante para elucidar a minimização do ruído transcricional.

A tabela com valor médio de expressão, desvio padrão, ruído e $\bar{\alpha}$ para os 5799

4.3. Resultados e Discussão

4.3.1. Analise do genoma total

A idéia corrente é que o fator importante na organização da expressão gênica é a identificação de redes de genes relacionadas a determinadas funções biológicas. Entretanto, a identificação de um grupo de genes que possuem propriedades especiais é apropriada para descrever como a informação genética está organizada no genoma em termos dinâmicos. Nesta parte do trabalho, foram analisadas a distribuição do ruído transcricional temporal e o nível de expressão em três diferentes escalas: genômica, cromossômica e sub-cromossômica determinada pela posição do centrômero (braços cromossômicos). O objetivo principal é identificar a assinatura da invariância de escala dos relevantes observáveis estatísticos nas três escalas definidas acima, as quais são claramente importantes para a organização da informação biológica de origem dinâmica. Por que estamos procurando por assinaturas dinâmicas, consideramos o papel das flutuações temporais na expressão gênica e, portanto a variação célula-a-célula, ou ruído populacional deve ser eliminado ou diminuído para que a variabilidade populacional não mascare as verdadeiras variações temporais (Figura 14). Em outras palavras, os dados de microarray e as análises utilizadas foram selecionadas para que se possa dizer inequivocamente que os observáveis considerados são típicos (esperados estatisticamente) de um individuo aleatoriamente escolhido na população. Na escala genômica, tanto o nível médio de expressão (Figura 15A) quanto o nível de ruído (Figura 15B) seguem uma distribuição log-normal. Embora seja razoável o argumento de que a distribuição de espécies químicas numa célula deva assumir diferentes formas durante o ciclo celular, também é razoável esperar a emergência da distribuição log-normal (não Gaussiana) em muitos processos celulares. Devido aos efeitos da cascata química, as quais aumentam a propagação das flutuações de maneira multiplicativa, a distribuição com longa cauda do ruído e do nível de expressão reforçam a hipótese da ubigüidade da distribuição log-normal em sistemas biológicos (Furusawa, Suzuki et al. 2005). A distribuição do nível médio de expressão possui uma cauda algébrica com expoente

 γ ~2 , cujo caráter universal já foi previamente demonstrado (Ueda, Hayashi et al. 2004). A distribuição do nível de ruído também possui cauda algébrica com expoente β ~3, possivelmente universal.

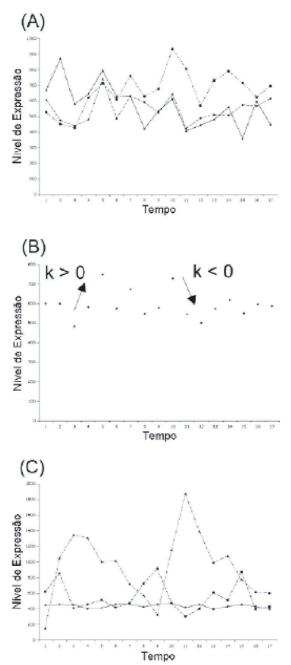
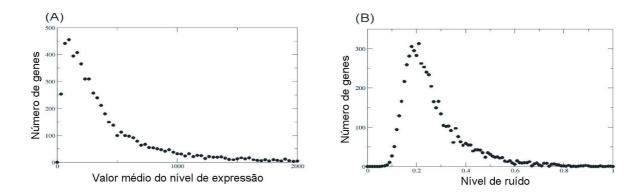
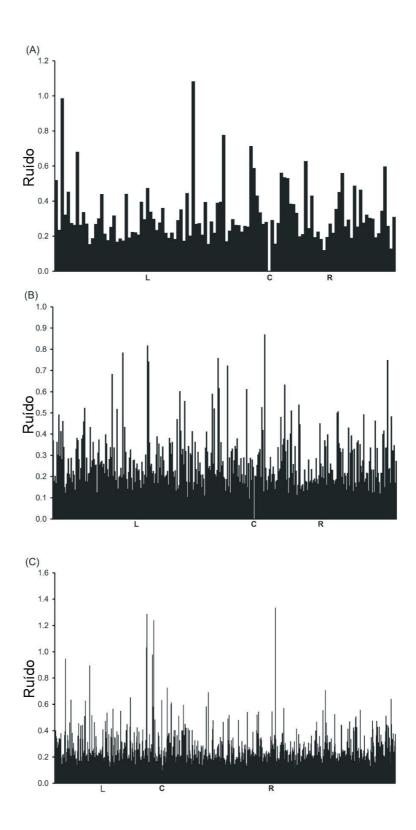



Figura 14: Tipos de ruído. Em (A), nós demonstramos a variação célula-a célula do nível de expressão de um único gene em células sincronizadas, ou ruído populacional. Os símbolos (triangulo, quadrado e círculo) indicam as diferentes células individuais em uma amostra hipotética. Em (B), o dado bruto do ruído temporal, considerado aqui como a média da população sincronizada em (A). Em (C),subtipos de ruído temporal de 3 genes diferentes, onde os triângulos representam genes tipicamente regulados pelo ciclo celular, quadrados os com alto ruído temporal e círculo com baixo ruído temporal.

Figura 15: (A) Distribuição de probabilidade do nível médio de expressão para o genoma. (B) Distribuição de probabilidade do nível de ruído para o genoma.


Uma vez que $\bar{\ell}$ e η são distribuídos log-normalmente, as variáveis correspondentes normalmente distribuídas são $\varepsilon = \log(\bar{\ell})$ e $\xi = \log(\eta)$. Os valores médios $\bar{\ell}$ e $\bar{\xi}$ para todo o genoma são $\bar{\ell} = 5.529$ (1.147) e $\bar{\xi} = -1.421$ (0.425). Na escala cromossômica, os valores ε e ξ para cada um dos 16 cromossomos são muito próximas aos valores médios para o genoma total (Tabela 6). A média dos cromossomos individuais possuem uma pequena dispersão (<5%) em torno do valor médio, próximos ao mesmo valor para o genoma total, $\bar{\varepsilon}_{hrm} = 5.485$ (0.281) e $\bar{\xi}_{hrm} = -1.408$ (0.057). Portanto, a média geométrica do nível de expressão e do nível de ruído são invariantes quando descemos da escala genômica para a cromossômica.

Subdividindo-se os cromossomos em braços direito e esquerdo, observou-se a mesma propriedade. $\bar{\ell}$ e $\bar{\ell}$ para ambos os braços são muito próximos dos valores para cada cromossomo (Tabela 7 e Figura 16). Portanto, os valores de $\bar{\ell}$ e $\bar{\ell}$ são conservados desde a escala genômica, ate a sub-cromossômica. A conservação de $\bar{\ell}$ e $\bar{\ell}$ nessas duas escalas sugerem a existência de simetrias regendo a distribuição dos genes em cada grupo (os cromossomos e seus respectivos braços). A pergunta sobre a existência de grupos biológicos relevantes (redes) em escalas inferiores à sub-cromossômica, obedecendo à mesma propriedade de escala, permanece para investigação futura. Dados preliminares indicaram que esses grupos de genes de fato existem e correspondem a subconjuntos específicos da rede regulatória. Baseada na evidencia apresentada aqui, nós conjecturamos que a localização do centrômero não é escolhida aleatoriamente, mas restrita à distribuição física de $\bar{\ell}$ e η no cromossomo correspondente. Embora muito sugestivo, esses resultados precisam ser verificados

por novos experimentos. Medidas mais precisas de $\overline{\iota}$ e η assim como a identificação completa de todas as regiões codificadoras devem ser feitas para corroborar as evidencias de invariância de escala de $\overline{\iota}$ e $\overline{\xi}$ observadas.

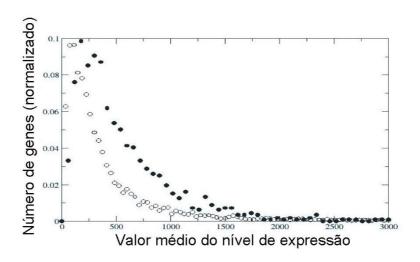
Tabela 6: MÉDIA GEOMÉTRICA DO RUÍDO TEMPORAL E DO NÍVEL
DE EXPRESSÃO GÊNICA PARA O GENOMA TOTAL E PARA CADA
CROMOSSOMO. SD = DESVIO PADRÃO.

	Ruíd	o (Ln)	Nível de expressão (Ln)			
_	Média	SD	Média	SD		
Genoma	-1.421	0.425	5.529	1.147		
Crm 1	-1.230	0.423	5.363	1.134		
Crm 2	-1.372	0.418	5.651	1.141		
Crm 3	-1.358	0.398	5.329	1.162		
Crm 4	-1.436	0.404	5.635	1.113		
Crm 5	-1.415	0.410	5.511	1.153		
Crm 6	-1.426	0.433	5.229	2.818		
Crm 7	-1.492	0.443	5.116	1.117		
Crm 8	-1.448	0.445	5.128	1.170		
Crm 9	-1.429	0.441	4.915	1.176		
Crm 10	-1.383	0.407	5.564	1.136		
Crm 11	-1.437	0.407	5.907	1.054		
Crm 12	-1.416	0.428	5.819	1.133		
Crm 13	-1.401	0.415	5.817	1.056		
Crm 14	-1.434	0.420	5.625	2.964		
Crm 15	-1.430	0.440	5.561	1.095		
Crm 16	-1.422	0.446	5.596	1.085		

Figura 16: Mapa cromossômico do ruído temporal. (A) cromossomo 1 (230.208 bp), (B) cromossomo 10 (745.745 bp) e (C) cromossomo 4 (1.531.918 bp). C indica a posição do centrômero, L para o braço esquerdo e R para o braço direito dos cromossomos.

Tabela 7: MÉDIA GEOMÉTRICA DO RUÍDO TEMPORAL E MÉDIA DO NÍVEL

DE EXPRESSÃO PARA CADA BRAÇO DE CADA CROMOSSOMO.


		Ruído (Ln)		Nível de Expressão (Ln)			
Cromossomo	oromoscomo	Média	SD	Média	SD		
Ciomossomo	cromossomo						
1	L	-1.232	0.427	5.427	1.088		
•	R	-1.227	0.422	5.255	1.215		
2	L	-1.359	0.426	5.864	1.032		
2	R	-1.378	0.416	5.569	0.172		
3	L	-1.334	0.446	5.331	1.182		
3	R	-1.374	0.366	5.328	1.154		
4	L	-1.407	0.454	5.604	1.166		
7	R	-1.450	0.379	5.649	1.089		
5	L	-1.335	0.396	5.023	1.241		
5	R	-1.449	0.412	5.368	1.101		
6	L	-1.450	0.418	4.962	1.249		
U	R	-1.397	0.468	5.092	1.059		
7	L	-1.493	0.445	5.075	1.127		
,	R	-1.490	0.441	5.156	1.107		
8	L	-1.417	0.488	4.857	1.321		
O	R	-1.455	0.436	5.188	1.128		
9	L	-1.412	0.435	4.961	1.217		
9	R	-1.502	0.462	4.717	0.967		
10	L	-1.360	0.402	5.383	1.176		
	R	-1.416	0.412	5.819	1.028		
11	L	-1.419	0.392	5.959	1.064		
11	R	-1.474	0.437	5.794	1.026		
12	L	-1.363	0.388	5.644	1.131		
12	R	-1.424	0.434	5.846	1.133		
13	L	-1.426	0.430	6.043	1.032		
13	R	-1.390	0.409	5.721	1.053		
1.4	L	-1.425	0.424	5.657	1.079		
14	R	-1.473	0.373	5.477	1.065		
15	L	-1.379	0.447	5.488	1.061		
ı	R	-1.451	0.436	5.591	1.108		
16	L	-1.422	0.457	5.581	1.107		
10	R	-1.423	0.433	5.618	1.056		

^{*} L: barco esquerdo; R: braço direito; SD: Desvio Padrão

4.3.2. O problema da essencialidade

Conhecendo-se o comportamento do nível de expressão e do ruído para o genoma, considerou-se o grupo dos genes essenciais (Davierwala, Haynes et al. 2005) e não essenciais para determinar se eles seguem as mesmas propriedades estatísticas e de escala do genoma total.

A densidade de probabilidade do nível médio de expressão tanto para os genes essenciais quanto para não essenciais segue uma distribuição log-normal com cauda algébrica com expoente $\gamma \sim 2$. O nível de ruído dos dois grupos também segue uma distribuição log-normal (Figura 17). Portanto, a subdivisão do genoma em genes essenciais e não-essenciais preserva as propriedades estatísticas do nível médio de expressão e do ruído do genoma. No entanto, a invariância de escala observada nos níveis cromossômico e sub-cromossômico aparentemente não é respeitada quando dividimos o genoma em genes essenciais ($\bar{\epsilon}_{sss} = 5.932 (0.936)$), $\bar{\xi}_{sss} = 1.564 (0.394)$) e não-essenciais ($\bar{\epsilon}_{ess} = 5.437 (1.148)$, $\bar{\xi}_{ness} = 1.398 (0.427)$). A diferença observada entre os dois grupos pode ser devido a um efeito de tamanho da amostra. Vale notar que a média dos genes não-essenciais é muito perto da média do genoma, diferentemente dos genes essenciais.

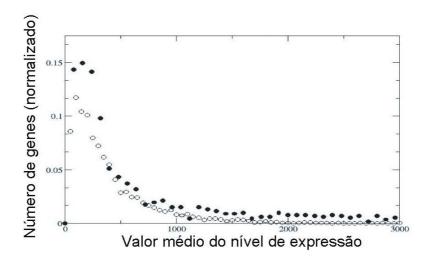


Figura 17: Distribuição de probabilidade do nível médio de expressão para os genes essenciais (círculo cheio) e não-essenciais (círculo vazio).

A média do ruído para os genes essenciais (0.23) é menor que a dos não-essenciais (0.27). Essa desigualdade está invertida quando consideramos o valor médio de expressão para esses dois grupos de genes (565 para os essenciais e 430 para os não-essenciais). Entretanto, essa diferença não é estatisticamente significativa (os dois grupos são praticamente indistinguíveis). Individualmente, o nível de ruído dos genes é manifestamente diferente e é fácil encontrar exemplos nos dados da inequalidade $\eta_{\rm ess} > \eta_{\rm ness}$ com alta significância estatística. Isso indica que a relação $\eta_{\rm ess} < \eta_{\rm ness}$ é verdadeira apenas em termos dos valores médios. Como essa separação é válida nas escalas cromossômica e sub-cromossômica, hipotetizamos que uma separação clara entre os genes essenciais e não-essenciais através da minimização do ruído, e maximização do nível de expressão, talvez seja possível quando se tratar de genes pertencentes a uma rede específica, relacionada com uma função biológica.

4.3.3. Ohnólogos

Evidências moleculares sugerem que a levedura S. cerevisiae é o resultado de uma duplicação total do genoma (WGD - whole-genome duplication) que ocorreu após a divergência do gênero Saccharomyces do gênero Kluyveromyces, aproximadamente 10⁸ anos atrás (Wolfe e Shields 1997). O organismo *S. cerevisiae* mantém aproximadamente 17% dos genes duplicados (ohnólogos) originados no WGD. A densidade de probabilidade do nível médio de expressão dos genes ohnólogos e nãoohnólogos segue uma distribuição log-normal (Figura 18), com cauda algébrica com expoente γ = 1.38 \pm 0.15 para o grupo dos ohnólogos, e γ = 2.67 \pm 0.14 para o grupo dos não-ohnólogos. A subdivisão do genoma em genes ohnólogos e não ohnólogos ($\bar{\epsilon}_{nohn} = 5.465 (1.104), \bar{\xi}_{nohn} = -1.451 (0.418)$) aparentemente não respeita a invariância de escala observada nos níveis cromossômico e não cromossômico. Portanto, a subdivisão do genoma em genes ohnólogos e não-ohnólogos não preserva as propriedades estatísticas do genoma total, e não segue as propriedades de escala descritas anteriormente. Então, não é errado concluir que os princípios naturais envolvidos na seleção dos genes que foram mantidos após a duplicação são diferentes daqueles envolvidos com a seleção da essencialidade.

Figura 18: Distribuição de probabilidade do nível médio de expressão para os genes ohnólogos (círculo cheio) e não-ohnólogos (círculo vazio).

4.3.4. Correlação entre o ruído e o CAI

O índice de adaptação dos códons (CAI) (Sharp e Li 1987) foi concebido para ser um parâmetro genético que correlaciona o uso dos códons com a abundância de proteínas. Apesar de considerações metodológicas, esse índice é fonte de informações biológicas fundamentais (Jansen, Bussemaker et al. 2003; Kliman, Irving et al. 2003; Drummond, Bloom et al. 2005).

Estudar a correlação entre o ruído transcricional e o CAI é relevante uma vez que a importância da tradução pra a regulação da transcrição já foi mostrada previamente (Fraser, Hirsh et al. 2004) e, portanto pode ter importância no mecanismo de minimização do ruído transcricional. Utilizando o CAI para ordenar o genoma, observou-se que os genes são separados em grupos de CAI constantes, com tamanho desses grupos variando (de ~10 até ~70 genes em cada) no intervalo 0.100 < CAI < 0.185, compreendendo aproximadamente 79% de genoma (Figura 19A). Dentro desses grupos, observou-se uma ordem interna caracterizada pela relação $\alpha = \eta$ (Figura 19 A, B, C, D, E). Nesses grupos de genes, \bar{q} e η seguem o mesmo tipo de ordem. O intervalo da variação é aproximadamente a mesma com o valor do ruído mínimo próximo do valor do ruído mínimo observado para o genoma total. O padrão encontrado é extremamente regular, especialmente para o CAI 0,118. Fora do intervalo 0.100 < CAI < 0.185, o padrão de agrupamento não é obvio devido à rápida variação no CAI. Neste domínio, a relação $\alpha \approx \eta$ é observada apenas em genes isolados como, por exemplo aqueles que codificam para as enzimas da via glicolítica a TDH2 (gliceraldeido-3-fosfato dehidrogenase), CIT3 (citrato sintase), PDA1 (piruvato dehidrogenase) e LPD1 (dihidrolipoamida dehidrogenase). Então, é provável que a propriedade $\alpha \approx \eta$ seja válida para pelo menos 70% do genoma; incluindo-se, por exemplo, a rede de integridade do DNA (Pan, Ye et al. 2005). A identificação de possíveis relações entre o padrão encontrado e funções biológicas está fora do objetivo deste trabalho e está aberto para investigações futuras. No entanto, a significância da propriedade $\alpha \approx \eta$ pode ser elucidada através de um modelo teórico da expressão gênica.

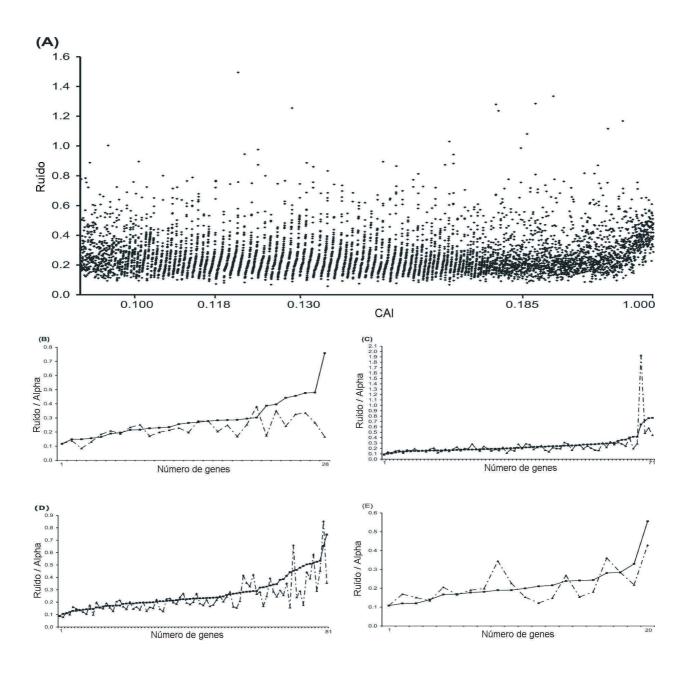


Figura 19: (A) Correlação entre o ruído temporal e o CAI. As ORFs foram ordenadas primeiro por aumento do nível de ruído e depois pelo aumento de CAI. Uma visão mais próxima do padrão encontrado mostrando o nível de ruído (quadrado) e o valor de alpha (triangulo) correspondente para cada gene no intervalo é mostrado em (B) para CAI 0.100, (C) para CAI 0.118, (D) para CAI 0.130 e (E) para CAI 0.181.

4.3.5. Modelando a expressão gênica de único gene

Para modelar a variação temporal da expressão de um único gene (E_j (t)) e interpretar os resultados experimentais com as predições teóricas do modelo, considerou-se a expressão:

$$\frac{dE_{j}}{dt} = k_{j}E_{j} \quad \text{(Eq. 3)}$$

Onde k_j é uma variável aleatória (normalmente distribuída) que flutua em torno de um valor médio $\overline{k}=0$. Esta premissa é baseada na distribuição estimada de k_j obtida diretamente dos dados experimentais. Valores positivos (ou negativos) de k_j descreve um aumento (ou diminuição) do nível de expressão k_j (que por definição é positivo) cujo logaritmo varia randomicamente de acordo com a distribuição de k_j . Então, espera-se que a variável aleatória k_j siga uma distribuição log-normal (Kaneko 2003; Furusawa, Suzuki et al. 2005).

Para facilitar a análise do modelo e a comparação com os dados experimentais, é conveniente considerar a versão discreta da equação (3) com o parâmetro $\alpha_j = |k_j|$. Numa primeira aproximação, o processo estocástico $k_j(t)$ pode ser restringido a saltos aleatórios no tempo da variável α_j entre os valores $+\overline{\alpha}_j$ e $-\overline{\alpha}_j$. Então, equação (3) se torna:

$$|E_{n+1}^{(j)} - E_n^{(j)}| = \bar{\alpha}_j E_n^{(j)}$$
 (Eq. 4)

onde n = 0, 1, 2, ..., (variável discreta no tempo). Essa equação pode ser escrita na forma de duas transformações discretas:

$$E_{n+1}^{(j)} = (1 + \alpha_j) E_n^{(j)}$$
 (Eq. 5)

$$E_{n+1}^{(j)} = (1 - \alpha_j) E_n^{(j)}$$
 (Eq. 6)

onde $0 \le E_n^{(j)} < \infty$.

De acordo com as equações (5) e (6), a evolução temporal da expressão gênica é dada pela série temporal de $E_{\pi}^{(j)}$. A cada intervalo de tempo discreto, as equações (5) ou (6) são escolhidas randomicamente para se escolher o valor do nível de expressão $E_{\pi}^{(j)}$ para o valor $E_{\pi+1}^{(j)}$.

A partir do dado experimental, é facilmente observável que os valores de $E_n^{(j)}$ variam entre um valor mínimo $\left(E_m^{(j)}\right)$ e um máximo $\left(E_M^{(j)}\right)$ durante o ciclo celular, que é característico da cada gene. Isto sugere que o modelo (equações (5) e (6)) deve ser restrito ao intervalo $\left(E_m^{(j)}, E_M^{(j)}\right)$. Então, dependendo do intervalo em que o valor de $\overline{\alpha}_j$ é definido, o modelo possui três casos distintos a serem considerados:

(i)
$$\frac{E_{M}^{(j)}}{E_{m}^{(j)}} > \frac{1 + \overline{\alpha}_{j}}{1 - \overline{\alpha}_{j}}$$
. Neste caso, as duas transformações lineares tem um domínio

comum no intervalo $\left(\frac{E_{m}^{(j)}}{1-\alpha_{j}} < E_{n}^{(j)} < \frac{E_{M}^{(j)}}{1+\alpha_{j}}\right)$, onde a dinâmica é extritamente probabilística com probabilidades *a priori* iguais. Fora do domínio comum, a dinâmica é determinística.

(ii)
$$\frac{E_{M}^{(j)}}{E_{m}^{(j)}} < \frac{1+\overline{\alpha}_{j}}{1-\overline{\alpha}_{j}}$$
. No intervalo $\left(\frac{E_{M}^{(j)}}{1+\overline{\alpha}_{j}} < E_{n}^{(j)} < \frac{E_{m}^{(j)}}{1-\overline{\alpha}_{j}}\right)$, ambas as transformações não são definidas, representando, portanto, a falta de atividade do gene.

(iii)
$$\frac{E_{M}^{(j)}}{E_{m}^{(j)}} = \frac{1 + \overline{\alpha}_{j}}{1 - \overline{\alpha}_{j}}$$
. Este caso define uma borda limite entre a presença e a falta de atividade do gene. Aqui, a dinâmica é extritamente determinística.

Nesta análise, é assumido que a variação temporal do nível de expressão não deve ser a mesma para um mesmo gene em células diferentes. A cada tempo (t) o nível de expressão do gene j varia entre as células da população. No entanto, as propriedades estatísticas da expressão gênica no tempo devem ser as mesmas para o gene j em qualquer célula da população (considerando que todos os indivíduos estão sujeitos as mesmas condições ambientais). Nesta caso, então, a função da densidade

de probabilidade da variável $E_{ii}^{(j)}$ deve ser a assinatura dinâmica relevante do gene j.

É importante notar que não existe uma prova de existência de uma densidade de probabilidade estável para $E_{n}^{(j)}$, para qualquer gene do genoma. Como primeiro passo assumiu-se essa existência e eventualmente reformularemos a hipótese de estabilidade estatística dependendo das predições do modelo.

As considerações acima implicam que o modelo deve ser estudado em termos da evolução temporal da densidade de probabilidade. Para cada intervalo de tempo existe a distribuição de probabilidades de $E_{\pi}^{(j)}$, característica da população celular. A dinâmica da expressão gênica é dada pela evolução temporal dessa distribuição de probabilidades, a qual é completamente descrita pela evolução da densidade do operador correspondente. Neste caso, o operador apropriado é conhecido como operador de Perron-Frobenius (Lasota e Mackey 1998).

Em ternos formais, escrevemos $\rho_n^{(j)}(E)$ (a função de densidade no tempo n para o gene j), U (o operador de Perron-Frobenius para o modelo), tal que $U\rho_n^{(j)}=\rho_{n+1}^{(j)}$. Se a densidade de equilíbrio existe, ela é a solução para $U\rho_{eq}^{(j)}=\rho_{eq}^{(j)}$. Se $\rho_{eq}^{(i)}=\rho_{eq}^{(j)}$ para dois genes diferentes, então a equivalência estatística desses dois genes deve ser considerada, pelo menos em relação a expressão gênica.

4.3.6. Comparação entre o modelo e o dado experimental

Esta metodologia permite uma dedução analítica da borda da expressão gênica considerada no caso (iii). Uma vez calculado os valores de η e $\bar{\alpha}$ of para cada gene nos dados experimentais, analisamos o caso limite e determinamos a curva $\eta(\alpha)$ a partir do modelo. Este resultado é apresentado na Figura 20A.

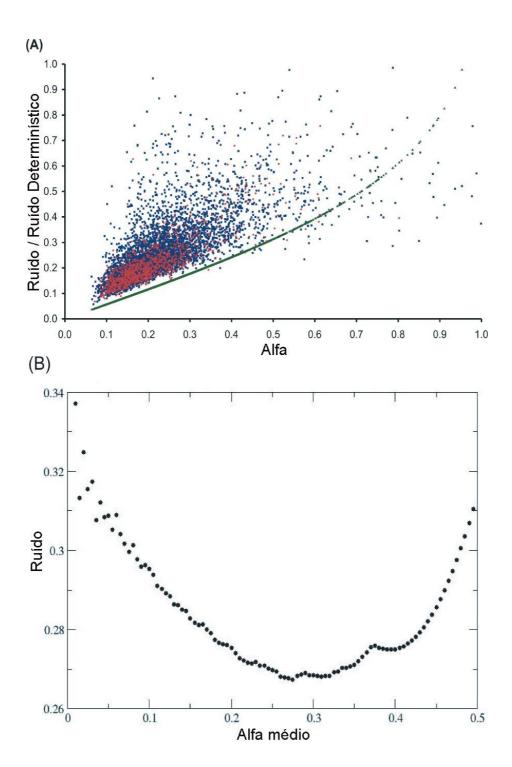
Por definição, o nível de ruído e dado por:

$$\eta(\alpha) = \sqrt{\frac{\overline{E^2}(\alpha)}{\overline{E^2}(\alpha)} - 1}$$
 (Eq. 7).

Como no caso (*iii*), o modelo é completamente determinístico, e o operador de Perron-Frobenius pode ser facilmente obtido, dando a densidade de equilíbrio:

$$\rho_{eq}^{(j)}(E) = \frac{1}{\log\left(\frac{1+\overline{\alpha_{(j)}}}{1-\overline{\alpha_{(j)}}}\right)^{E}}$$
 (Eq. 8).

Com a ajuda da equação (8) obtém-se


$$\eta(\alpha) = \sqrt{\frac{1}{2\alpha}\log\frac{1+\alpha}{1-\alpha}-1}$$
 (Eq. 9).

A curva descrita pela equação (9) é apresentada na Fig. 20A juntamente com o dado experimental. A curva da equação (9) separa o diagrama η X $_{\alpha}^{-}$ em duas regiões: o lado esquerdo do diagrama (referido no caso (i)) e o lado direito do diagrama (caso (i)) onde não deveria existir nenhum ponto. Os pontos que aparecem nesta região correspondem a (a) genes que são regulados pelo ciclo celular tal qual CLN1 (ciclina 1 G1), e YOX1 (repressor transcricional contendo um homeodomínio), (b) genes ohnólogos como KRR1 (proteína nucleolar essencial necessária para a síntese do rRNA 18S e para a montagem do subunidade 40S do ribossomo), SOL2 (papel no transporte de tRNAs) e CLN1 (ciclina 1 G1) e (c) ORFs dúbias e hipotéticas como SaYJL195c e YBR090c. Aproximadamente 25% dos pontos na região à direita

correspondem às classes de genes (a) e (b). Os pontos restantes correspondem a dados que são fortemente afetados pelo erro experimental. Equação (9) também indica um critério restrito para a minimização do ruído transcricional: para qualquer grupo de genes com valores de $\bar{\alpha}$ similares, o ruído transcricional mínimo é alcançado por aqueles genes cuja dinâmica da expressão gênica é a mais perto da dinâmica determinística.

No entanto, as simulações numéricas fornecem informações relevantes sobre a organização do ruído transcricional em escala genômica. Como descrito na seção anterior, pelo menos 70% do genoma (0.100 < CAI < 0.185) segue um padrão claro de agrupamento de aproximadamente 60 genes com variação regular do nível de ruído. Como descrito anteriormente, a relação $\frac{1}{\sqrt{100}} \sim \eta$ vale para genes pertencentes a esse grupo.

Para investigar essa propriedade, nós utilizamos o modelo para determinar a relação numérica entre $\bar{\ell}$ e η num intervalo fixo da variação da expressão gênica. O resultado das simulações numéricas é apresentado na (Figura 20B), e mostra claramente que o ruído é minimizado quando $\bar{\ell}$ ~ η . Uma curva semelhante é obtida para diferentes intervalos da variação do nível de expressão.

Figura 20: (A) Diagrama do $\overline{\chi}$ X η. Genes essenciais (vermelho) e não-essenciais (azul) estão destacados. A curva em verde refere-se ao caso da dinâmica determinística e representa uma fronteira para a atividade dos genes. Os quadrados representam as três dinâmicas possíveis para a variação do nível de expressão quando um valor de $\overline{\chi}$ é escolhido. (B) Minimização do ruído como uma função de $\overline{\chi}$ para a ORF com um valor mínimo (E_m) e máximo (E_M) de expressão gênica.

Portanto, a propriedade $\sqrt{}\sim\eta$ pode ser interpretada como uma estratégia utilizada por ~70% do genoma para minimizar o ruído transcricional globalmente e conseqüentemente minimizar os efeitos nocivos do componente estocástico da expressão gênica. Nesses termos, a propriedade, $\sqrt{}\sim\eta$ pode ser vista como uma estratégia natural de como a célula minimiza o ruído. Embora alguns possam se opor ao uso de dados de microarray para o estudo do ruído, nós argumentamos que o dado de microarray utilizado permite inequivocamente dizer que os observáveis considerados são típicos (esperados estatisticamente) de um indivíduo escolhido aleatoriamente a partir da população.

Nossos dados sugerem que existe uma diferença, pelo menos em parte, no nível de ruído entre os genes essenciais e não-essenciais, a qual pode indicar a existência de uma organização restringida pela manutenção da constância do ruído e do nível de expressão. Nós hipotetizamos que os eventos genéticos que afetam substancialmente o ruído são drásticos para a viabilidade celular, estabelecendo uma fronteira no espaço da variação biológica onde a seleção Darwiniana irá atuar (Kauffman 1993). Isso envolveria invariância de escala e manutenção da simetria.

A análise descrita aqui sugere uma relação envolvendo invariância de escala e equivalência estatística com a organização estrutural e funcional da informação genética, em termos do ruído transcricional e do nível médio de expressão. Invariância de escala e equivalência estatística são propriedades relacionadas com a organização estrutural do genoma (divisão do genoma em cromossomos e nos braços dos cromossomos). A existência de grupos de genes similares em escalas menores permanece a ser determinada. Essencialidade e ohnologia são propriedades relacionadas com a organização funcional do genoma. Seguindo esse princípio a organização em termos de genes essenciais e não-essenciais deve ser, pelo menos em parte, estrutural, mas a organização do genoma em termos de ohnologia deve seguir um principio estritamente funcional.

Sob essa perspectiva, o mecanismo de minimização temporal do ruído transcricional, identificado pela relação $\sqrt{} \sim \eta$, não está relacionado com aspectos estruturais ou funcionais. Ele seria uma propriedade emergente de natureza dinâmica relacionada com a arquitetura de redes globais do genoma.

Os índices utilizados neste estudo foram validados como preditores do nível de expressão, caso do CAI para a *Candida albicans*, e de essencialidade, caso do ruído da expressão gênica. O índice de adaptação dos códons (CAI) é válido como preditor do nível de ruído bem como da dinâmica da expressão gênica.

5.1. Corolários

- 1. Os 744 genes hipotéticos selecionados possuem, em sua maioria, baixo CAI.
- 2. Foram identificados duas ORFs, CaYdr187c e CaYlr339c, que possuem baixo CAI e podem ser possíveis alvos para novas drogas.
- De acordo com as predições, a proteína putativa codificada pela ORF CaYdr187c está localizada na parede celular, não é uma enzima, possui ontologia de resposta imune, peptídeo sinal e regiões transmembrana.
- 4. De acordo com as predições, a proteína putativa codificada pela ORF CaYlr339c está envolvida com a tradução, não é uma enzima, possui ontologia de resposta imune. Essa proteína não apresenta nem peptídeo sinal nem regiões transmembrana.
- 5. O gene CaYdr187c só é transcrito na fase de levedura.
- 6. O gene CaYlr339c é transcrito tanto na fase de levedura quanto na de hifa.
- 7. O modelo prediz que o ruído é minimizado quando $\overline{\alpha} = \eta$.
- 8. Genes que possuem o mesmo CAI (0,100 \geq CAI \geq 0.185) possuem $\alpha = \eta$.
- 9. A distribuição do nível médio de expressão e do ruído do genoma total é lognormal.
- 10. A distribuição do nível médio de expressão e do ruído para os essenciais e não essenciais é lognormal, com o mesmo expoente do genoma.

- 11. A distribuição do nível médio de expressão e do ruído para os ohnólogos e não ohnólogos é lognormal, com expoente diferente do genoma.
- 12. A média do ruído dos genes essenciais é menor que a dos não essenciais.
- 13.O valor médio da expressão gênica dos genes essenciais é maior que a dos não essenciais.
- 14.Os genes essenciais seguem uma dinâmica mais próxima da dinâmica determinística que os genes não essenciais.
- 15.CAI é um bom preditor do nível de expressão para os genes com CAI entre $0,100 \ge \text{CAI} \ge 0,185$.

6. Perspectivas Futuras

- 1. Expressar os genes CaYdr187c e CaYlr339c em *E. coli*.
- 2. Produzir anticorpos para confirmar a presença e a localização celular de ambas as proteínas.
- 3. Fazer a deleção dos dois genes para confirmar a essencialidade.
- 4. Verificar o comportamento do ruído temporal transcricional em redes regulatórias e com isso confirmar a conjectura da invariância de escala. Para isso os genes serão separados em dois grupos: (i) selecionados aleatoriamente no banco de dados e (ii) genes conectados formando um *cluster* que atravesse a rede regulatória e alguns índices relacionados a redes gênicas, como a conectividade serão calculados.

7. Referências Bibliográficas

- Adami, C. (2002). "What is complexity?" Bioessays 24: 1085-94.
- Adami, C., C. Ofria, et al. (2000). "Evolution of biological complexity." Proc Natl Acad Sci USA **97**: 4463-8.
- Akashi, H. (1994). "Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy." Genetics **136**: 927-35.
- Alexander, J. W., S. T. Boyce, et al. (1990). "The Process o Microbial translocation." Annals of Surgery **212**: 496-510.
- Anderson, P. W. (1972). "More is different." Science 177: 393-6.
- Arigoni, F., F. Talabot, et al. (1998). "A genome-based approach for the identification of essential bacterial genes." Nat Biotechnol **16**: 851-6.
- Bar-Yam, Y. (2004). "A mathematical theory of strong emergence using multiscale variety." Complexity **9**: 15-24.
- Beadle, G. W. and E. L. Tastum (1941). "Genetic control of biochemical reactions in Neurospora." Proc Natl Acad Sci USA **27**: 499-506.
- Bennetzen, J. L. and B. D. Hall (1982). "Codon selection in yeast." J Biol Chem **257**: 3026-31.
- Berger, E. (1978). "Pattern and chance in the use of the genetic code." J Mol Evol **10**: 319-23.
- Blake, W. J., M. Kaern, et al. (2003). "Noise in eukaryotic gene expression." Nature **422**: 633-7.
- Boschman, C. R., U. R. Bodnar, et al. (1998). "Thirteen-year evolution of azole resistance in yeast isolates and prevalence of resistant strains carried by cancer patients at a large medical center." Antimicrob Agents Chemother **42**: 734-8.
- Brown, A. J. (2002). Morphogenetic signaling pathways in Candida albicans. Candida and candidiasis. R. A. Calderone. Washington, DC, ASM Press: 95-106.
- Bruccoleri, R. E., T. J. Dougherty, et al. (1998). "Concordance analysis of microbial genomes." Nucleic Acids Research **26**: 4482-6.
- Bulmer, M. (1988). "Are codon usage patterns in unicellular organisms determined by selection-mutation balance?" J Evol Biol 1: 15-26.
- Bulmer, M. (1991). "The selection-mutation-drift theory of synonymous codon usage." Genetics **129**: 897-907.

- Byrne, K. P. and K. H. Wolfe (2005). "The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species." Genome Res **15**: 1456-61.
- Calderone, R. A. and W. A. Fonzi (2001). "Virulence factors of Candida albicans." Trends Microbiol **9**: 327-35.
- Capek, A., L. Simek, et al. (1974). "Antimicrobial agents. XXI. Dependence of antifungal activity on the structure of the side chain in the pyrimidine group." Folia Microbiol **19**: 169-71.
- Chen, K. and L. Pachter (2005). "Bioinformatics for whole-genome shotgun sequencing of microbial communities." Plos Comput. Biol. 1: 106-12.
- Cho, R. J., M. J. Campbell, et al. (1998). "A genome-wide transcriptional analysis of the mitotic cell cycle." Moll Cell **2**: 65-73.
- Coghlan, A. and K. H. Wolfe (2000). "Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae." Yeast **16**: 1131-45.
- Colombo, A. L. and T. Guimarães (2003). "Epidemiologia das infecções hematogênicas por *Candida spp*." Rivista da Sociedade Brasileira de Madicina Tropical **36**: 599-607.
- Crick, F. H. (1968). "The origin of the genetic code." J Mol Biol 38: 367-79.
- Davierwala, A. P., J. Haynes, et al. (2005). "The synthetic genetic interaction spectrum of essential genes." Nat Genet **37**: 1147-52.
- de Kuijff, B. and R. A. Demel (1974). "Polyene antibiotic-sterol interaction in membranes of Acholeplasma laidlawaii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes." Biochim Biophys Acta 339: 57-70.
- De Vries, H. (1900). "Sur la loi de disjonction des hybrides." Comptes rendus de l'Académie des Sciences **130**: 845-7.
- De Wolf, T. and T. Holvoet (2005). Emergence versus self-organization: different concepts but promising when combined. Engineering self organising systems: methodologies and applications, lecture notes in computer science. S. Brueckner, G. D. M. Serugendo, A. Karageorgos and R. Nagpal. New York, Springer-Verlag.
- Decottignies, A., I. Sanchez-Perez, et al. (2003). "Schizosaccharomyces pombe essential genes: A pilot study." Genome Res **13**: 399-406.

- Denning, D. W. (2003). "Echinocandin antifungal drugs." Lancet 362: 1142-51.
- Diasio, R., J. Bennett, et al. (1978). "Mode of action of 5-fluorocytosine." Biochem Pharmacol **27**: 703-7.
- Dick, J. D., W. G. Merz, et al. (1980). "Incidence of polyene-resistant yeasts recovered from clinical specimens." Antimicrob Agents Chemother **18**: 158-63.
- Diekema, D. J., A. S. Messer, et al. (2002). "Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of lowa organisms study."

 Journal of Clinical Microbiology **40**: 1298-302.
- Dong, H., L. Nilsson, et al. (1996). "Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates." J Mol Biol **260**: 649-63.
- Dorko, E., J. Jautova, et al. (2002). "The frequency of *Candida* species in onychomycosis." Folia Microbiol (Praha) **47**: 727-31.
- Douglas, C. M., J. A. D'Ippolito, et al. (1997). "Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors." Antimicrob Agents Chemother **41**: 2471-9.
- Drouin, G. (1991). "Nonrandom CpG mutations affect the synonymous codon usage of moderately GC-rich single copy actin genes." J Mol Evol **33**: 237-40.
- Drummond, D. A., J. D. Bloom, et al. (2005). "Why highly expressed proteins evolve slowly." Proc Natl Acad Sci USA **102**: 14338-43.
- Duret, L. and D. Mouchiroud (1999). "Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis." Proc Natl Acad Sci USA **96**: 4482-7.
- Eigen, M. (1971). "Selforganization of matter and the evolution of biological macromolecules." Naturwissenschaften **58**: 465-523.
- Elf, J., D. Nilsson, et al. (2003). "Selective charging of RNA isoacceptors explain patterns of codon usage." Science **300**: 1718-1722.
- Elowitz, M. B., A. J. Levine, et al. (2002). "Stochastic gene expression in a single cell." Science **297**: 1183-6.
- Eyre-Walker, A. and M. Bulmer (1993). "Reduced synonymous substitution rate at the star of enterobacterial genes." Nucleic Acids Research **21**: 4599-603.
- Fiers, W., R. Contreras, et al. (1976). "Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secundary structure of the replicase gene." Nature **260**: 500-7.
- Fisher Hoch, S. P. and L. Hutwagner (1995). "Oportunistic candidiasis: an epidemic of

- the 1980s." Clin Infect Dis 21: 897-904.
- Fraser, H. B., A. E. Hirsh, et al. (2004). "Noise minimization in eukaryotic gene expression." Plos Biol **2**: 137.
- Friberg, M., P. von Rohr, et al. (2004). "Limitations of codon adaptation index and other coding DNA-based features for prediction of protein expression in *Saccharomyces cerevisiae*." Yeast **21**: 1083-93.
- Frohlich, D. R. and M. A. Wells (1994). "Codon usage patterns among genes for Lepidopteran hemolymph proteins." J Mol Evol **38**: 476-481.
- Fryberg, M. (1974). "Sterol biosynthesis in antibiotic-resistance yeast: nystatin." Arch Biochem Biophys **160**: 83-9.
- Fuglsang, A. (2003). "Strong associations between gene function and codon usage." APMIS **111**(9): 843-847.
- Furusawa, C., D. Suzuki, et al. (2005). "Ubiquity of lognormal distribution in intracellular reaction dynamics." Biophysics **1**: 25-31.
- Georgopapadakou, N. H. and T. J. Walsh (1994). "Human mycoses: drugs and targets for emergin pathogens." Science **264**: 371-3.
- Ghannoum, M. A. and L. B. Rice (1999). "Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance." Clin Microbiol Rev **12**: 501-17.
- Giaever, G., A. M. Chu, et al. (2002). "Functional profiling of the *Saccharomyces cerevisiae* genome." Nature **418**: 387-91.
- Goetz, R. M. and A. Fuglsang (2005). "Correlation of codon bias measures with mRNA levels: analysis of transcriptome data from *Escherichia coli*." Biochem Biophys Res Commum **327**: 4-7.
- Gordon, K., J. Fütterer, et al. (1992). "Efficient initiation of translation at non-AUG triplets in plant cells." Plant J. **2**: 809-13.
- Gouy, M. and C. Gautier (1982). "Codon usage in bacteria correlation with gene expresivity." Nucleic Acids Research **10**: 7055-74.
- Gow, N. A., A. J. Brown, et al. (2002). "Fungal morphogenesis and host invasion." Curr Opin Microbiol **5**: 366-71.
- Grantham, R., C. Gautier, et al. (1980a). "Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type."

 Nucleic Acids Research 8: 1892-912.
- Grantham, R., C. Gautier, et al. (1980b). "Codon catalog usage and the genome

- hypothesis." Nucleic Acids Research 8: R49-R62.
- Gribskov, M. J., J. Devereux, et al. (1984). "The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression." Nucleic Acids Research 12: 539-49.
- Griffiths, P. E. and K. Stotz (2006). "Genes in the postgenomic era." Theor. Med. Bioeth **27**: 499-521.
- Groll, A. H., S. C. Piscitelli, et al. (1998). "Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development." Adv Pharmacol **44**(343-501).
- Grosjean, H. and W. Fiers (1982). "Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes." Gene **18**: 199-209.
- Gutierrez, G., J. Casadesus, et al. (1994). "Compositional heterogeneity of the Escherichia coli genome: a role for VSP repair?" J Mol Evol **39**: 340-6.
- Hartl, D. L., E. N. Moriyama, et al. (1994). "Selection intensity for codon bias." Genetics **138**: 227-34.
- Hastings, K. and C. Emerson (1983). "Codon usage on muscle genes and liver genes."

 J Mol Evol **19**: 214-8.
- Heimans, J. (1962). "Hugo De Vries and the gene concept." Am. Nat. 96: 93-104.
- Hey, J. and R. M. Kliman (2002). "Interactions between natural selection, recombination and gene density in the genes of Drosophila." Genetics **160**: 595-608.
- Hoekema, A., R. A. Kastelein, et al. (1987). "Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression." Mol Cell Biol **7**: 2914-24.
- Holm, L. (1986). "Codon usage and gene expression." Nucleic Acids Research **14**: 3075-87.
- Holz, R. W. (1974). "The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes." Ann N Y Acad Sci **235**: 469-79.
- Horsburgh, C. R. J. and C. H. Kirkpatrick (1983). "Long-term therapy of chronic mucacutaneous candidiasis with ketoconazole: experience with twenty-one patients." Am J Med **74**: 23-9.
- Hu, W., S. Sillaots, et al. (2007). "Essential gene identification and drug target prioritization in *Aspergillus fumigatus*." Plos Pathog **3**: e24.

- Ikemura, T. (1981). "Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system." J Mol Biol **151**: 389-409.
- Ikemura, T. (1982). "Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs." J Mol Biol **158**: 573-97.
- Ikemura, T. (1985). "Codon usage and transfer-RNA content: organism specific codon choice patterns in reference to the isoacceptor contents." Cold Spring Harbor Symposium Quantitative Biology **47**: 1087-97.
- Ikemura, T. and H. Ozeki (1982). "Codon usage and transfer-RNA content: organism specific codon choice patterns in reference to the isoacceptor contents." Cold Spring Harbor Symposium Quantitative Biology **47**: 1087-97.
- Jansen, R., H. J. Bussemaker, et al. (2003). "Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models." Nucleic Acids Research **31**: 2242-51.
- Jarvis, W. R. (1996). "The epidemiology of colonization." Infect Contril Hosp Epidemiol **17**: 47-52.
- Jeong, H., Z. N. Oltvai, et al. (2003). "Prediction of protein essentiality based on genomic data." ComPlexUs **1**: 19-28.
- Johannsen, W. (1909). "Elemente der exakten Erblichkeitslehre, Jena. Quoted by Nils Roll-Hansen (1989). The crucial experiment of Wilhelm Johanssen." Biol. Philos. **4**: 303-29.
- Johnson, E. M., D. W. Warnock, et al. (1995). "Emergence of azole drug resistance in *Candida* species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis." J Antimicrob Chemother **35**: 103-4.
- Jones, T., N. A. Federspiel, et al. (2004). "The diploid genome sequence of *Candida albicans*." Proceedings of the National Academy of Sciences of he United States of America **101**(19): 7329-7334.
- Kane, J. F. (1995). "effects of rare codon clusters on high-level expression of heterologous proteins in *Escherichia coli*." Curr Opin Biotech **6**: 494-500.
- Kaneko, K. (2003). "Recursiveness, switching and fluctuations in a replicating catalytic

- network." Phys Rev E Stat Nonlin Soft Matter Phys 68: 031909.
- Kauffman, S. A. (1993). The origins of order: self-organization and selection in evolution. New York, Oxfor University Press.
- Kellis, M., N. Patterson, et al. (2003). "Sequencing and comparison of yeast species to identify genes and regulatory elements." Nature **423**: 241-54.
- Kimura, M. (1968). "Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles." Genet Res **11**: 247-69.
- Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge, Cambridge University Press.
- King, J. L. and T. H. Jukes (1969). "Non-Darwinian evolution." Science 164: 788-98.
- Kliman, R. M., N. Irving, et al. (2003). "Selection conflicts, gene expression and codon usage trends in yeast." Journal of Molecular Evolution **57**(1): 98-109.
- Kobaiashi, S. D. and J. E. Cutler (1998). "Candida albicans hyphal formation and virulence: is there a clearly define role?" Trends Microbiol **6**: 92-4.
- Konigsberg, W. and G. N. Godson (1983). "Evidence for use of rare codons in the dnaG gene and other regulatory genes of Escherichia coli." Proc Natl Acad Sci USA **80**: 687-91.
- Kurland, C. G. (1993). "Major codon preference theme and variations." Biochemical Society Transactions **21**: 841-6.
- Lanyi, J., W. Z. Plachy, et al. (1974). "Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene." Biochemistry **13**: 4914-20.
- Lasota, A. and M. C. Mackey (1998). Chaos fractals and noise: stochastic aspects of dynamics. New York, Springer-Verlag.
- Leberer, E., D. Harcus, et al. (1996). "Signal transduction through homologs of the Ste20p and Ste7 protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans." Proc Natl Acad Sci USA **93**: 13217-22.
- Lerner, C. G., P. J. Hajduk, et al. (2007). "From bacterial genomes to novel antibacterial agents: discovery, characterization, and antibacterial activity of compounds that bind to HI0065 (YjeE) from *Haemophilus influenzae*." Chem Biol Drug Des **69**: 395-404.
- Li, H. and L. Luo (1996). "The relation between codon usage, base correlation and gene expression level in Escherichia coli and yeast." J Theor Biol **181**: 111-24.

- Li, W.-H. (1987). "Models of nearly mutations with particular implications for nonrandom usage of synonymous codons." J Mol Evol **24**: 337-45.
- Li, W.-H. (1997). Molecular Evolution, Sinauer.
- Liu, H. (2002). "Co-regulation of pathogenesis with dimorphism and phenotypic switching in *Candida albicans*, a comensal and a pathogen." Int J Med Microbiol **292**: 299-311.
- Liu, M., M. D. Healy, et al. (2006). "Conserved fungal genes as potential targets for broad-spectrum antifungal drug discovery." Eukaryot Cell **5**: 638-49.
- Liu, Q. (2006). "Analysis of codon usage pattern in the radioresistant bacterium *Deinoccocus radiodurans*." Biosystems **85**: 99-106.
- Lloyd, A. T. and P. M. Sharp (1992). "Evolution of codon usag patterns: the extent and nature of divergence between *Candida albicans* and *Saccharomyces cerevisiae*." Nucleic Acids Research **20**(20): 5289-5295.
- Lo, H. J., r. J. R. Kohle, et al. (1997). "Nonfilamentous Candida albicans mutants are avirulent." Cell **90**: 939-49.
- Magee, P. T. (1997). "Which came first, the hypha or the yeast?" Science 277: 52-3.
- Marichal, P., L. Koymans, et al. (1999). "Contribution of mutation in the cytochrome P450 14-alpha-demethylase (Erg11p-Cyp51p) to azole resistance in Candida albicans." Microbiology **145**: 2701-13.
- McAdams, H. H. and A. Arkin (1997). "Stochastic mechanisms in gene expression." Proc Natl Acad Sci USA **94**: 814-9.
- McClintock, B. (1929). "A cytological and genetical study of triploid maize." Genetics **14**: 180-222.
- Melo, A. S., A. C. Padovan, et al. (2006). "The Candida albicans AAA ATPase homologue of Saccharomyces cerevisiae Rix7p (YLL034c) is essential for proper morphology, biofilm formation and activity of secreted aspartyl proteinases." Genet Mol Res 5: 664-87.
- Mendel, G. (1866). "Versuche über Pfanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn 4 Abhandlungen, 3-47. Cited by Robert C. Olby (1997) on http://www.mendelweb.org/MWolby.html.".
- Milan, E. P., M. N. Buratini, et al. (1998). "Azole resistance among oral Candida species isolates from AIDS patients under ketoconazole exposure." Diagn. Microbiol. Infect. Dis. **32**: 211-6.
- Mitchell, A. P. (1998). "Dimorphism and virulence in Candida albicans." Curr Opin

- Microbiol(1): 687-92.
- Morgan, T. H., A. H. Sturtevant, et al. (1915). The mechanism of Mendelian heredity. New York, Holt Inehart & Wiston.
- Moriyama, E. N. and J. R. Powell (1997). "Codon usage bias and tRNA abundance in Drosophila." J Mol Evol **45**: 514-23.
- Morton, B. R. (1994). "Codon usage and the rates of the divergence of land plant chloroplast genes." Mol Biol Evol **11**: 231-8.
- Mushegian, A. R. and E. V. Koonin (1996). "A minimal gene set for cellular life derived by comparison of complete bacterial genomes." Proc Natl Acad Sci USA **93**: 10268-73.
- Nantel, A., D. Dignard, et al. (2002). "Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition." Mol Biol Cell **13**: 3452-65.
- Nicolis, G. and I. Prigogine (1977). Self-organization in non-equilibrium systems. New York, Wiley-Interscience.
- Nirenberg, M. W. and P. Leder (1964). "RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of sRNA to ribosomes." Science **145**: 1399-407.
- Nucci, M. and A. L. Colombo (2002). "Risk factors for breakthrough candidemia." Eur J Clin Microbiol Infect Dis **21**: 209-11.
- Odds, F. C. (1994). "Pathogenesis of *Candida* infections." Journal of the American Academy of Dermatology **31**: S2-S5.
- Pan, X., P. Ye, et al. (2005). "A DNA integrity network in the yeast *Saccharomyces cerevisiae*." Cell **124**: 1069-81.
- Parks, L. W. and W. M. Casey (1991). Fungal sterols. Lipids of pathogenic fungi. R. Prasad and M. A. Ghannoum. Boca Raton, Fla, CRC Press: 68-82.
- Peabody, D. S. (1989). "Translation initiation at non-AUG triplets in mammalian cells." J Biol Chem **264**: 5031-5.
- Perriere, G., M. Gouy, et al. (1994). "NRSUB a nonredundant database for the *Bacillus subtilis* genome." Nucleic Acids Research **22**: 5525-9.
- Pfaller, M. A. (1994). "Epidemiology and control of fungal infections." Clin Infect Dis **19**: S8-S13.
- Pfaller, M. A. (1996). "Nosocomial candidiasis: emerging species, reservoirs and modes of transmision." Clin Infect Dis **S2**: S89-S94.
- Pfaller, M. A., D. J. Diekema, et al. (2001). "International surveillance of bloodstream

- infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program." Journal of Clinical Microbiology **39**: 3254-9.
- Pfaller, M. A., R. N. Jones, et al. (1998). "National surveillance of nosocomial blood stream infections due to species of *Candida* other than *C. albicans*: frequency of occurence and antifungal susceptibility in the SCOPE program." Diagn. Microbiol. Infect. Dis. **30**: 121-9.
- Polak, A. and H. Scholer (1975). "Mode of action of 5-fluorocytosine and mechanisms of resistence." Chemotherapia **21**: 113-30.
- Post, L. E., G. D. Strycharz, et al. (1979). "Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli." Proc Natl Acad Sci USA **76**: 1697-701.
- Reisenfeld, C. S., P. D. Schloss, et al. (2004). "Metagenomics: Genomic analysis of microbial communities." Annu Rev Genet **38**: 525-52.
- Rheinberger, H. G. (1995). "When did Darl Correns read Gregor Mendel's papre?" Isis **86**: 612-6.
- Robinson, M., R. Lilley, et al. (1984). "Codon usage can affect efficiency of translation of genes in Escherichia coli." Nucleic Acids Research **12**: 6663-71.
- Rogic, S., A. K. Mackworth, et al. (2001). "Evaluation of gene-finding programs on mammalian sequences." Genome Res **11**: 817-32.
- Rooney, P. J. and B. S. Klein (2002). "Linking morphogenesis with virulence." Cell Microbiol 4: 127-37.
- Ruhnke, M., A. Eigler, et al. (1994). "Emergence of fluconazole-resistant strains of Candida albicans in patients with recurrent oropharyngeal candidosis and human immunodeficiency virus infection." Journal of Clinical Microbiology **32**: 2092-8.
- Ryder, N. and B. Favre (1997). "Antifungal activity e mechanism of action of terbinafine." Rev Contemp Pharmacother **8**: 275-87.
- Safdar, A., V. Chaturvedi, et al. (2001). "Prospective study of Candida species in patients at a comprehensive cancer center." Antimicrob Agents Chemother **45**: 2129-33.
- Saier, M. J. (1995). "Differential codon usage: a safe guard against inappropriate gene expression of specialized genes." FEBS **362**: 1-4.
- Sanati, H., P. Belanger, et al. (1997). "A new triazole, voriconazole (UK-109,496),

- blocks sterol biosynthesis in Candida albicans and Candida krusei." Antimicrob Agents Chemother **41**: 2492-6.
- Sanglard, D. and J. Bille (2002). Current understanding of the modes of action of and resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections. Candida and candidiasis. R. A. Calderone. Washington, D. C, ASM Press: 349-83.
- Sanglard, D., K. Kuchler, et al. (1995). "Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters." Antimicrob Agents Chemother **39**: 2378-86.
- Seringhaus, M., A. Paccaro, et al. (2007). "Predicting essential genes in fungal genomes." Genome Res **16**: 1126-35.
- Sharp, P. M. and E. Cowe (1991). "Synonymous codon usage in *Saccharomyces cerevisiae*." Yeast **7**: 657-78.
- Sharp, P. M., E. Cowe, et al. (1988). "Codon usage patterns in *Escherichia coli*, *Bacillus subtilis*, *Saccharomyces cerevisiae*, *Schizosaccharomyces pombe*, *Drosophila melanogaster* and *Homo sapiens*; a review of the considerable within-species diversity." Nucleic Acids Research **16**: 8207-11.
- Sharp, P. M. and K. M. Devine (1989). "Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do 'prefer' optimal codons." Nucleic Acids Research **17**: 5029-39.
- Sharp, P. M. and W.-H. Li (1986). "An evolutionary perspective on synonymous codon usage in unicellular organisms." J Mol Evol **24**: 28-38.
- Sharp, P. M. and W.-H. Li (1987). "The codon adaptation index a mesure of directional synonymous codon usage bias, and its potential applications." Nucleic Acids Research **15**(3): 1281-1295.
- Sharp, P. M. and W.-H. Li (1987). "The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias." Mol Biol Evol 4: 222-30.
- Sharp, P. M., T. M. F. Tuohy, et al. (1986). "Codon usage in yeast: clster analysis clearly differentiates highly and lowly expressed genes." Nucleic Acids Research **14**(13): 1986.
- Shields, D. (1989). Evolution of codon usage patterns. Department of Genetics. Dublin, Trinity College.
- Smith, D., F. Boag, et al. (1991). "Fluconazole resistant Candida in AIDS." J Infect 23:

- 345-6.
- Sohn, K., C. Urban, et al. (2003). "EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays." Mol Microbiol **47**: 89-102.
- Söll, D., D. S. Jones, et al. (1966). "Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique." J Mol Biol **19**: 556-73.
- Stenico, M., A. T. Lloyd, et al. (1994). "Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases." Nucleic Acids Research 22: 2437-46.
- St-Germain, G., M. Laverdière, et al. (2001). "Prevalence and antifungal susceptibility of 442 *Candida* isolates from blood and other normally sterile sites: results of a 2-year (1996 to 1998) multicenter surveillance study in Quebec, Canada." J Clin Microbiol **39**: 949-53.
- Stoldt, V. R., C. E. Sonneborn, et al. (1997). "Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi." Embo J **16**: 1982-91.
- Sturtevant, A. H. (1913). "The linear arrangement of six sex-linked factors in *Drosophila* as shown by their mode of association." J. Exp. Zool **14**: 43-59.
- Sullivan, D. J., M. C. Henman, et al. (1996). "Molecular genetic approaches to identification, epidemiology and taxonomy of non-albicans Candida species."

 Journal of Medical Microbiology 44: 399-408.
- Tong, A. H., G. Lesage, et al. (2004). "Global mapping of the yeast genetic interaction network." Science **303**: 808-13.
- Tschermak, E. (1900). "Über Künstliche Kreuzung bei *Pisum sativum*." Berichte Deutsche Botanischen Gesellschaft **18**: 232-9.
- Ueda, H. R., S. Hayashi, et al. (2004). "Universality and flexibility in gene expression from bacteria to human." Proc Natl Acad Sci USA **101**: 3765-9.
- Vanden-Bossche, H., P. Marichal, et al. (1992). "Characterization of an azole-resistant Candida glabrata isolate." Antimicrob Agents Chemother **36**: 2602-10.
- Varenne, S., J. Buc, et al. (1984). "Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains." J Mol Biol **180**: 549-76.
- Wada, K., Y. Wada, et al. (1991). "Codon usage tabulated from the GenBank genetic sequence data." Nucleic Acids Research **19**: 1981-6.

- Wada, K. N., Y. Wada, et al. (1992). "Codon usage tabulated from GenBank genetic sequence data." Nucleic Acids Research **20**: 2111-8.
- Watson, J. D. and F. H. Crick (1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid." Nature **171**: 737-8.
- Wenzel, R. P. (1995). "Nosocomial candidemia: risk factors and attributable mortality." Clin Infect Dis **20**: 1531-4.
- Wey, S. B., M. Mori, et al. (1988). "Hospital-acquired candidemia. The attributable mortality and excess length of stay." Arch Inter Med **148**: 2642-5.
- Whelan, W. L. (1988). "The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans." Crit Rev Microbiol **15**: 45-56.
- Winkler, H. and D. Wood (1988). "Codon usage in selected AT-rich bacteria." Biochimie **70**: 977-86.
- Winzeler, E. A., D. D. Shoemaker, et al. (1999). "Functional characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis." Science **285**: 901-6.
- Wolfe, K. H. and D. C. Shields (1997). "Molecular evidence for an ancient depication of the entire yeast genome." Nature **387**: 708-13.
- Wright, F. (1990). "The effective number of codons used in a gene." Gene 87: 23-9.
- Wroblewska, M. M., E. Swoboda-Kopec, et al. (2002). "Epidemiology of clinical isolates of Candida albicans and their susceptibility to triazoles." Int J Antimicrob Agents **20**: 472-5.
- Wu, L. F. and M. J. Saier (1991). "Differences in codon usage among genes encoding proteins of different function in Rhodobacter capsulatus." Res Microbiol **142**: 943-9.
- Ycas, M. (1999). "Codons and hypercycles." Orig. Life Evol Biosph 29: 95-108.
- Zhang, S., G. Zubay, et al. (1991). "Low usage in *Escherichia coli*, yeast, fruit fly and primates." Gene **105**: 61-72.

8. Anexos

Anexo1: Índices de Padrão de Desvio dos Códons para os Genes Hipotéticos de Candida albicans

Contig	gene	CDS	bp	CAI	СВІ	Fop	Nc	GC	GC3s	S.cerevisiae Alelo Nulo
19-2507							,			
	YBR030w	399830 - 41737	1755	0,153	-0,021	0,419	47,770	0,342	0,286	viável
	YDL033c	76073 - 77344	1272	0,149	0,087	0,463	53,770	0,419	0,384	viável
	YDL099w	44311 - 45882	1572	0,132	0,012	0,428	51,060	0,364	0,301	viável
	YDL124w	89848 - 90627	780	0,163	0,214	0,543	49,180	0,477	0,614	viável
	YDR067c	2673 - 3281	609	0,116	-0,066	0,395	56,670	0,370	0,303	viável
	YDR428c	64353 - 65156	804	0,143	0,034	0,433	48,880	0,377	0,395	viável
	YFR006c	92094 - 93446	1353	0,207	0,247	0,555	46,590	0,496	0,629	viável
	YHR083w	95628 - 96383	756	0,133	0,143	0,498	53,160	0,469	0,579	inviável
	YJL109c	18256 - 23712	5457	0,215	0,195	0,521	42,500	0,351	0,316	inviável
	YJR008w	8897 - 9904	1008	0,157	0,072	0,448	51,200	0,386	0,325	viável
	YKL121w	59918 - 62596	2679	0,131	0,035	0,434	52,960	0,400	0,368	viável
	YKR030w	46653 - 47645	993	0,117	0,004	0,415	48,680	0,357	0,349	viável
	YPL005w	84514 - 86313	1800	0,140	0,121	0,486	56,460	0,425	0,483	viável
19-10020										
	YBR267w	27095 - 28522	1428	0,230	0,148	0,505	37,240	0,324	0,185	viável
	YJL071w	21341 - 23083	1743	0,163	-0,011	0,422	42,900	0,308	0,237	viável
	YML088w	3197 - 5179	1983	0,126	-0,146	0,357	39,340	0,277	0,155	viável
19-10051										
	YNR018w	43932 - 44573	642	0,285	0,293	0,584	38,320	0,362	0,257	viável
19-10064										
	YCL061c	11139 - 14843	3705	0,220	0,043	0,455	39,040	0,318	0,173	viável
	YDR499w	27913 - 28806		•	•	•	51,270	•	•	inviável
	YLR183c	31727 - 33205					40,790			viável
	YNL193w	68870 - 700465		•	•	•	47,610	,	•	viável
				•	,	•	•	•	•	

	YBR204c	69872 - 71833	1962 0,141	0,015	0,427	43,730	0,345	0,275	viável
	YGL083w	34490 - 36244	1755 0,163	0,038	0,443	40,010	0,321	0,256	viável
	YJR126c	50684 - 53419	2736 0,154	-0,054	0,398	42,610	0,321	0,230	viável
	YLR221c	49439 - 50026	589 0,167	0,018	0,443	42,830	0,297	0,219	viável
	YPR090w	19097 - 21667	2571 0,169			44,300			viável
19-10081			•	•	•	,	•	•	
	YEL043w	6542 - 9055	2514 0,148	0,006	0,426	42,760	0,343	0,271	viável
	YGR149w	11980 - 13212	1233 0,163	0,062	0,458	47,480	0,355	0,345	viável
	YOR322c	555 - 2489	1935 0,122	0,029	0,422	46,480	0,404	0,312	viável
19-10122									
	YGR106c	83 - 652	570 0,216	0,058	0,476	44,790	0,321	0,292	viável
19-10146									
	ECM1	56668 - 57462	795 0,164	0,087	0,473	51,960	0,343	0,240	viável
	STP22	72753 - 74201	1449 0,140	0,044	0,443	50,670	0,381	0,326	viável
	YFR032c	25425 - 26270	846 0,154	0,062	0,456	49,770	0,357	0,310	viável
	YGR031w	86041 - 87015	975 0,149	0,058	0,434	41,120	0,372	0,266	viável
	YIL041w	13081 - 14109	1029 0,267	0,204	0,534	37,600	0,345	0,292	viável
	YKR013w	64160 - 64768	609 0,127	0,041	0,431	48,140	0,351	0,277	viável
	YMR173w	76642 - 77535	894 0,044	-0,149	0,281	51,850	0,457	0,478	viável
	YOR086c	87859 - 89966	2108 0,293	0,329	0,599	37,640	0,382	0,256	viável
19-10163									
	CG7177	229850 - 232822	2973 0,131	0,036	0,436	50,460	0,381	0,333	não testado
	CG15040	96417 - 98186	1770 0,137	-0,024	0,404	46,390	0,333	0,279	não testado
	ECM30	137828 - 140983	3156 0,129	0,051	0,433	48,910	0,360	0,316	viável
	LIP B	163656 - 164519	894 0,150	0,059	0,440	40,940	0,333	0,230	não testado
	SIR2	78200 - 79120	921 0,144	-0,009	0,393	43,890	0,362	0,248	viável
	SPAC144-03	70164 - 71357	1194 0,209	0,101	0,475	40,230	0,336	0,212	não testado
	SPAC23G3.04	117425 - 117943	519 0,121	0,116	0,458	54,110	0,434	0,345	não testado
	SPBC600.12c	121103 - 122368	1266 0,190	0,076	0,468	46,140	0,352	0,285	não testado
	YDL086w	84566 - 85324	759 0,236	0,178	0,516	41,300	0,384	0,327	viável
	YDL100c	82472 - 83524	1053 0,274	0,247	0,557	42,750	0,376	0,349	viável

	3/55/46/4	100100 101000								
	YDR101c	180129 - 181823		•	•	-	41,490	•	•	viável
	YFL044c	20885 - 21886		•	,	•	41,150	•	•	viável
	YGR068c	218274 - 220223	1950	0,156	0,044	0,439	45,260	0,361	0,301	viável
	YJR116w	239526 - 240407	882	0,155	0,127	0,480	44,950	0,375	0,310	viável
	YKL033w	255513 - 259052	3540	0,139	0,012	0,425	49,760	0,334	0,299	inviável
	YKL183w	136487 - 137245	759	0,136	0,058	0,466	54,900	0,368	0,352	viável
	YKL195w	108446 - 109204	759	0,269	0,276	0,577	38,660	0,386	0,246	inviável
	YLR435w	141061 - 141690	630	0,124	0,137	0,489	47,880	0,397	0,494	viável
	YML072c	148488 - 152276	3789	0,261	0,281	0,577	40,570	0,378	0,307	viável
	YMR114c	186861 - 187838	978	0,111	-0,081	0,374	50,510	0,379	0,339	viável
	YMR137c	1921 - 4413	2493	0,157	-0,035	0,420	37,770	0,294	0,166	viável
	YNL274c	122827 - 123855	1029	0,137	0,090	0,467	51,450	0,405	0,306	viável
	YOR359w	103404 -105443	2040	0,186	0,138	0,483	43,530	0,356	0,253	viável
19-10186										
	HSP30	10006 - 11001	996	0,397	0,459	0,684	34,010	0,367	0,313	viável
	YGR093w	12670 - 14157	1488	0,158	0,048	0,451	42,810	0,326	0,238	viável
	YLR343w	72433 - 74358	1926	0,200	0,052	0,456	33,770	0,304	0,105	viável
	YNL200c	45014 - 46024	1011	0,143	-0,024	0,395	36,070	0,313	0,116	viável
19-10209										
	YBR273c	26853 - 28382	1530	0,145	0,028	0,432	47,860	0,372	0,296	viável
	YCR023c	54722 - 56623	1902	0,135	0,015	0,411	43,460	0,351	0,229	viável
	YDR117c	24889 - 26406	1518	0,165	0,038	0,448	46,000	0,348	0,266	viável
	YER156c	23293 - 24357	1065	0,221	0,150	0,499	41,630	0,341	0,264	viável
	YER183c	571 - 1194	624	0,143	-0,024	0,402	50,180	0,332	0,231	viável
	YKL122c	14882 - 15388	507	0,158	-0,003	0,422	44,230	0,315	0,235	viável
	YLR064w	3829 - 4833	1005	0,160	0,084	0,454	45,710	0,343	0,323	viável
	YLR065c	13962 - 14507		•	•	•	44,020	•	•	viável
	YOL075c	18242 - 22066		•	,	,	43,120	•	•	viável
19-10215		-		,	,	,	, -	,	, -	
· · · -	MIND	323777 - 326323	2547	0.184	0.130	0.492	40,190	0.395	0.235	
	TVP23p	288487 - 289083		•	,	,	39,760	•	•	viável
				-, - 	-,	-,	,· • •	-,	-,	

	UTP7	249295 - 250878	1584 0,173	0,129	0,476	44,970	0,386	0,292	inviável
	YBR203w	332247 - 334478	2232 0,168	0,088	0,456	45,620	0,347	0,295	viável
	YCR061w	407269 - 409086	1818 0,196	0,107	0,476	38,640	0,331	0,250	viável
	YDL175c	259808 - 260953	1146 0,124	0,040	0,422	46,510	0,409	0,329	viável
	YDR388w	37135 - 38199	1065 0,196	0,142	0,513	49,440	0,344	0,348	viável
	YEL007w	344813 - 347170	2358 0,128	0,045	0,434	44,720	0,386	0,216	viável
	YER001w	390675 - 393161	2486 0,147	-0,160	0,340	37,330	0,279	0,122	viável
	YER010c	378389 - 379123	735 0,185	0,145	0,492	46,960	0,395	0,329	viável
	YER175c	394839 - 395423	585 0,238	0,070	0,484	37,930	0,297	0,205	viável
	YGL159w	24522 - 25574	1053 0,185	0,170	0,516	44,590	0,362	0,309	viável
	YGR113w	252840 - 253673	834 0,127	0,050	0,416	43,680	0,383	0,255	viável
	YGR210c	262533 - 263774	1242 0,171	0,117	0,470	48,780	0,404	0,346	viável
	YIL110w	81872 - 83335	1464 0,148	-0,144	0,351	35,770	0,266	0,133	viável
	YKL162c	221367 - 222989	1623 0,142	-0,016	0,412	45,740	0,345	0,280	viável
	YLR047c	257050 - 259245	2199 0,155	0,065	0,457	48,620	0,350	0,304	viável
	YMR071c	261339 - 261860	522 0,145	0,101	0,453	42,490	0,345	0,247	viável
	YMR209c	209038 - 210387	1350 0,102	0,007	0,425	48,320	0,362	0,387	viável
	YMR266w	191992 - 194592	2601 0,204	0,183	0,511	41,150	0,367	0,289	viável
	YOR154w	31346 - 33022	1677 0,143	0,013	0,432	48,950	0,346	0,310	viável
	YOR252w	169321 - 169920	600 0,203	0,057	0,456	42,980	0,298	0,166	viável
	YPL260w	270367 - 272217	1851 0,202	0,074	0,459	42,040	0,317	0,267	viável
19-10218									
	YDR412w	31560 - 32360	801 0,205	0,015	0,443	34,410	0,294	0,121	inviável
	YFR045w	7060 - 8220	1161 0,148	0,029	0,427	38,940	0,343	0,222	viável
	YFR047c	9421 - 10323	903 0,214	0,128	0,486	33,700	0,326	0,127	viável
	YLR003c	1192 - 2121	930 0,212	0,089	0,475	43,450	0,313	0,264	viável
	YPR075c	125710 - 127293	1584 0,146	0,114	0,470	44,910	0,412	0,293	viável
19-10237									
	SPAC4C5.03	104707 - 105636	930 0,121	-	•	•	•	•	não testado
	YDR187c	181545 - 182282	738 0,084	,	•	•	•	•	inviável
	YDR346c	135256 - 136404	1149 0,226	0,128	0,508	42,080	0,367	0,291	viável

	YER046w	183491 - 184012	522 0,143	0,115	0,484	53,080	0,451	0,528	viável
	YGR160w	170109 - 170717	609 0,113	0,131	0,432	42,420	0,411	0,302	viável
	YOR161c	151247 - 152803	1557 0,210	0,200	0,530	47,530	0,398	0,402	viável
19-20087									
	YJL006c	33675 - 35162	1488 0,179	•	•	•	•	•	viável
	YLL023c	50362 - 51174	813 0,171	0,003	0,408	30,090	0,284	0,099	viável
	YMR010w	76300 - 77394	1095 0,146	0,021	0,413	40,120	0,308	0,208	viável
	YPL067c	69228 - 69992	765 0,177	-0,046	0,414	34,110	0,281	0,172	viável
	YPR139c	37811 - 38728	918 0,165	-0,082	0,377	35,230	0,236	0,133	viável
19-20097									
	YDL203c	16946 - 20905	3960 0,177	0,126	0,481	44,390	0,373	0,255	viável
	YDR319c	38371 - 39264	894 0,100	-0,098	0,367	55,460	0,354	0,332	viável
	YGR235c	11565 - 12191	627 0,207	0,076	0,465	36,040	0,296	0,144	viável
	YHR181w	41020 - 41667	648 0,147	0,054	0,429	48,910	0,343	0,330	viável
19-20131									
	YEL029c	27557 - 28606	1050 0,141	-0,122	0,377	41,180	0,286	0,193	viável
19-201150									
	SPAC1D4.09c	79729 - 80421	693 0,182	0,043	0,445	49,920	0,342	0,326	não testado
	YDL144c	30983 - 32053	1071 0,164	-0,058	0,393	35,240	0,285	0,118	viável
	YML127w	81032 - 82936	1905 0,192	0,126	0,485	43,690	0,358	0,321	inviável
19-20159									
	YKL014c	1 - 1997	1997 0,162	-0,101	0,384	34,820	0,221	0,118	inviável
19-20173									
	YBR255w	55481 - 57754	2274 0,142	-0,006	0,418	48,820	0,362	0,297	viável
	YDR409w	113744 - 118381	4638 0,128	0,039	0,433	50,920	0,392	0,297	viável
	YHR059w	142476 - 142988	513 0,240	0,229	0,533	34,030	0,329	0,206	viável
	YNL123w	1 - 2555	2556 0,176	0,148	0,494	43,660	0,395	0,299	viável
	YOR138c	109704 - 111554	1851 0,171	0,078	0,469	42,820	0,348	0,289	viável
	YOR155c	135193 - 136575	1383 0,189	0,046	0,438	39,460	0,322	0,185	viável
	YOR246c	127011 - 128009	999 0,227	0,135	0,495	33,010	0,311	0,145	viável
	YPR125w	59958 - 61484	1527 0,232	0,233	0,545	45,390	0,362	0,350	viável

19-20216									
	KAR4	98991 - 99947	957 0,280	0,164	0,518	35,890	0,344	0,173	viável
	KED	242993 - 245077	2085 0,164	0,070	0,466	52,460	0,376	0,322	não testado
	PET309	39378 - 42902	3525 0,162	0,078	0,461	49,100	0,338	0,306	viável
	STATC	245372 - 246394	1023 0,109	0,005	0,407	53,250	0,391	0,285	não testado
	YCL047c	101690 - 102586	897 0,177	-0,038	0,402	40,200	0,287	0,168	viável
	YDR061w	271666 - 273303	1638 0,159	-0,009	0,421	44,710	0,319	0,256	viável
	YDR068w	273791 - 274870	1080 0,231	0,121	0,507	46,810	0,342	0,295	viável
	YGL164c	209478 - 210824	1347 0,155	-0,077	0,383	38,570	0,276	0,134	viável
	YGL174w	124050 - 124895	846 0,153	-0,141	0,373	39,720	0,284	0,120	viável
	YLR004c	251372 - 252901	1530 0,155	0,097	0,458	40,310	0,347	0,205	viável
	YLR145w	121224 - 122426	1203 0,163	-0,107	0,403	43,170	0,270	0,204	inviável
	YML081w	261251 - 264784	3534 0,158	0,065	0,445	46,940	0,368	0,275	viável
	YOL087c	130 - 3759	3630 0,159	-0,061	0,397	41,160	0,289	0,197	viável
19-20223									
	YCR095c	61481 - 62761	1281 0,155	0,045	0,433	46,010	0,351	0,299	viável
	YHR131c	124180 - 125622	1443 0,220	0,163	0,513	43,810	0,351	0,339	viável
	YJL141c	68069 - 70267	2199 0,125	-0,007	0,408	47,770	0,347	0,284	viável
	YLR181c	110290 - 111513	1224 0,182	0,047	0,450	39,900	0,320	0,209	viável
	YNL040w	44635 - 46050	1416 0,206	0,050	0,447	33,350	0,297	0,108	viável
	YOL078w	11308 - 14259	2952 0,139	-0,029	0,405	45,690	0,346	0,262	inviável
19-20241									
	SPAC23G3.07c-2	25962 - 26918	957 0,119	0,063	0,431	48,600	0,409	0,289	não testado
	YBR007c	150700 - 152874	2175 0,138	-0,014	0,399	39,100	0,334	0,153	viável
	YGR117c	113880 - 115193	1314 0,148	-0,024	0,418	48,760	0,339	0,293	viável
	YKR013w	16863 - 17816	954 0,092	-0,059	0,370	47,750	0,391	0,222	viável
	YNL181w	74276 - 75457	1182 0,171	0,128	0,477	44,230	0,380	0,273	inviável
	YNL182c	75484 - 77175	1692 0,156	0,054	•	•	•	0,267	inviável
	YPR045c	156844 - 158976	2133 0,145	0,019	0,417	43,100	0,350	0,220	viável
	YPR133c	109032 - 110234	1203 0,234	0,231	0,540	41,660	0,372	0,272	inviável
19-20251									

	SPCC188.04c	8683 - 9402	720	0 157	0.072	0.466	44,590	0.356	0.379	não testado
	YDR476c	7305 - 7985	681	•	0,203	•	40,430	•	•	viável
	YGR245c	44732 - 47011	2280	•	•	•	42,700	•	•	inviável
	YHR168w	51727 - 53373		,	0,086	,	44,260	,	,	viável
	YJL042w	271 - 2508		•	•	•	46,950	•	•	inviável
	YNL246w	5121 - 5948	828	•	•	,	45,580	•	,	viável
	YPR084w	30181 - 31176	996	•	•	•	51,950	•	•	viável
19-10113				•, -=-	-,	-,	.,	-,	-,	
	YCR090c	72944 - 73444	501	0,157	-0,014	0,423	44,460	0,339	0,178	viável
	YEL001c	40520 - 41239	720	•	•	,	35,380	•	,	viável
	YER002w	61068 - 61724	657	0,225	0,111	0,486	43,500	0,329	0,229	viável
	YER053c	76302 - 77318	1017	0,197	0,129	0,485	38,740	0,365	0,204	viável
	YIL006w	70765 - 71865	1101	0,095	-0,073	0,354	47,470	0,381	0,281	viável
	YNL083w	94086 - 95804	1719	0,153	0,043	0,427	46,650	0,375	0,293	viável
	YOR338w	17877 - 19055	1179	0,197	0,069	0,443	33,060	0,304	0,130	viável
19-10119										
	A type ATPase	259683 - 263735	4053	0,176	0,108	0,479	45,250	0,360	0,282	não testado
	QNS1	35886 - 38030	2145	0,215	0,181	0,517	41,930	0,372	0,290	inviável
	YDL072c	241723 - 242292	570	0,249	0,237	0,543	35,970	0,344	0,285	viável
	YDR372c	149929 - 150951	1023	0,207	0,173	0,489	39,270	0,352	0,252	viável
	YFL061w	21107 - 21796	690	0,175	0,056	0,446	47,070	0,364	0,315	viável
	YGL010w	61236 - 61814	579	0,147	-0,013	0,396	43,880	0,323	0,230	viável
	YGL185c	54161 - 55255	1095	0,144	0,063	0,448	42,170	0,349	0,210	viável
	YHR154w	8849 - 11560	2712	0,164	-0,038	0,410	41,690	0,300	0,183	viável
	YIR019c	90728 - 94957	4230	0,220	0,305	0,580	36,730	0,418	0,172	viável
	YKL077w	188100 - 189476	1377	0,202	0,009	0,436	33,210	0,297	0,111	viável
	YLR137w	231601 - 232443	843	0,176	0,067	0,467	47,390	0,336	0,261	viável
	YOL019w	137608 - 139488	1881	•	0,039	,	36,960	•	,	viável
	YOL119c	284198 - 285730		•	•	•	48,910	•	•	viável
	YOR081c	120440 - 123001	2562	0,166	-0,056	0,389	34,660	0,295	0,120	viável
19_10139										

	SPAC57A.05	131904 - 135227	3324	0,160	0,122	0,483	48,130	0,382	0,354	não testado
	YGL020c	197503 - 198102	600	0,182	0,130	0,484	50,140	0,354	0,369	viável
	YHL017w	4391 - 6250	1860	0,163	-0,035	0,399	38,270	0,302	0,160	viável
	YJR129c	137041 - 138012	972	0,146	0,014	0,435	51,980	0,360	0,313	viável
	YLR120c	166218 - 167525	1308	0,205	0,156	0,519	42,930	0,359	0,322	viável
	YLR326w	200944 - 201651	708	0,106	-0,025	0,395	51,210	0,409	0,336	viável
	YMR130w	154676 - 155680	1005	0,169	7,000	0,454	46,290	0,363	0,293	viável
	YOR289w	103824 - 104450	627	0,207	0,183	0,507	46,870	0,362	0,320	viável
	YOR311c	100984 - 102021	1038	0,231	0,197	0,530	37,110	0,352	0,280	viável
	YPR118w	47025 - 48275	1251	0,223	0,065	0,470	34,010	0,305	0,180	viável
19-10141										
	YBR246w	56905 - 57942	1038	0,176	0,058	0,446	45,920	0,362	0,253	viável
	YER036c	46464 - 48293	1830	0,378	0,380	0,624	34,740	0,373	0,277	inviável
	YGL111w	50388 - 51608	1221	0,156	0,089	0,471	43,650	0,360	0,295	inviável
	YGL138c	97958 - 98800	843	0,127	-0,076	0,362	46,490	0,290	0,205	viável
	YGR058w	37421 - 38536	1116	0,175	0,155	0,496	43,790	0,387	0,278	viável
	YKL082c	10372 - 11514	1143	0,226	-0,004	0,420	33,990	0,300	0,136	inviável
	YKR043c	79896 - 80621	726	0,236	0,232	0,545	39,500	0,382	0,232	viável
	YKR044w	76994 - 78304	1311	0,201	0,146	0,496	43,570	0,346	0,290	viável
	YMR253c	81396 - 82778	1383	0,159	0,122	0,484	46,360	0,367	0,320	viável
	YNL091w	85225 - 89454	4200	0,170	0,094	0,469	47,840	0,370	0,303	viável
19-10143										
	BCD1	53074 - 54162	1089	0,130	-0,087	0,383	48,490	0,353	0,296	inviável
	YFR013w	61144 - 63636	2493	0,146	0,047	0,432	46,630	•	•	viável
	YJR070c	96489 - 97445	957	0,310	0,354	0,611	38,790	0,381	0,305	viável
	YNL010w	69657 - 70394	738	•	0,131	•	37,900	•	•	viável
	YNR021w	49457 - 50476		0,367	•	•	35,640	•	•	viável
	YPL199c	30313 - 31083	771	•	•	•	36,260	•	•	viável
	YPL202c	73924 - 76320	2397	0,122	0,016	0,416	50,010	0,370	0,295	viável
19-10196										
	STYX	40315 - 40965	651	0,148	0,065	0,457	55,360	0,360	0,356	não testado

	YDR279w	31798 - 32862	1065	0,176	-0,030	0,409	46,850	0,274	0,234	viável
	YGR103w	47981 - 49744	1764	0,265	0,282	0,587	43,330	0,358	0,342	inviável
	YJR141w	64004 - 65050	1047	0,149	0,016	0,442	50,310	0,342	0,287	inviável
	YJR142	72523 - 73440	918	0,148	0,039	0,440	44,310	0,368	0,279	viável
	YOL137w	43606 - 45111	1506	0,164	0,191	0,515	48,790	0,409	0,383	viável
	YPR140w	51248 - 52585	1338	0,132	0,020	0,421	52,420	0,385	0,346	viável
19-10208										
	KTR2	12827 - 14266	1440	0,150	-0,049	0,389	39,800	0,301	0,153	viável
	SPBC29A10.12	29926 - 30603	678	0,257	0,213	0,523	37,400	0,367	0,200	não testado
	YBR187w	17974 - 19026	1053	0,191	0,108	0,473	30,950	0,326	0,117	viável
	YOR246c	62461 - 63471	1011	0,118	-0,087	0,349	37,420	0,305	0,151	viável
	YPL150w	54969 - 57872	2904	0,130	-0,011	0,405	46,510	0,346	0,231	viável
10.00015										
19-20045	DT144	0740 5004	4.500	0.474	0.040	0.440				., .
	PTM1	3746 - 5281		•	•	•	38,980	•	•	viável
	SPBC16H5.12c	39303 - 41093		•	•	•	45,940	,	,	não testado
	YNR047	54087 - 56474		•	•	•	42,190	•	•	viável
	YPL066w	31991 - 33370		•	•	-	52,820	•	•	viável
40.000=0	YPR013c	43710 - 44936	1227	0,211	0,216	0,535	39,440	0,374	0,192	viável
19-20076	0.1==		a=.							
	SNF7	225435 - 226085		•	•	•	51,920	•	•	viável
	YFL013c	91682 - 94042	2361	•	•	•	41,210	•	•	viável
	YGR021w	31107 - 31964	858	•	0,078	•	48,500	•	•	viável
	YLR047c	159237 - 160850		•	•	•	45,630	,	,	viável
	YLR143w	99077 - 100504		,	0,057	,	42,140	,	,	viável
	YLR283w	43835 - 44971		•	•	•	50,880	•	•	viável
	YLR361c	106752 - 108938		•	•	•	44,220	•	•	viável
	YLR422w-1	54194 - 59938		•	0,122	•	35,780	•	•	viável
	YLR422w-2	60856 - 66162		•	•	•	43,690	,	,	viável
	YMR317w	210790 - 212463	1674	0,305	0,350	0,612	36,820	0,382	0,290	viável

40.00405	YPR011c	29408 - 30388	981	0,122	0,075	0,435	54,690	0,397	0,303	viável
19-20125	YCR076c	95989 - 96969	981	O 179	0.070	0.452	33,410	0 340	N 128	viável
	YGR277c	75263 - 76231	969	•	-	•	34,970	•	•	inviável
	101(2770	70200 70201	000	0,102	0,000	0,410	04,070	0,200	0,000	mviavoi
19-20135										
	YDR333c	7277 - 9436	2160	0,166	0,082	0,455	46,910	0,366	0,323	viável
	YHR039c	9891 - 11735	1845	0,159	0,131	0,491	46,540	0,401	0,355	viável
	YKR043c	44439 - 45161	723	0,258	0,262	0,560	39,040	0,376	0,194	viável
	YLR271w	27352 - 28167	816	0,162	0,030	0,428	45,240	0,343	0,246	viável
	YMR210w	45517 - 46983	1467	0,184	0,137	0,488	46,030	0,380	0,340	viável
	YOR174w	28419 - 29390	972	0,167	0,054	0,443	42,290	0,356	0,282	inviável
	YOR175c	31363 - 33171	1809	0,169	0,095	0,473	44,630	0,355	0,298	viável
19-20183										
	PUF6	42095 - 44098		•	,	•	40,070	•	•	viável
	SPAC22A12.13	66734 - 67627		•	,	•	42,760	•	•	não testado
	YAR014c	60702 - 63116		•	,	•	39,920	•	•	viável
	YBL095w	44330 - 45001	672	0,157	0,113	0,468	46,280	0,398	0,372	viável
	YBR141c	28605 - 29591	987	0,131	0,050	0,439	51,230	0,357	0,304	viável
	YJR151c	72560 - 74233	1674	0,104	-0,036	0,372	42,500	0,371	0,200	viável
	YLR407w	83518 - 84636	1119	0,173	0,087	0,476	45,270	0,336	0,220	viável
	YOR060c	16900 - 17733	834	0,166	0,073	0,469	45,120	0,312	0,271	inviável
19-20225										
	YBR070c	129267 - 129926		•	-	•	55,200	•	•	inviável
	YBR075w	141308 - 142477		•	,	•	48,080	•	•	viável
	YDR049w	137901 - 139514	1614	0,164	0,178	0,508	51,680	0,453	0,455	viável
	YHR202w	104684 - 106372	1689	0,148	0,036	0,442	54,830	0,403	0,413	viável
	YMR259c-1	131259 - 132761		•	,	•	51,760	•	•	viável
	YMR259c-2	132854 - 134890	2037	0,155	0,128	0,479	52,590	0,405	0,449	viável
	YNL103w	43417 - 44574	1157	0,146	0,017	0,407	42,050	0,363	0,235	viável
	YNL313c	119826 - 122576	2751	0,175	0,197	0,511	46,070	0,404	0,356	inviável

	YPL249c	101987 - 103633	1647 0,172	0,093	0,475	52,040	0,375	0,411	viável
19-20228									
	YLR281c	17600 - 18115	516 0,128	-0,104	0,353	42,950	0,320	0,210	viável
	YML117w	27647 - 30913	3267 0,149	0,033	0,434	46,850	0,374	0,278	viável
19-20234									
	YBR271w	56098 - 57339	1242 0,118	-0,007	0,398	52,700	0,369	0,305	viável
	YGR031w	84141 - 85202	1062 0,134	0,003	0,420	54,520	0,381	0,369	viável
	YIL067c	8639 - 10660	2022 0,122	0,041	0,423	50,180	0,378	0,295	viável
	YJL060w	57639 - 59000	1362 0,152	0,117	0,482	52,860	0,442	0,475	viável
	YKL215c	45759 - 49670	3912 0,160	0,116	0,473	44,630	0,390	0,291	viável
	YOR006c	44095 - 45135	1041 0,138	0,031	0,438	48,290	0,397	0,366	viável
	YOR021c	13484 - 14104	621 0,177	0,117	0,487	41,170	0,358	0,256	viável
	YOR022c	10971 - 13226	2256 0,163	0,085	0,466	47,710	0,359	0,299	viável
	YOR051c	61710 - 62975	1266 0,261	0,211	0,536	41,070	0,360	0,312	viável
	YOR052c	63391 - 63945	555 0,213	0,137	0,500	46,110	0,395	0,354	viável
19-2405									
	SPAC3C7.04	10548 - 12680	2133 0,132	0,119	0,478	52,130	0,460	0,549	não testado
	SPBC1861.05	15428 - 16447	1020 0,093	0,034	0,434	50,910	0,488	0,560	não testado
	YLR051c	5348 - 5971	624 0,203	0,160	0,520	52,500	0,370	0,370	inviável
19-2500									
	SPAC7D4.03c	11310 - 14771	3462 0,147	-0,035	0,401	42,220	0,319	0,223	não testado
	YDL025c	38773 - 40530	1758 0,159	-0,074	0,376	34,970	0,293	0,121	viável
	YDL058w	4395 - 7787	3393 0,245	0,077	0,492	43,060	0,308	0,218	inviável
	YJL131c	42778 - 44067	1290 0,171	-0,054	0,406	34,700	0,257	0,100	viável
	YJL163c	28408 - 30249	1842 0,152	0,027	0,433	33,040	0,287	0,119	viável
	YKR051w	40885 - 42642	1788 0,139	-0,091	0,365	34,780	0,272	0,085	viável
	YKR075c	49152 - 50324	1173 0,195	-0,039	0,418	37,110	0,274	0,132	viável
	YNR059w	87613 - 89670	2058 0,136	-0,084	0,377	45,270	0,323	0,242	viável
	YOL060c	34815 - 37157	2343 0,219	0,127	0,486	32,720	0,321	0,134	viável
19-2513									
	YHR176w	41456 - 43066	1611 0,245	0,101	0,476	31,350	0,313	0,102	viável

	YIL083c	21630 - 22259	630	0 106	-0.015	0 422	39,560	0 287	Λ 131	viável
	YIL096c	45510 - 46571		•	•	•	39,480	-	•	viável
	YML005w	53472 - 54731		•	•	•	41,880	,	•	viável
	YNL026w	22355 - 23878		,	,	,	33,830	,	,	inviável
	YNL208w	10693 - 11268	576	,	,	,	30,070	,	,	viável
	YOL092w	55307 - 56302	996	,	•	•	36,170	•	•	
				•	•	•	•	,	•	viável
	YPR022c	130690 - 133959	3270	0,150	0,049	0,437	49,940	0,367	0,310	viável
19-2514										
	YBR238c	122561 - 124402	1842	0,233	0,188	0,518	39,240	0,337	0,255	viável
	YGL113w	110415 - 112625	2211	0,138	-0,038	0,405	50,140	0,329	0,270	inviável
	YGL247w	85969 - 86895	927	0,133	-0,016	0,425	41,800	0,305	0,223	inviável
	YJL069c	120327 - 121211	885	0,136	-0,036	0,387	45,180	0,330	0,261	inviável
	YML018c	55737 - 56951	1215				51,720			viável
	YML020w	20393 - 22648	2256	0,148	0,030	0,441	50,550	0,361	0,299	viável
	YMR211w	100484 - 102205	1722	0,127	-0,101	0,370	40,660	0,296	0,229	inviável
	YOR352w	88854 - 89879	1026	0,150	0,010	0,438	49,020	0,304	0,243	viável
	YPL150w	112851 - 113672	822	0,138	0,041	0,450	51,350	0,377	0,305	viável
19-10046										
	FAR3	147415 - 148029	615	0,133	0,080	0,462	60,500	0,373	0,387	viável
	SPBC20F10.10	64139 - 65491	1353	0,155	-0,110	0,381	39,900	0,257	0,189	não testado
	YDR533c	38863 - 39573	711	0,402	0,346	0,625	28,200	0,347	0,185	viável
	YGR177c	89724 - 91136	1413	0,160	0,004	0,434	44,800	0,313	0,246	viável
	YIL108w	30294 - 32525	2232	0,126	-0,055	0,372	40,650	0,344	0,173	viável
	YLL028w	200095 - 202026	1932	0,158	0,073	0,455	45,710	0,366	0,271	viável
	YMR196w	192493 - 195636	3144	0,269	0,232	0,543	38,270	0,379	0,276	viável
	YNL156c	83697 - 84704	1008	0,165	0,046	0,423	35,550	0,314	0,150	viável
	YPL196w	26021 - 27058	1038	0,143	0,001	0,402	42,450	0,338	0,216	viável
19-10227				•	•	•		•	•	
	SPAC922.05c	44641 - 46170	1530	0,200	0,140	0,491	38,190	0,351	0,226	não testado
	YAL063c	62936 - 64627	1692	0,288	0,328	0,614	36,820	0,382	0,246	viável

	YIL039w	85643 - 87076	1434 0,15	9 0,037	0,439	51,140	0,379	0,348	viável
	YJR033c	50494 - 54201	3708 0,16	4 0,052	0,454	46,200	0,349	0,305	viável
	YKL047w	130852 - 132285	1434 0,09	9 -0,028	0,397	46,650	0,438	0,483	viável
	YKR004c	79435 - 80520	1086 0,13	4 0,026	0,448	52,720	0,355	0,372	inviável
	YKR079c	91129 - 93702	2574 0,15	0,032	0,433	49,430	0,376	0,343	inviável
	YKR089c	94197 - 97046	2850 0,15	1 0,087	0,464	48,730	0,379	0,356	viável
	YOL155c	56352 - 57887	1536 0,37	3 0,447	0,680	38,400	0,390	0,286	viável
	YOR078w	100197 - 100856	660 0,13	1 -0,012	0,407	47,500	0,384	0,338	viável
	YOR080w	98047 - 100074	2028 0,12	6 -0,011	0,403	53,500	0,346	0,345	viável
19-10236									
	SPCC1620.07c	8389 - 9423	1035 0,19	5 0,191	0,531	46,040	0,362	0,353	não testado
	YBL104c	71799 - 74792	2994 0,13	3 0,033	0,429	47,750	0,384	0,320	viável
	YDL189w	217539 - 218771	1233 0,17	3 0,109	0,493	49,510	0,367	0,323	viável
	YDL193w	208597 - 209646	1050 0,15	0,001	0,425	43,380	0,320	0,263	inviável
	YDL237w	133505 - 134638	1134 0,17	7 0,032	0,431	43,170	0,325	0,255	viável
	YDR216w	232004 - 232864	861 0,15	2 0,062	0,443	43,850	0,364	0,216	viável
	YHR151c	223339 - 225183	1845 0,13	6 -0,041	0,399	45,990	0,336	0,231	viável
	YLL032c	308274 - 311099	2826 0,21	2 0,052	0,468	31,370	0,250	0,108	viável
	YLR309c	137921 - 1384943	1023 0,16	2 0,024	0,452	53,870	0,350	0,336	viável
	YMR244w	70080 - 70919	840 0,19	5 0,166	0,509	42,830	0,404	0,232	viável
	YOL073c	242381 - 243382	1002 0,12	0,119	0,475	48,450	0,366	0,336	viável
	YOL124c	245763 - 247181	1419 0,13	5 0,029	0,421	50,060	0,374	0,325	viável
	YOR129c	120920 - 122809	1890 0,15	4 -0,079	0,375	40,100	0,263	0,222	viável
	YOR377w	46234 - 47712	1479 0,16	5 0,065	0,463	48,470	0,354	0,339	viável
19-10259									
	YER134c	18093 - 18620	528 0,13	9 0,032	0,434	50,450	0,390	0,301	viável
19-20123									
	SPAPB24D3.06c	70883 - 71749	867 0,14	•	•	,	•	•	não testado
	YDL133w	159451 - 160653	1203 0,14	,		41,770			viável
	YDL183c	162443 - 163261	819 0,20	9 0,076	0,476	45,260	0,293	0,178	viável
	YDR282c	27438 - 28610	1173 0,16	0,002	0,420	39,130	0,296	0,166	viável

	YDR324c	62724 - 64955	2232	0,207	0,072	0,466	35,310	0,309	0,163	inviável
	YHR140w	96801 - 97391	591	0,146	0,022	0,425	36,550	0,316	0,188	viável
	YIL1127c	218536 - 219195	660	0,160	-0,119	0,359	35,160	0,254	0,254	não testadon
	YJL055w	250753 - 251421	669	0,215	0,124	0,491	35,760	0,357	0,182	viável
	YLR247	131418 - 135170	3753	0,150	0,011	0,428	44,640	0,326	0,253	viável
	YNL094w	203204 - 205102	1899	0,143	0,060	0,445	48,550	0,384	0,316	viável
	YNR018w	189547 - 190134	588	0,278	0,257	0,559	38,610	0,318	0,247	viável
	YOR091w	202016 - 203077	1062	0,268	0,182	0,528	37,950	0,352	0,255	viável
	YOR298w	83636 - 84310	675	0,131	0,021	0,425	60,090	0,365	0,350	viável
19-20254										
	SPAC821.05	67387 - 68373	987	0,259	0,253	0,555	38,520	0,327	0,274	não testado
	SPBC215.13	128431 - 129723	1293	0,129	0,047	0,418	34,210	0,363	0,137	não testado
	YBR235w	234461 - 236335	1875	0,148	0,114	0,472	46,000	0,361	0,275	viável
	YDR051c	66129 - 66851	723	0,143	-0,066	0,392	45,010	0,372	0,330	viável
	YDR089w	172830 - 175661		•	,	•	37,500	•	•	viável
	YER132c	80507 - 82495		•	,	•	45,720	•	•	viável
	YGL198w	76680 - 77573		•	,	•	45,820	•	•	viável
	YHL029c	92261 - 94411		•	,	•	42,960	•	•	viável
	YHR049w	11996 - 12775					46,740			viável
	YHR217c	148964 - 150061		•	,	•	34,640	•	•	não testadon
	YJR134c	2434 - 4410	1977	0,154	0,086	0,464	55,360	0,383	0,374	viável
	YLR128w	216009 - 216923	915	0,166	-0,045	0,405	45,870	0,304	0,241	viável
	YLR414c	58684 - 59976		•	,	•	40,340	•	•	viável
	YMR262w	63927 - 64898		•	,	•	47,350	•	•	viável
	YOL090w	18647 - 19387	741	0,152	0,149	0,489	48,010	0,389	0,330	viável
19-10104										
	YGR100w	53028 - 55856		•	-	•	41,500	•	•	viável
	YIL019w	62561 - 63547	987	,	,	•	45,830	•	•	inviável
	YIL041w	34455 - 35420		•	,	•	31,020	•	•	viável
	YKL014	100 - 1695		•	,	•	34,590	•	•	inviável
	YPR117w	42704 - 51911	8208	0,159	0,047	0,445	46,770	0,353	0,296	viável

YDR314c	21962 - 23593	1632	0,154	0,029	0,435	48,540	0,320	0,263	viável
YDR316w	6932 - 8266	1335	0,176	-0,016	0,404	35,570	0,300	0,119	viável
YDR438w	17069 - 18571	1503	0,132	0,033	0,434	39,950	0,336	0,227	viável
YHR070w	13590 - 14993	1404	0,175	-0,056	0,395	36,020	0,272	0,112	inviável
YLL005c	23584 - 26169	2586	0,130	0,014	0,429	46,820	0,344	0,344	viável
YOR385w	42274 - 43347	1074	0,135	-0,151	0,340	38,520	0,304	0,120	viável
SPAC630.13c	26284 - 30759	4476	0,131	-0,097	0,374	38,390	0,282	0,146	não testado
YER049w	37421 - 39274	1854	0,204	0,050	0,445	35,670	0,320	0,156	viável
YGL185c	21743 - 22837	1854	0,151	-0,018	0,408	37,760	0,314	0,147	não testadon
YGR223	14021 - 15808	1788	0,111	-0,072	0,370	37,490	0,337	0,168	viável
YJR003c	3687 - 5150	1464	0,175	-0,047	0,410	39,200	0,249	0,134	viável
YBR162c	247698 - 248555	858	0,331	0,411	0,644	34,570	0,422	0,288	viável
YDR109c	147650 - 149878	2229	0,275	0,275	0,562	36,420	0,389	0,232	viável
YDR132c	178031 - 179503		•	•	•	•	,	•	viável
YDR288w	26924 - 27943	1020	0,121	-0,032	0,405	45,010	0,336	0,274	inviável
YHR067w	19882 - 20757	876	0,146	-0,012	0,413	50,880	0,346	0,310	viável
YKL051w	133754 - 134692	939	0,170	0,036	0,435	43,070	0,355	0,250	viável
YLR022c	95302 - 96069	768	0,196	0,091	0,494	41,400	0,308	0,233	inviável
YLR135w	156952 - 159282		,	,	,	•	,	•	viável
YMR171c	88762 - 90330	1569	0,159	0,083	0,467	48,370	0,380	0,309	viável
YNR074c	20924 - 22267	1344	0,112	0,020	0,432	53,910	0,417	0,432	viável
YOL119c	179574 - 181121	1548	0,113	-0,061	0,377	38,300	0,307	0,153	viável
ATC1	18897 - 19436		•	•	•	•	•	•	viável
YDR180w	9539 - 12679		•	•	•	•	•	•	inviável
YLR243w	88678 - 89673	996	0,158	-0,001	0,416	47,290	0,350	0,300	inviável
	YDR316W YDR438W YHR070W YLL005c YOR385W SPAC630.13c YER049W YGL185c YGR223 YJR003c YBR162c YDR109c YDR132c YDR132c YDR288W YHR067W YKL051W YLR022c YLR135W YMR171c YNR074c YOL119c ATC1 YDR180W	YDR316W YDR438W YDR438W YHR070W 13590 - 14993 YLL005c 23584 - 26169 YOR385W SPAC630.13c YER049W YGL185c YGR223 YJR003c YBR162c YDR109c YDR132c YDR132c YDR288W YDR288W YDR288W YHR067W YHR067W YKL051W YLR022c YLR022c YLR022c YLR022c YMR171c SPAC630 YDR19c YR074c YDR180W ATC1 YBR93 YDR266 YDR19c YBR162c YDR19c YBR162c YBR162	YDR316w YDR438w YDR438w 17069 - 18571 1503 YHR070w 13590 - 14993 1404 YLL005c 23584 - 26169 YOR385w 42274 - 43347 1074 SPAC630.13c YER049w 37421 - 39274 YGL185c YGR223 14021 - 15808 YJR003c 3687 - 5150 1464 YBR162c YDR109c YDR132c YDR132c YDR132c YDR288w 26924 - 27943 YDR288w 26924 - 27943 YHR067w 19882 - 20757 YKL051w 133754 - 134692 YLR022c 95302 - 96069 YLR022c YLR135w YLR022c YDR171c 88762 - 90330 YHR074c YDR180w 9539 - 12679 3141	YDR316W	YDR316w 6932 - 8266 1335 0,176 -0,016 YDR438w 17069 - 18571 1503 0,132 0,033 YHR070w 13590 - 14993 1404 0,175 -0,056 YLL005c 23584 - 26169 2586 0,130 0,014 YOR385w 42274 - 43347 1074 0,135 -0,151 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 YER049w 37421 - 39274 1854 0,204 0,050 YGL185c 21743 - 22837 1854 0,151 -0,018 YGR223 14021 - 15808 1788 0,111 -0,072 YJR003c 3687 - 5150 1464 0,175 -0,047 YBR162c 247698 - 248555 858 0,331 0,411 YDR109c 147650 - 149878 2229 0,275 0,275 YDR132c 178031 - 179503 1473 0,161 - 0,046 YDR288w 26924 - 27943 1020 0,121 - 0,032 YHR067w 19882 - 20757 </td <td>YDR316W 6932 - 8266 1335 0,176 -0,016 0,404 YDR438W 17069 - 18571 1503 0,132 0,033 0,434 YHR070W 13590 - 14993 1404 0,175 -0,056 0,395 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 YOR385W 42274 - 43347 1074 0,135 -0,151 0,340 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 YER049W 37421 - 39274 1854 0,204 0,050 0,445 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 YGR223 14021 - 15808 1788 0,111 -0,072 0,370 YJR003c 3687 - 5150 1464 0,175 -0,047 0,410 YBR162c 247698 - 248555 858 0,331 0,411 0,644 YDR19c 147650 - 149878 2229 0,275 0,275 0,562 YDR132c <t< td=""><td>YDR316w 6932 - 8266 1335 0,176 -0,016 0,404 35,570 YDR438w 17069 - 18571 1503 0,132 0,033 0,434 39,950 YHR070w 13590 - 14993 1404 0,175 -0,056 0,395 36,020 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 YGR223 14021 - 15808 1788 0,111 -0,072 0,370 37,490 YJR003c 3687 - 5150 1464 0,175 -0,047 0,410 39,200 YBR162c 247698 - 248555 858 0,331 0,411</td><td>YDR316w 6932 - 8266 1335 0,176 -0,016 0,404 35,570 0,300 YDR438w 17069 - 18571 1503 0,132 0,033 0,434 39,950 0,336 YHR070w 13590 - 14993 1404 0,175 -0,056 0,395 36,020 0,272 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 0,344 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 0,304 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 0,282 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 0,320 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 0,314 YGR223 14021 - 15808 1788 0,111 -0,072 0,370 37,490 0,337 YJR003c 3687 - 5150 1464 0,175</td><td>YDR316W 6932 - 8266 1335 0,176 -0,016 0,404 35,570 0,300 0,119 YDR438W 17069 - 18571 1503 0,132 0,033 0,434 39,950 0,336 0,227 YHR070W 13590 - 14993 1404 0,175 -0,056 0,395 36,020 0,272 0,112 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 0,344 0,344 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 0,304 0,120 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 0,282 0,146 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 0,320 0,156 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 0,314 0,147 YGR223 14021 - 15808 1788 0,111 -0,072 0,37</td></t<></td>	YDR316W 6932 - 8266 1335 0,176 -0,016 0,404 YDR438W 17069 - 18571 1503 0,132 0,033 0,434 YHR070W 13590 - 14993 1404 0,175 -0,056 0,395 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 YOR385W 42274 - 43347 1074 0,135 -0,151 0,340 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 YER049W 37421 - 39274 1854 0,204 0,050 0,445 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 YGR223 14021 - 15808 1788 0,111 -0,072 0,370 YJR003c 3687 - 5150 1464 0,175 -0,047 0,410 YBR162c 247698 - 248555 858 0,331 0,411 0,644 YDR19c 147650 - 149878 2229 0,275 0,275 0,562 YDR132c <t< td=""><td>YDR316w 6932 - 8266 1335 0,176 -0,016 0,404 35,570 YDR438w 17069 - 18571 1503 0,132 0,033 0,434 39,950 YHR070w 13590 - 14993 1404 0,175 -0,056 0,395 36,020 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 YGR223 14021 - 15808 1788 0,111 -0,072 0,370 37,490 YJR003c 3687 - 5150 1464 0,175 -0,047 0,410 39,200 YBR162c 247698 - 248555 858 0,331 0,411</td><td>YDR316w 6932 - 8266 1335 0,176 -0,016 0,404 35,570 0,300 YDR438w 17069 - 18571 1503 0,132 0,033 0,434 39,950 0,336 YHR070w 13590 - 14993 1404 0,175 -0,056 0,395 36,020 0,272 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 0,344 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 0,304 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 0,282 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 0,320 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 0,314 YGR223 14021 - 15808 1788 0,111 -0,072 0,370 37,490 0,337 YJR003c 3687 - 5150 1464 0,175</td><td>YDR316W 6932 - 8266 1335 0,176 -0,016 0,404 35,570 0,300 0,119 YDR438W 17069 - 18571 1503 0,132 0,033 0,434 39,950 0,336 0,227 YHR070W 13590 - 14993 1404 0,175 -0,056 0,395 36,020 0,272 0,112 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 0,344 0,344 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 0,304 0,120 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 0,282 0,146 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 0,320 0,156 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 0,314 0,147 YGR223 14021 - 15808 1788 0,111 -0,072 0,37</td></t<>	YDR316w 6932 - 8266 1335 0,176 -0,016 0,404 35,570 YDR438w 17069 - 18571 1503 0,132 0,033 0,434 39,950 YHR070w 13590 - 14993 1404 0,175 -0,056 0,395 36,020 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 YGR223 14021 - 15808 1788 0,111 -0,072 0,370 37,490 YJR003c 3687 - 5150 1464 0,175 -0,047 0,410 39,200 YBR162c 247698 - 248555 858 0,331 0,411	YDR316w 6932 - 8266 1335 0,176 -0,016 0,404 35,570 0,300 YDR438w 17069 - 18571 1503 0,132 0,033 0,434 39,950 0,336 YHR070w 13590 - 14993 1404 0,175 -0,056 0,395 36,020 0,272 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 0,344 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 0,304 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 0,282 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 0,320 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 0,314 YGR223 14021 - 15808 1788 0,111 -0,072 0,370 37,490 0,337 YJR003c 3687 - 5150 1464 0,175	YDR316W 6932 - 8266 1335 0,176 -0,016 0,404 35,570 0,300 0,119 YDR438W 17069 - 18571 1503 0,132 0,033 0,434 39,950 0,336 0,227 YHR070W 13590 - 14993 1404 0,175 -0,056 0,395 36,020 0,272 0,112 YLL005c 23584 - 26169 2586 0,130 0,014 0,429 46,820 0,344 0,344 YOR385w 42274 - 43347 1074 0,135 -0,151 0,340 38,520 0,304 0,120 SPAC630.13c 26284 - 30759 4476 0,131 -0,097 0,374 38,390 0,282 0,146 YER049w 37421 - 39274 1854 0,204 0,050 0,445 35,670 0,320 0,156 YGL185c 21743 - 22837 1854 0,151 -0,018 0,408 37,760 0,314 0,147 YGR223 14021 - 15808 1788 0,111 -0,072 0,37

	YML013w	100765 - 102546	1782	0,177	0.048	0,462	48,870	0,341	0,317	viável
	YML131w	106466 - 107584		•	•	•	31,150	•	•	viável
19-10174				,	,	,	,	,	,	
	YNR074c	361 - 1704	1344	0,112	0,029	0,437	54,360	0,421	0,444	viável
19-20115				•	•	•	·	•	,	
	VAC7	9258 - 11597	2340	0,126	-0,041	0,396	49,840	0,368	0,299	viável
	YFR043c	27375 - 28202	828	0,119	-0,047	0,404	56,710	0,350	0,343	viável
	YGL233w	24522 - 25346	825	0,186	0,070	0,457	46,210	0,339	0,311	inviável
	YHR149c	35582 - 37711	2130	0,184	0,122	0,486	43,130	0,380	0,249	não testadon
	YLR004c	38037 - 39533	1497	0,153	0,066	0,465	45,970	0,327	0,233	viável
	YMR155w-2	32045 - 33760	1716	0,109	-0,004	0,397	45,120	0,374	0,261	viável
19-20162										
	NUG1	99762 - 101342	1581	0,265	0,252	0,552	39,690	0,369	0,253	inviável
	SPAC1071.09c	14406 - 15230	825	0,180	-0,039	0,412	43,150	0,292	0,221	não testado
	YMR155w-1	110114 - 111541	1428	0,128	0,032	0,432	46,470	0,359	0,279	viável
	YMR295c	50846 - 51457	612	0,189	0,014	0,417	32,430	0,322	0,101	viável
19-20192										
	YAL001c	120851 - 122905	2055	0,152	0,071	0,454	48,500	0,377	0,334	inviável
	YCR072c	19000 - 19785	786	0,203	0,083	0,449	35,690	0,354	0,138	inviável
	YCR077c-1	37986 - 38585	600	0,174	0,066	0,441	44,540	0,427	0,207	viável
	YCR077c-2	38964 - 40337	1374	0,246	0,232	0,551	37,680	0,330	0,239	viável
	YGR001c	125333 - 126085	753	0,219	0,146	0,508	49,650	0,380	0,389	viável
	YKR087c	114675 - 115685	1011	0,133	0,013	0,414	50,860	0,371	0,343	viável
	YKR100c	112805 - 113653	849	0,127	-0,045	0,401	52,940	0,381	0,323	viável
	YMR134w	71812 - 72579	768	0,194	0,041	0,464	51,720	0,312	0,328	inviável
	YMR135c	72782 - 74281	1500	0,147	-0,021	0,414	51,460	0,349	0,333	viável
19-20200										
	YGR198w	11145 - 14363	3219	0,174	0,022	0,427	41,330	0,296	0,235	inviável
	YMR166c	2483 - 3583		•	,	,	45,130	•	•	viável
	YPL108	22807 - 23343	537	0,165	-0,007	0,424	43,380	0,311	0,174	viável
19-20212										

YAL049c-1 92892 - 93623 732 0,326 0,349 0,618 40,190 0,372 0,286 viável YAL049c-2 97557 - 98282 726 0,283 0,314 0,592 38,980 0,379 0,244 viável YBR094w 109767 - 111884 2118 0,177 -0,011 0,421 38,060 0,297 0,157 viável YBR095c 103821 - 104777 957 0,171 -0,016 0,407 39,560 0,300 0,205 viável YGL211w 140970 - 142157 1188 0,149 -0,009 0,408 39,720 0,308 0,153 viável YIL151c 249201 - 252905 3705 0,154 -0,008 0,415 38,700 0,319 0,159 não testado YJR107w 226172 - 227173 1002 0,146 -0,044 0,396 40,520 0,316 0,150 viável YKL053c-A 224042 - 224584 543 0,171 0,026 0,441 49,120 0,330 0,253 viável	
YBR094w 109767 - 111884 2118 0,177 -0,011 0,421 38,060 0,297 0,157 viável YBR095c 103821 - 104777 957 0,171 -0,016 0,407 39,560 0,300 0,205 viável YGL211w 140970 - 142157 1188 0,149 -0,009 0,408 39,720 0,308 0,153 viável YIL151c 249201 - 252905 3705 0,154 -0,008 0,415 38,700 0,319 0,159 não testado YJR107w 226172 - 227173 1002 0,146 -0,044 0,396 40,520 0,316 0,150 viável	
YBR095c 103821 - 104777 957 0,171 -0,016 0,407 39,560 0,300 0,205 viável YGL211w 140970 - 142157 1188 0,149 -0,009 0,408 39,720 0,308 0,153 viável YIL151c 249201 - 252905 3705 0,154 -0,008 0,415 38,700 0,319 0,159 não testado YJR107w 226172 - 227173 1002 0,146 -0,044 0,396 40,520 0,316 0,150 viável	
YGL211w 140970 - 142157 1188 0,149 -0,009 0,408 39,720 0,308 0,153 viável YIL151c 249201 - 252905 3705 0,154 -0,008 0,415 38,700 0,319 0,159 não testado YJR107w 226172 - 227173 1002 0,146 -0,044 0,396 40,520 0,316 0,150 viável	
YIL151c 249201 - 252905 3705 0,154 -0,008 0,415 38,700 0,319 0,159 não testado YJR107w 226172 - 227173 1002 0,146 -0,044 0,396 40,520 0,316 0,150 viável	
YJR107w 226172 - 227173 1002 0,146 -0,044 0,396 40,520 0,316 0,150 viável	
	n
YKL053c-A 224042 - 224584 543 0,171 0,026 0,441 49,120 0,330 0,253 viável	
YKL054c 112737 - 113894 1158 0,234 0,274 0,570 36,550 0,403 0,214 viável	
YLR097c 145557 - 146912 1362 0,129 -0,097 0,369 39,110 0,310 0,310 viável	
YLR106c 275692 - 279246 3555 0,229 0,004 0,442 34,650 0,304 0,113 inviável	
YMR305c 206901 - 209054 2154 0,145 0,068 0,453 44,660 0,360 0,247 viável	
YMR310c 3044 - 4159 1116 0,160 0,002 0,434 44,560 0,333 0,283 viável	
YMR312w 2858811 - 286798 918 0,158 -0,161 0,368 34,890 0,226 0,117 viável	
YOR059c 18661 - 20331 1671 0,155 0,005 0,423 49,140 0,356 0,306 viável	
YOR371c 23454 - 26765 3312 0,140 0,007 0,426 48,020 0,361 0,262 viável	
YPL107w 75114 - 75821 708 0,147 0,073 0,434 45,940 0,407 0,268 viável	
YPL109c 20559 - 22550 1992 0,157 0,064 0,445 42,610 0,340 0,265 viável	
19-20231	
YCR030c 51040 - 53475 2436 0,169 0,154 0,494 45,460 0,398 0,322 viável	
YHR076w 38246 - 39343 1098 0,119 0,042 0,419 47,120 0,409 0,323 viável	
YJR119c 23679 - 25850 2172 0,160 0,078 0,458 53,900 0,401 0,398 viável	
YLR427w 65129 - 66940 1812 0,175 0,127 0,487 48,390 0,383 0,350 viável	
YML066c 16511 - 17428 918 0,154 0,086 0,480 51,650 0,336 0,313 viável	
YMR034c 40851 - 42086 1236 0,146 0,099 0,468 48,270 0,391 0,350 viável	
YMR041c 45357 - 46340 984 0,143 0,077 0,448 49,610 0,385 0,317 viável	
YPL016w 31906 - 34869 2964 0,143 0,066 0,443 50,990 0,395 0,352 inviável	
YPL034w 19350 - 20042 693 0,155 0,112 0,491 58,650 0,404 0,417 viável	
19-2472	
YHR131c 8403 - 9944 1542 0,139 0,028 0,417 46,600 0,385 0,287 viável	

	YMR263w	18143 - 18649	507	0,151	-0,011	0,413	44,440	0,345	0.305	viável
	YOL008	13185 - 13730	546	•	•	,	50,010	•	•	viável
19-10093				•	•	•	·	•	,	
	YDL173w	10531 - 11139	609	0,148	0,020	0,415	36,770	0,353	0,125	viável
19-10137				·	·	·	·		·	
	SPCC622.19	78058 - 79650	1593	0,176	-0,040	0,407	42,190	0,324	0,198	
	YBL066c	1 - 1164	1164	0,171	0,018	0,440	41,160	0,308	0,232	viável
	YDR479c	13078 - 14928	1851	0,138	-0,048	0,404	44,450	0,330	0,257	viável
	YHL013c	60193 - 61164	972	0,194	0,146	0,500	44,340	0,360	0,249	viável
	YLR390w-A	91851 - 92666	816	0,155	0,059	0,460	47,420	0,363	0,249	viável
	YMR099c	39134 - 40033	900	0,337	0,307	0,599	31,970	0,350	0,202	viável
19-10155										
	SPCC1322.03	39019 - 42300	3282	0,146	-0,012	0,416	46,410	0,329	0,259	não testado
19-10202										
	SPBC4C3.07	127473 - 128480	1008	0,241	0,100	0,483	35,330	0,306	0,180	não testado
	YCR044c	40665 - 41849	1185	0,170	0,074	0,461	46,080	0,360	0,349	viável
	YDR411c	58375 - 59319	945	0,143	0,030	0,419	41,170	0,317	0,203	viável
	YGL257c	99820 - 102117	2298	0,156	-0,032	0,408	38,420	0,295	0,187	viável
	YJR024c	156391 - 157203	813	0,221	0,081	0,464	36,340	0,328	0,149	viável
	YKL005c	113342 - 115351	2010	0,201	0,045	0,462	36,340	0,336	0,224	viável
	YKL090w	50280 - 51158	879	0,107	-0,094	0,365	42,250	0,333	0,195	viável
	YKR070w	56331 - 58124	1794	•	•	•	41,930	•	•	viável
	YLR118c	59871 - 60776	906	0,142	0,040	0,442	34,870	0,364	0,245	viável
	YLR222c	94734 - 97133	2400	,	0,023	,	46,570	•	•	inviável
	YLR223c	122129 - 123022	894	•	0,020	•	36,100	•	•	inviável
	YLR253w	97342 - 99096	1755	•	•	•	42,340	•	•	viável
	YLR456w	3887 - 4438	552	•	0,056	,	52,420	•	•	viável
	YOL070c	243524 - 245968		•	•	•	37,770	•	•	viável
	YOR164c	16602 - 17585	984	0,185	0,091	0,467	45,720	0,345	0,344	viável
19-20080										
	CG2989	16703 - 18565	1863	0,149	-0,010	0,419	45,040	0,334	0,207	não testado

	YKL054c	86707 - 89073	2367	0,146	0,047	0,443	45,870	0,369	0,248	viável
	YLR412w	114921 - 115544	624	0,140	-0,015	0,410	52,100	0,356	0,327	viável
	YML036w	15810 - 16421	612	0,188	0,007	0,446	39,290	0,251	0,183	viável
19-20105										
	CG15040	24431 - 25573		•	•	•	40,120	•	•	não testado
	YPR091c	15018 - 17813	2796	0,167	0,030	0,427	42,640	0,348	0,235	viável
19-20170										
	YFL023w-1	19664 - 21058	1395	0,175	0,017	0,450	48,100	0,354	0,294	viável
	YFL023w-2	21072 - 21851	780	0,144	-0,038	0,412	46,940	0,360	0,236	viável
	YNL294c	35637 - 37226	1590	0,121	-0,008	0,414	50,450	0,374	0,314	viável
	YNR054c	7849 - 8811	963	0,162	0,027	0,439	48,680	0,367	0,350	inviável
	YOL089c-1	53852 - 56104	2253	0,160	0,035	0,430	43,780	0,336	0,251	viável
	YOL089c-2	56242 - 56796	555	0,133	-0,026	0,402	43,940	0,344	0,285	viável
	YOL111c	44414 - 45088	675	0,203	0,162	0,507	41,440	0,344	0,228	viável
	YOR262w	18336 - 19394	1059	0,124	0,025	0,418	51,490	0,379	0,320	inviável
	YOR356w	33178 - 35061	1884	0,217	0,217	0,535	41,550	0,381	0,250	viável
19-20194										
	GAS5	251401 - 252756	1356	0,342	0,434	0,664	38,900	0,441	0,441	viável
	MUM2	260396 - 261076	681	0,172	0,189	0,525	53,110	0,437	0,594	viável
	SPAC10F6.06	62567 - 63394	828	0,276	0,254	0,569	42,520	0,376	0,270	não testado
	YBL046w	234032 - 234652	621	0,109	-0,023	0,406	55,210	0,387	0,327	viável
	YBL113c	181111 - 182838	1728	0,204	0,132	0,511	40,090	0,369	0,198	não testado
	YDL147w	250588 - 251382	795	0,215	0,136	0,512	52,120	0,351	0,450	inviável
	YDR196c	214917 - 215642	726	0,167	0,173	0,500	41,610	0,358	0,284	inviável
	YDR198c	216816 - 218117	1302	0,151	0,011	0,427	47,810	0,346	0,290	viável
	YFR044c	36730 - 38187	1458	0,342	0,300	0,585	31,950	0,351	0,204	viável
	YGL144c	183674 - 185923	2250	0,139	-0,004	0,413	42,440	0,351	0,242	viável
	YGR237	173962 - 176478	2517	0,143	-0,119	0,355	34,680	0,280	0,124	viável
	YGR251w	143570 - 144313					49,130			inviável
	YGR266w	166283 - 168493	2211	0,198	-0,012	0,409	33,400	0,302	0,116	viável
	YGR268c	146570 - 147355	786	0,114	-0,037	0,362	40,860	0,378	0,169	viável

	YGR272c	152410 - 153123	714 0,227	0,116	0,487	31,020	0,287	0,124	viável
	YHR045w	225739 - 227088	1350 0,172	0,076	0,474	47,690	0,333	0,311	viável
	YJR084w	84882 - 86219	1338 0,163	0,001	0,411	45,950	0,318	0,267	viável
	YJR088c	73715 - 74853	1140 0,179	0,054	0,449	48,520	0,318	0,344	viável
	YJR100c	57324 - 58361	1038 0,200	0,175	0,512	42,060	0,363	0,235	viável
	YJR102c	78811 - 79401	591 0,132	0,003	0,438	42,810	0,354	0,349	viável
	YML020w	195310 - 197613	2304 0,131	-0,035	0,410	46,370	0,337	0,273	viável
	YMR293c	105391 - 106743	1353 0,131	0,037	0,427	43,310	0,384	0,289	viável
	YNR061c	16343 - 17089	747 0,147	0,089	0,457	49,640	0,384	0,259	viável
	YPR040w	70544 - 71725	1182 0,149	0,051	0,444	46,570	0,366	0,290	viável
19-20198									
	YBR014c	29276 - 29965	690 0,201	0,079	0,460	35,800	0,332	0,195	viável
	YCL045c	581 - 3166	2586 0,167	0,040	0,451	39,540	0,313	0,246	viável
	YDR459c	6222 - 7439	1218 0,148	0,022	0,438	46,990	0,335	0,273	viável
	YDR527w	4689 - 6071	1383 0,152	0,013	0,422	42,630	0,375	0,271	inviável
	YLR253w	16191 - 17999	1809 0,164	0,050	0,439	41,940	0,333	0,231	viável
19-10031									
	YIL137	1 - 1317	1317 0,183	-0,022	0,430	43,360	0,304	0,211	viável
19-10035									
	YBR042c	91169 - 92410	1242 0,156	-0,050	0,393	35,360	0,264	0,120	viável
	YBR102c	84850 - 87363	2514 0,133	-0,046	0,381	41,100	0,318	0,170	inviável
	YGR053c	16480 - 17379	900 0,123	-0,059	0,381	40,190	0,313	0,163	viável
	YHR052	67601 - 68698	1098 0,214	0,031	0,459	38,470	0,279	0,160	inviável
	YJR107	33781 - 34833	1053 0,132	-0,062	0,394	48,080	0,330	0,300	viável
19-10140									
	SPAC12B10.08c	28566 - 30017	1452 0,117	0,034	0,424	54,740	0,410	0,411	não testado
	YBR074w	53543 - 56056	2514 0,090	-0,033	0,384	50,300	0,468	0,529	viável
	YKL034w	17838 - 20165	2331 0,120	0,035	0,434	50,400	0,402	0,402	viável
	YPL183c	33464 - 36307	2844 0,151	0,115	0,490	51,490	0,421	0,458	viável
19-10233									
	YBR280c	95982 - 97895	1914 0,141	-0,046	0,393	37,270	0,311	0,127	viável

	YDR539w	50622 - 52163	1542 0,199	0.100	0.474	41.060	0.366	0.233	viável
	YGL114w	132166 - 134322	2157 0,123	•	,	45,580	•	•	viável
	YGR150c	6289 - 8595	2307 0,139	,	•	•	•	•	viável
	YLR023c	103578 - 105428	1851 0,155	•	•	•	•	•	viável
	YMR178w	109070 - 110020	•	•	•	37,390	•	•	viável
	YNR053c	53741 - 54634	•	•	•	37,800	•	•	inviável
	YNR070w	113225 - 117712	4488 0,207	•	•	•	•	•	viável
19-20090				0,.0=	0,100	01,100	0,0	c , . c .	
=	YMR132c	14170 - 14853	684 0,160	-0.014	0.434	53.990	0.344	0.330	viável
19-20176			3, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1	0,011	0, 10 1	30,000	0,0	0,000	
	CG7823	97576 - 98121	546 0,248	0.149	0.542	36.040	0.297	0.141	não testado
	YDR266c	124668 - 126782	2115 0,168	•	•	•	•	•	viável
	YGR067c	93866 - 96835	2970 0,168	•	•	•	•	•	viável
	YHL008c	19526 - 20929	1404 0,095	•	•	•	•	•	viável
	YHR048w	6728 - 8260	1533 0,109	•	•	•	•	•	viável
	YMR044w	65117 - 66598	1482 0,182	•	•	•	•	•	viável
	YOR292c	5169 - 5798	630 0,114	-0,005	0,408	44,670	0,335	0,301	viável
			·		,	·	·	·	
19-20181									
	YKL098w	6640 - 7731	1092 0,159	-0,026	0,415	45,010	0,320	0,278	viável
	YKL151c	26701 - 27783	1083 0,183	0,109	0,470	42,580	0,347	0,269	viável
	YKR090w	14467 - 17607	3141 0,199	0,130	0,487	40,310	0,369	0,196	viável
19-20230									
	YDR202c	84974 - 86041	1067 0,166	0,049	0,462	50,500	0,319	0,305	viável
	YGL133w	204 - 3398	3192 0,180	0,014	0,431	41,140	0,320	0,168	viável
	YKL069w	72556 - 73083	528 0,191	0,111	0,480	44,680	0,358	0,240	viável
	YJL046w	96377 - 97738	1362 0,132	-0,055	0,386	46,340	0,345	0,247	viável
	YKR020w	98758 - 99888	1131 0,134	0,012	0,423	45,730	0,346	0,278	viável
	YKR021w	165843 - 168833	2991 0,143	0,092	0,450	49,960	0,404	0,290	viável
	YKR088c	34022 - 34861	840 0,145	0,031	0,424	44,390	0,348	0,262	viável

	YLR224w	136981 - 138381	1401 0,1	75 0,054	0,454	47,760	0,313	0,308	viável
	YOL063c	69582 - 71789	2208 0,13	36 -0,025	0,408	45,260	0,333	0,231	viável
	YPL184c	50174 - 52111	1938 0,1°	77 0,097	0,470	37,590	0,356	0,170	viável
19-20099									
	YBL107c	44228 - 44773	546 0,1	70 0,042	•	•	,	•	viável
	YER152c	3173 - 4420	1248 0,1	70 0,217	0,539	49,440	0,434	0,449	viável
	YNL115c	6748 - 8394	1647 0,12	20 0,037	0,421	53,560	0,403	0,384	viável
	YNL116w	9329 - 10462	1134 0,10	09 0,022	0,407	49,430	0,429	0,349	viável
19-2485									
	YDL156w	28977 - 30785	1809 0,10	67 -0,008	0,411	42,920	0,341	0,215	viável
	YMR113w	30963 - 32255	1293 0,14	44 -0,027	0,404	38,840	0,319	0,185	viável
	YNL011c	25076 - 26509	1434 0,14	44 0,030	0,430	46,700	0,357	0,259	viável
19-2506									
	YBR137w	101480 - 101986	507 0,18	89 -0,027	0,402	35,050	0,268	0,104	viável
	YGL231c	80227 - 80757	531 0,14	41 0,028	0,433	41,970	0,348	0,293	viável
	YJL069c	45561 - 47219	1659 0,1	78 0,096	0,480	44,690	0,371	0,331	viável
	YLR002c	97286 - 99523	2238 0,1	58 -0,063	0,379	34,110	0,277	0,113	inviável
	YMR185w	52712 - 55615	2904 0,1	51 0,074	0,454	50,560	0,365	0,379	inviável
	YMR258c	23204 - 24952	1749 0,14	49 0,072	0,465	57,840	0,384	0,459	viável
	YPL236c	58160 - 59254	1095 0,18	87 0,171	0,511	50,000	0,381	0,377	viável
19-10110									
	YBR272c	5693 - 7111	1419 0,10	68 0,031	0,422	43,120	0,287	0,240	viável
	YDL124w	25797 - 26726	930 0,2	50 0,225	0,549	42,290	0,360	0,312	viável
	YIR019c	44244 - 45924	1681 0,14	44 0,173	0,494	44,580	0,406	0,262	não testado
	YJL123c	22000 - 23094	1095 0,2	19 0,105	0,497	42,050	0,330	0,220	viável
19-10248									
	CG4090	9228 - 10904	1677 0,14	48 -0,052	0,399	38,870	0,286	0,140	não testado
	SPAC12B10.16c	25792 - 27645	1854 0,1	59 -0,023	0,397	38,030	0,323	0,155	não testado
	YBL086c	12996 - 14546	1551 0,1	57 -0,019	0,408	36,100	0,293	0,120	viável
	YDL115c	79662 - 80690	1029 0,10	66 0,000	0,424	49,270	0,351	0,220	viável
	YDR152w	263561 - 264340	780 0,2	18 -0,012	0,430	35,500	0,270	0,120	viável

YDR165w	44932 - 46251	1320	0,188	-0,035	0,429	35,580	0,273	0,111	viável
YHR122w	8334 - 9002	669	0,178	0,029	0,429	35,100	0,315	0,146	inviável
YJR054w	206800 - 208779	1980	0,151	0,018	0,427	45,010	0,350	0,292	viável
YLR114c	42383 - 44785	2403	0,149	-0,051	0,394	41,790	0,312	0,182	viável
YMR075w	89457 - 91523	2067	0,139	0,036	0,429	51,350	0,391	0,300	viável
YMR204c	134607 - 136661	2055	0,143	0,026	0,430	54,140	0,375	0,333	viável
YNL108c	201130 - 202050	921	0,219	0,129	0,486	39,770	0,376	0,213	viável
YOL003c	244807 - 246147	1341	0,157	0,011	0,427	42,010	0,315	0,178	viável
YOR220w	185385 - 186212	828	0,195	0,021	0,436	44,760	0,299	0,220	viável
YOR227w	172256 - 176350	4095	0,157	0,077	0,449	43,700	0,372	0,267	viável
YOR228c	179964 - 180848	885	0,143	-0,014	0,409	43,140	0,323	0,214	viável
YPL233w	162897 - 163589	693	0,152	-0,069	0,406	52,720	0,309	0,268	inviável
RRP12	2533 - 28986	3654	0,253	0,233	0,545	37,070	0,344	0,250	não testado
SPBPB7E8.02	64593 - 66194	1602	0,172	0,108	0,476	36,900	0,351	0,168	não testado
YBR261c	162169 - 162900	732	0,161	0,058	0,443	45,060	0,402	0,276	viável
YCL002c	167732 - 168454	723	0,139	0,069	0,463	42,520	0,317	0,291	viável
YCL010c	168620 - 169417	798	0,135	-0,004	0,429	49,610	0,352	0,284	viável
YCL036w-1	212456 - 213523	1068	0,117	-0,038	0,407	52,700	0,376	0,401	viável
YCL036w-2	215842 - 216936	1095	0,113	-0,016	0,398	50,320	0,397	0,356	viável
YFR007w	147351 - 148031	681	0,131	-0,020	0,403	49,190	0,373	0,253	viável
YFR048w	142747 - 144537	1791	0,149	0,069	0,439	48,570	0,382	0,316	viável
YGL242c	225223 - 225753	531	0,178	0,161	0,512	41,560	0,396	0,366	viável
YGL245w	140268 - 142445	2178	0,471	0,459	0,683	31,730	0,368	0,287	inviável
YKL070w	209620 - 210264	645	0,229	0,142	0,522	48,390	0,369	0,324	viável
YLR001c	205779 - 208709	2931	0,131	0,008	0,423	51,180	0,371	0,348	viável
YLR290c	196965 - 197765	801	0,130	0,024	0,425	48,100	0,386	0,282	viável
YLR332w	183990 - 185003	1014	0,151	0,127	0,486	44,360	0,385	0,309	viável
YLR339c	31578 - 32084	507	0,088	-0,016	•	•	•	0,350	inviável
YOR111w	116872 - 117513	642	•	•	•	40,270	,	,	viável
YOR166c	144776 - 146131	1356	0,123	-0,011	0,413	49,220	0,368	0,294	viável

19-10262

	YOR390w	204395 - 205567	1173 0,	,099 -0	0,003	0,394	54,240	0,404	0,330	não testado
19-20187										
	YHR121w	17563 - 18243	681 0,	,180 -0),024	0,438	31,130	0,236	0,098	viável
	YLR392c	22317 - 24233	1917 0,	,134 -0	0,069	0,381	36,720	0,309	0,128	viável
	YNL127w	13790 - 16771	2982 0,	,177 -0),111	0,370	34,720	0,244	0,107	viável
19-20219										
	SPAC1527.03	6630 - 7184	555 0,	,240 0	,113	0,497	36,400	0,293	0,128	não testado
	YGL097w	121600 - 122103	504 0,	,185 0	,123	0,485	46,710	0,397	0,227	inviável
	YGR017w	24904 - 25590	687 0,	,128 -0	0,093	0,362	51,360	0,349	0,235	viável
	YKR049c	60500 - 61018	519 0,	,246 0	,128	0,506	46,860	0,333	0,301	viável
	YLL007c	47548 - 49113	1566 0,	,228 0	,134	0,505	43,670	0,331	0,301	viável
	YLR149c	3863 - 5578	1716 0,	,189 0	,032	0,440	38,170	0,311	0,190	viável
	YMR196w	137165 - 137691	527 0,	,197 0	,062	0,467	39,580	0,275	0,372	viável
	YNL191w	61622 - 62656	1035 0,	,149 0	,026	0,421	42,670	0,346	0,191	viável
	YNR029c	76632 - 77759	1128 0,	,143 0	,031	0,444	50,340	0,378	0,305	viável
	YOL022c	82954 - 84258	1305 0,	,166 0	,004	0,421	46,900	0,356	0,260	inviável
19-20253										
	YBL060w	47956 - 51093	3138 0,	,200 0	,105	0,480	43,690	0,349	0,288	viável
	YCR024c	31419 - 32888	1470 0,	,147 0	,030	0,420	39,100	0,341	0,191	viável
	YGR145w	3230 - 5482	2253 0,	,204 0	,035	0,438	37,950	0,320	0,165	inviável
	YHR020w	34575 - 36650	2076 0,	,379 0	,354	0,618	31,840	0,363	0,210	inviável
	YNL217w	54621 - 55787	1167 0,	,167 -0),047	0,403	42,900	0,320	0,249	viável
	YOL098c	24585 - 28016	3432 0,	,172 -0	0,033	0,414	37,950	0,291	0,152	viável
19-2401										
	USO1	18655 - 21486	2832 0,	,155 0	,050	0,448	47,100	0,346	0,315	inviável
	YDR444w	14312 - 16462	2151 0,	,150 0	,049	0,447	47,790	0,365	0,321	não testado
19-2511										
	SPAC926.06c	102653 - 104767	2115 0,	,124 -0),112	0,355	37,370	0,300	0,171	não testado
	YGR205w	128863 - 129867	1005 0,	,156 -0),100	0,380	34,630	0,262	0,123	viável
	YHR112c	27193 - 28344	1152 0,	,220 0	,108	0,465	35,950	0,337	0,179	viável
	YIL042c	4792 - 6317	1536 0,	,194 0	,150	0,501	44,760	0,377	0,308	viável

	YML125c	46271 - 47128	858	0,223	0,131	0,498	35,310	0,318	0,178	inviável
	YML128c	49903 - 52269	2367	0,240	0,118	0,493	40,470	0,330	0,259	viável
	YMR029c	67325 - 69145	1821	0,150	0,029	0,431	45,940	0,351	0,303	viável
	YPR127w	44598 - 45647	1050	0,212	0,160	0,504	36,640	0,332	0,210	viável
19-2516										
	YCR045c	3268 - 4407	1140	0,127	0,030	0,419	50,210	0,297	0,391	viável
	YDL146w	23645 - 25918	2274	0,149	-0,064	0,390	40,120	0,274	0,199	viável
	YGR002c	63419 - 65326	1905	0,180	0,112	0,487	42,980	0,351	0,292	inviável
	YIL056w	13629 - 15242	1614	0,141	0,023	0,413	46,250	0,348	0,252	não testado
	YJL060w	133182 - 134354	1173	0,167	0,152	0,516	50,830	0,391	0,397	viável
	YLR328w	78157 - 79362	1206	0,204	0,224	0,535	46,190	0,401	0,313	viável
	YMR090w	142266 - 142955	690	0,237	0,203	0,539	42,590	0,394	0,377	viável
	YMR317w	17818 - 22398	4581	0,175	0,149	0,501	40,990	0,376	0,235	viável
	YOL125w	357 - 1589	1233	0,188	0,121	0,485	45,900	0,338	0,297	viável
	YOL137w	59969 - 61558	1590	0,133	0,041	0,435	42,250	0,335	0,200	viável
	YPL105c	98413 - 99636	1224	0,185	0,109	0,476	48,260	0,344	0,327	viável
19-2518										
	CSM1	201883 - 202560	678	0,119	0,010	0,421	61,000	0,404	0,457	viável
	SPCC330.11	69549 - 73868	4320	0,151	0,039	0,441	45,170	0,349	0,285	não testado
	SPCC576.12c	106492 - 107133	642	0,178	-0,121	0,381	41,500	0,291	0,162	não testado
	YDR124w	55109 - 56398	1290	0,168	0,048	0,448	47,460	0,367	0,295	viável
	YDR411c	211115 - 212110	996	0,132	0,138	0,484	54,310	0,463	0,572	viável
	YHR034c	182860 - 183801	942	0,168	0,146	0,512	52,700	0,390	0,419	viável
	YHR109w	141262 - 143322	2061	0,189	0,082	0,470	46,270	0,289	0,341	viável
	YML093w	22301 - 24919	2619	0,241	0,121	0,493	42,340	0,348	0,254	inviável
	YNL320w	160665 -161555	891	0,138	0,069	0,444	41,190	0,369	0,308	viável
	YNL321w	208251 - 211022	2772	0,155	0,189	0,516	48,840	0,457	0,534	viável
	YOL138c	161754 - 165020		•	0,051	•	49,280	•	•	viável
	YOR145c	147773 - 148603	831	0,216	•	•	41,670	•	•	não testado
	YOR148c	151507 - 152085	579	•	•	•	44,060	-	•	inviável
	YOR305w	93405 - 94226	822	•	•	•	38,060	•	•	viável
				,	, = =	, · =	,	,	, -	

40 40040	YOR313c	56703 - 57548	846	0,169	0,063	0,458	40,420	0,343	0,229	viável
19-10040	YIL130w	4614 - 7118	2505	0 154	-0 036	U 380	36,110	n 20 <i>4</i>	0 108	viável
	YOR084w	1733 - 2938		•	•	•	33,520	•	•	viável
19-10052	101\004W	1733 - 2930	1200	0,220	0,003	0,403	33,320	0,294	0,120	viavei
19-10032	YBR275c	36022 - 41019	4998	0.137	0.017	0.428	50,000	0.356	0.322	viável
	YDR306c	49790 - 51166		0,133	0,049	•	48,620	-	•	viável
	YGR235c	16956 - 17702		,	,	•	42,050	•	,	viável
	YHR078w	58525 - 60273		•	•	•	52,230	•	•	viável
	YJL057c	41297 - 43480		•	•	•	49,910	•	,	viável
	YKR070w	75597 - 76793		•	0,049	•	44,000	•	,	viável
	YNR040w	67014 - 68171		0,163	•	,	43,490	•	•	viável
	YOL114c	33065 - 33658		,	•	•	42,770	•	,	viável
	YOL148c	28874 - 31129		•	•	•	47,380	•	,	viável
19-10053				- ,	-,	, -	,	, -	,	
	YBL025w	98397 - 98984	588	0,133	-0,056	0,396	43,580	0,357	0,337	viável
	YBR067c	116954 - 117460	507	0,297	0,323	•	31,910	0,413	•	viável
	YBR197c	124547 - 125344	798	0,125	-0,061	0,398	57,100	0,328	0,365	viável
	YHR036w	28466 - 29767	1302				48,560			inviável
	YHR085w	32435 - 33160	726	0,144	0,013	0,407	43,840	0,333	0,225	inviável
	YJR056c	37841 - 38569	729	0,150	0,052	0,443	48,000	0,380	0,353	viável
	YNL063w	67648 - 68568	921	0,126	0,001	0,397	44,900	0,369	0,269	viável
	YNL129w	85145 - 85873	729	0,140	-0,027	0,405	41,290	0,369	0,300	viável
	YNL132w	86049 - 89177	3129	0,228	0,190	0,515	40,660	0,358	0,273	inviável
19-10063										
	RAI1	13791 - 14987	1197	0,139	-0,061	0,411	48,040	0,312	0,279	viável
	SPAC1B3.06c	1756 - 2481	726	0,162	-0,023	0,401	32,480	0,295	0,084	não testado
	YEN1	46566 - 48620	2055	0,130	-0,039	0,390	44,620	0,329	0,200	viável
	YJL097w	15503 - 16216	714	0,163	0,039	0,422	36,640	0,301	0,200	inviável
	YJR089w	21618 - 25454	3837	0,160	-0,061	0,407	43,990	0,321	0,219	inviável
19-10148										

	YGL050w	46764 - 47591	828	0,180	0,058	0,464	41,070	0,325	0,225	viável
	YGL101w	70175 - 70957	783	0,223	0,178	0,520	42,280	0,354	0,302	viável
	YJL066c	52762 - 53730	969	0,187	0,077	0,468	42,440	0,350	0,284	viável
	YKL099c	12683 - 13426	744	0,138	-0,043	0,383	47,150	0,341	0,333	inviável
	YKR023w	16719 - 17792	1074	0,171	0,080	0,465	52,570	0,381	0,349	viável
	YMR097c	10463 - 11569	1107	0,154	0,075	0,447	47,950	0,373	0,323	viável
	YMR098c	13667 - 15409	1743	0,162	0,068	0,446	45,530	0,363	0,286	viável
	YNL224	35527 - 37644	2118	0,176	0,007	0,424	35,930	0,326	0,147	viável
19-10203										
	SPAC3A12.06c	53287 - 55005	1719	0,135	0,080	0,464	47,910	0,342	0,330	não testado
	YLR285w	59208 - 59996	789	0,180	0,027	0,421	45,860	0,354	0,250	viável
	YMR115w	21146 - 22810	1665	0,163	-0,010	0,398	38,040	0,163	0,313	viável
	YNL119w	105377 - 106735	1359	0,168	0,122	0,484	44,170	0,369	0,309	viável
	YPR147c	104240 - 105040	801	0,146	0,060	0,452	51,820	0,356	0,340	viável
19-20057										
	YDL057w	18023 - 20005	1983	0,181	0,084	0,453	40,070	0,359	0,227	viável
	YDL244w	48112 - 49011	900	0,188	0,163	0,517	52,800	0,412	0,441	não testado
	YLR352w	72865 - 74781	1917	0,132	-0,004	0,409	53,430	0,371	0,377	viável
	YNL253w	38557 - 39750	1194	0,136	-0,055	0,388	42,540	0,338	0,214	viável
	YNL254c	26540 - 27727	1188	0,129	-0,122	0,351	45,460	0,321	0,207	viável
19-20151										
	SPBC1734.05c	35703 - 36449		•	•	,	37,550	•	•	não testado
	YBL055c	34279 - 35523	1245	0,163	-	•	35,260	•	•	viável
	YFL010c	73764 - 74474	711	,	•	•	44,530	•	•	não testado
	YFL034w	79014 - 81734		•	•	,	48,420	•	•	viável
	YHR006w	140651 - 141403	753	,	•	•	50,140	•	•	viável
	YLR063w	82824 - 83783	960	•	•	,	43,750	•	•	viável
	YMR269w	68954 - 69817	864	,	•	•	48,000	•	•	viável
	YNL022c	123491 - 124987		0,150	•	•	45,630	•	•	viável
	YNL035c	11480 - 12766		•	•	,	47,340	•	•	viável
	YPL009c	88950 - 92006	3057	0,191	0,113	0,485	43,250	0,352	0,291	viável

19-20161										
	SPAC4F10.07c	87983 - 90268	2286	0,133	-0,006	0,400	45,030	0,382	0,247	não testado
	SPBC29A3.11c	102158 - 103237	1080	0,123	-0,001	0,405	41,810	0,350	0,231	não testado
	YGL101w	114632 - 115414	783	0,222	0,184	0,524	41,700	0,359	0,315	viável
	YMR317w	53350 - 53943	594	0,224	0,245	0,541	31,270	0,367	0,134	viável
	YNL152w	50805 - 52784	1980	0,132	-0,093	0,358	38,000	0,327	0,149	inviável
19-20188										
	YCR079w	3404 - 4705	1302	0,138	0,031	0,424	50,410	0,396	0,327	viável
19-20238										
	YER030w	49484 - 49987	504	0,297	0,228	0,572	44,560	0,371	0,265	viável
	YGL183c	43555 - 44160	606	0,121	-0,005	0,407	60,320	0,395	0,340	viável
	YLR440c	26397 - 28844	2448	0,159	0,016	0,433	50,270	0,332	0,341	inviável
	YMR037c	9020 - 11737	2718	0,140	0,047	0,434	48,000	0,389	0,297	viável
	YOR381w	37819 - 39030	1212	0,540	0,057	0,455	47,350	0,298	0,384	viável
19-20247										
	YDL063c	77093 - 78355	1263	0,154	0,016	0,431	42,580	0,347	0,326	viável
	YHL023c	114551 - 116698	2148	0,123	0,051	0,439	56,500	0,410	0,413	viável
	YLR387c	56258 - 57610	1353	0,136	0,092	0,466	47,560	0,410	0,367	viável
	YML059c	38457 - 42617	4161	0,145	0,121	0,478	50,980	0,400	0,391	viável
	YNL064c	58620 - 60239	1620	0,123	0,043	0,444	50,810	0,404	0,387	viável
	YNL080c	70629 - 72026	1398	0,093	-0,044	0,379	55,850	0,393	0,344	viável
	YNL207w	6455 - 7858	1404	0,197	0,113	0,487	48,030	0,378	0,338	inviável
	YOL032w	46037 - 46702	666	0,142	0,077	0,467	53,030	0,413	0,458	viável
	YOL048c	53749 - 54492	744	0,112	0,071	0,439	52,130	0,413	0,367	viável

Gene	Valor	Desvio	Ruido	Alpha	CAI	Deleção
	Médio	Padrão				Sistemática
YAL001C/TFC3_ex2	123,2	34,42	0,279	0,215	0,121	essencial
YAL002W/VPS8	109,6	29,46	0,269	0,263	0,134	não essencial
YAL003W/EFB1_ex1	966,1	323,35	0,335	0,468	0,763	essencial
YAL003W/EFB1_ex2	2608,2	1121,56	0,430	0,567	0,763	essencial
YAL004W/	154,9	90,99	0,587	0,345	0,198	não essencial
YAL005C/SSA1	361,7	257,69	0,712	0,356	0,709	não essencial
YAL007C/	559,0	141,55	0,253	0,345	0,235	não essencial

YAL009W/SPO7	110,0	28,27	0,257	0,357	0,111	não essencial
YAL010C/MDM10	152,7	34,33	0,225	0,217	0,119	não essencial
YAL011W/	156,2	40,86	0,262	0,355	0,148	não essencial
YAL012W/CYS3	793,9	208,68	0,263	0,321	0,420	não essencial
YAL013W/DEP1	236,2	69,81	0,296	0,397	0,107	não essencial
YAL014C/	294,9	67,94	0,230	0,198	0,100	não essencial
YAL015C/	367,4	62,13	0,169	0,219	0,120	não essencial
YAL016W/TPD3	641,2	497,84	0,776	0,498	0,177	não essencial
YAL017W/FUN31	165,1	65,26	0,395	0,327	0,126	não essencial
YAL018C/	44,8	17,43	0,389	0,334	0,154	não essencial
YAL019W/FUN30	281,2	61,55	0,219	0,269	0,163	não essencial
YAL020C/ATS1	74,9	21,17	0,282	0,300	0,059	não essencial
YAL021C/CCR4	397,1	61,29	0,154	0,214	0,137	não essencial
YAL022C/	542,1	213,36	0,394	0,257	0,119	não essencial
YAL023C/PMT2	727,5	150,32	0,207	0,250	0,240	não essencial
YAL025C/MAK16	672,9	180,57	0,268	0,355	0,219	essencial
YAL026C/DRS2	212,5	229,86	1,082	0,668	0,188	não essencial
YAL020C/DK32	174,9	35,40	0,202	0,008	0,100	não essencial
YAL028W/	51,2	22,77	0,202	0,243	0,112	não essencial
YAL029C/MYO4	859,4	148,18	0,444	0,411	0,113	não essencial
YAL030W/SNC1 ex1	222,6	78,18	0,172	0,199	0,130	não essencial
YAL030W/SNC1_ex1	668,2	193,50	0,331	0,273	0,132	não essencial
YAL030W/SNC1_ex2	166,1	30,21	0,290	0,330	0,132	não essencial
YAL032C/FUN20	91,4			·	0,123	
YAL032C/FUN20 YAL033W/FUN53	425,0	20,05	0,219	0,209	·	essencial
YAL034C/FUN19	The second secon	80,34	0,189	0,249	0,093	essencial
	82,4	17,92	0,217	0,191	0,125	não essencial
YAL034W-a/	106,4	38,32	0,360	0,306	0,109	essencial
YAL035C-a/	54,7	15,14	0,277	0,350	0.055	essencial
YAL035W/FUN12	609,2	142,09	0,233	0,309	0,355	não essencial
YAL036C/	635,4	188,78	0,297	0,586	0,239	não essencial
YAL037W/	71,1	24,04	0,338	0,290	0,094	não essencial
YAL038W/CDC19	2294,9	1088,25	0,474	0,609	0,893	essencial
YAL039C/CYC3	783,7	231,41	0,295	0,270	0,114	não essencial
YAL040C/CLN3	1183,5	467,79	0,395	0,351	0,205	não essencial
YAL041W/CDC24	272,0	56,58	0,208	0,247	0,128	essencial
YAL042W/	768,8	169,05	0,220	0,288	0,118	não essencial
YAL043C/PTA1	215,5	47,93	0,222	0,240	0,130	essencial
YAL043C-a/	295,1	56,24	0,191	0,251	2 121	não essencial
YAL044C/GCV3	949,5	417,71	0,440	0,374	0,164	não essencial
YAL045C/	372,4	64,78	0,174	0,181	0,107	não essencial
YAL046C/	459,2	85,13	0,185	0,199	0,113	não essencial
YAL047C/	156,2	26,21	0,168	0,185	0,143	não essencial
YAL048C/	30,0	9,49	0,316	0,457	0,144	não essencial
YAL049C/	441,5	111,16	0,252	0,238	0,172	não essencial
YAL051W/	138,1	24,28	0,176	0,161	0,143	não essencial
YAL053W/	797,1	170,00	0,213	0,233	0,166	não essencial
YAL054C/ACS1	123,5	54,13	0,438	0,356	0,255	não essencial
YAL055W/	184,1	55,23	0,300	0,332	0,087	não essencial
YAL056W/	91,6	24,52	0,268	0,285	0,113	não essencial
YAL058C-a/	314,6	58,83	0,187	0,213		não essencial
YAL058W/CNE1	259,3	39,55	0,153	0,146	0,109	não essencial
YAL059W/SIM1	765,8	206,76	0,270	0,339	0,174	não essencial
YAL060W/	323,1	108,49	0,336	0,237	0,224	não essencial
YAL061W/	80,4	21,18	0,264	0,178	0,144	não essencial
YAL062W/GDH3	101,2	68,75	0,679	0,221	0,156	não essencial
YAL067C/SEO1	39,7	39,13	0,986	0,787	0,184	não essencial

YAL068C/ f	435,1	101,86	0,234	0,244	0,628	não essencial
YAR002A-C/	1021,1	297,09	0,291	0,352	0,325	não essencial
YAR002W/	399,4	62,15	0,156	0,154	0,143	não essencial
YAR003W/	168,8	46,34	0,275	0,246	0,129	não essencial
YAR007C/RFA1	350,6	196,56	0,561	0,452	0,206	essencial
YAR008W/	298,1	159,19	0,534	0,435	0,121	essencial
YAR014C/	238,0	47,06	0,198	0,253	0,120	não essencial
YAR015W/ADE1	506,8	106,37	0,210	0,190	0,230	não essencial
YAR018C/KIN3	309,8	194,17	0,627	0,399	0,138	não essencial
YAR019C/CDC15	92,2	22,59	0,245	0,283	0,138	essencial
YAR020C/ f	309,6	133,13	0,430	0,437	0,482	não essencial
YAR023C/	119,9	23,11	0,193	0,120	0,103	não essencial
YAR027W/	387,6	87,05	0,225	0,177	0,128	não essencial
YAR028W/	194,9	35,64	0,183	0,127	0,122	não essencial
YAR029W/	146,6	17,39	0,119	0,136	0,122	não essencial
YAR030C/	161,1	31,24	0,113	0,130	0,110	não essencial
YAR031W/	84,1	22,76	0,194	0,177	0,103	não essencial
YAR033W/ f	276,9	60,62	0,211	0,227	0,107	não essencial
YAR035W/YAT1	69,1	24,42	0,219	0,166	0,107	
YAR042W/SWH1	19,1	8,62	0,354	0,353	0,093	não essencial não essencial
YAR044W/OSH1	122,7	31,27	0,451	0,004	0,170	
					0.050	não essencial
YAR050W/FLO1	113,8	33,44	0,294	0,192	0,259	não essencial
YBL001c/	1106,1	257,60	0,233	0,288	0,243	não essencial
YBL002w/HTB2	1329,5	645,15	0,485	0,442	0,563	não essencial
YBL003c/HTA2	1412,4	539,08	0,382	0,429	0,544	não essencial
YBL004w/	611,6	129,18	0,211	0,239	0,146	essencial
YBL005w/PDR3	445,0	107,99	0,243	0,128	0,148	não essencial
YBL006c/	578,3	98,90	0,171	0,207	0,057	não essencial
YBL007c/SLA1	616,4	102,60	0,166	0,159	0,189	não essencial
YBL008w/HIR1	88,6	22,89	0,258	0,268	0,128	não essencial
YBL009w/	148,6	54,08	0,364	0,285	0,141	não essencial
YBL010c/	94,9	28,17	0,297	0,266	0,122	não essencial
YBL011w/	312,8	47,80	0,153	0,173	0,166	não essencial
YBL014c/RRN6	432,8	54,81	0,127	0,142	0,120	essencial
YBL015w/ACH1	410,4	76,94	0,187	0,182	0,217	não essencial
YBL016w/FUS3	332,3	44,84	0,135	0,168	0,110	não essencial
YBL017c/PEP1	593,4	95,14	0,160	0,171	0,163	não essencial
YBL018c/_ex2	579,1	117,47	0,203	0,201	0,175	essencial
YBL019w/	174,2	44,64	0,256	0,221	0,122	não essencial
YBL020w/RFT1	222,3	36,06	0,162	0,151	0,139	essencial
YBL021c/HAP3	214,6	25,05	0,117	0,125	0,091	não essencial
YBL022c/PIM1	336,2	74,77	0,222	0,174	0,186	não essencial
YBL023c/MCM2	136,8	55,48	0,405	0,377	0,175	essencial
YBL024w/	824,5	184,30	0,224	0,283	0,270	não essencial
YBL025w/RRN10	153,9	32,06	0,208	0,220	0,099	não essencial
YBL026w/SNP3_ex1	85,6	27,54	0,322	0,481	0,169	essencial
YBL026w/SNP3_ex2	875,7	154,33	0,176	0,213	0,169	essencial
YBL027w/RPL19A_ex1_f	2478,5	1276,83	0,515	0,658	0,708	não essencial
YBL027w/RPL19A_ex1_i	2368,5	1789,83	0,756	0,979	0,708	não essencial
YBL028c/	714,2	156,48	0,219	0,330	0,261	não essencial
YBL029w/	349,4	89,51	0,256	0,206	0,117	não essencial
YBL030c/PET9	996,8	359,65	0,361	0,343	0,538	essencial
YBL032w/	409,1	119,83	0,293	0,254	0,191	não essencial
YBL033c/RIB1	315,1	53,32	0,169	0,125	0,112	não essencial
YBL034c/STU1	225,1	59,12	0,263	0,205	0,148	essencial
YBL035c/POL12	221,8	133,43	0,602	0,436	0,145	essencial

YBL036c/	644,3	135,77	0,211	0,254	0,236	não essencial
YBL037w/	105,9	38,25	0,361	0,391	0,135	não essencial
YBL038w/MRPL16	909,5	272,54	0,300	0,312	0,154	não essencial
YBL039c/URA7	1160,5	202,67	0,175	0,243	0,309	não essencial
YBL040c/ERD2_ex1	676,4	125,09	0,185	0,247	0,182	essencial
YBL041w/PRE7	937,4	210,35	0,224	0,274	0,166	essencial
YBL042c/	723,5	119,04	0,165	0,199	0,168	não essencial
YBL043w/	299,5	149,72	0,500	0,268	0,173	não essencial
YBL045c/COR1	1102,8	305,95	0,277	0,216	0,293	não essencial
YBL046w/	267,5	66,17	0,247	0,185	0,129	não essencial
YBL047c/	356,8	65,00	0,182	0,145	0,197	não essencial
YBL048w/	105,0	75,64	0,720	0,241	0,153	não essencial
YBL049w/	91,2	55,95	0,614	0,246	0,157	não essencial
YBL050w/SEC17_ex1	623,8	160,72	0,258	0,278	0,159	essencial
YBL051c/	485,4	105,39	0,217	0,194	0,187	não essencial
YBL052c/	202,0	59,50	0,295	0,256	0,132	não essencial
YBL053w/	296,5	89,37	0,301	0,277	0,095	não essencial
YBL054w/	903,4	225,71	0,250	0,194	0,142	não essencial
YBL055c/	267,4	44,78	0,167	0,129	0,125	não essencial
YBL056w/	510,4	92,59	0,181	0,224	0,177	não essencial
YBL057c/	596,9	77,66	0,130	0,166	0,126	não essencial
YBL058w/SHP1	855,6	232,66	0,272	0,205	0,144	não essencial
YBL059w/_ex1	56,9	11,56	0,203	0,205	0,089	não essencial
YBL059w/_ex2	563,2	73,20	0,130	0,129	0,089	não essencial
YBL060W/SAS3	151,6	25,05	0,165	0,159	0,143	não essencial
YBL061c/SKT5	399,6	99,18	0,248	0,277	0,113	não essencial
YBL062w/	590,1	115,70	0,196	0,258	0,120	não essencial
YBL063w/KIP1	143,9	65,37	0,454	0,454	0,143	não essencial
YBL064c/	377,2	174,56	0,463	0,193	0,206	não essencial
YBL065w/	37,8	19,62	0,519	0,245	0,103	não essencial
YBL066c/SEF1	31,8	12,77	0,402	0,515	0,142	não essencial
YBL067c/UBP13	174,5	30,91	0,177	0,157	0,145	não essencial
YBL068w/PRS4	464,1	98,66	0,213	0,275	0,199	não essencial
YBL069w/AST1	56,5	24,91	0,441	0,366	0,169	não essencial
YBL070c/	30,1	10,71	0,356	0,296	0,096	não essencial
YBL071c/	597,2	136,02	0,228	0,257	0,116	não essencial
YBL072c/RPS8A	4198,7	1947,41	0,464	0,590	0,747	não essencial
YBL074c/AAR2	24,8	10,64	0,429	0,633	0,143	essencial
YBL075c/SSA3	59,2	15,95	0,270	0,471	0,177	não essencial
YBL076c/ILS1	1014,0	247,07	0,244	0,235	0,342	essencial
YBL077w/	894,8	294,70	0,329	0,396	0,107	essencial
YBL078c/	230,0	106,96	0,465	0,340	0,150	não essencial
YBL079w/NUP170	241,8	75,06	0,310	0,255	0,151	não essencial
YBL080c/PET112	94,2	28,62	0,304	0,335	0,132	não essencial
YBL081w/	662,8	104,99	0,158	0,184	0,166	não essencial
YBL082c/RHK1	180,8	23,40	0,129	0,149	0,107	não essencial
YBL083c/_i	1118,7	208,26	0,186	0,165	0,130	não essencial
YBL083c/_r	721,2	93,40	0,130	0,163	0,130	não essencial
YBL084c/CDC27	139,1	16,88	0,121	0,149	0,116	essencial
YBL085w/BOI1	415,5	85,16	0,205	0,159	0,132	não essencial
YBL086c/	192,2	40,73	0,212	0,189	0,115	não essencial
YBL087c/RPL17A_ex1	609,4	354,55	0,582	0,733	0,624	não essencial
YBL087c/RPL17A_ex2_f	2278,4	1182,97	0,519	0,625	0,624	não essencial
YBL087c/RPL17A_ex2_i	2433,8	1200,68	0,493	0,732	0,624	não essencial
YBL088c/TEL1	126,5	26,25	0,207	0,212	0,123	não essencial
YBL089w/	110,6	24,50	0,221	0,268	0,098	não essencial

YBL090w/	537,2	152,89	0,285	0,278	0,136	não essencial
YBL091c/MAP2	554,5	62,84	0,113	0,104	0,211	não essencial
YBL092w/	3438,3	1684,11	0,490	0,607	0,818	essencial
YBL093c/ROX3	925,8	144,37	0,156	0,205	0,104	não essencial
YBL094c/	187,8	38,57	0,205	0,194	0,116	não essencial
YBL095w/	103,8	28,84	0,278	0,311	0,121	não essencial
YBL096c/	127,9	21,60	0,169	0,190	0,089	não essencial
YBL097w/	56,7	16,35	0,288	0,217	0,147	essencial
YBL098w/	96,5	24,77	0,257	0,163	0,165	não essencial
YBL099w/ATP1	889,9	256,48	0,288	0,230	0,471	não essencial
YBL100c/	464,5	112,27	0,242	0,160	0,094	não essencial
YBL101c/	197,2	70,43	0,357	0,303	0,124	não essencial
YBL102w/SFT2	537,4	128,87	0,240	0,233	0,099	não essencial
YBL103c/RTG3	91,5	24,17	0,264	0,304	0,147	não essencial
YBL104c/	222,6	31,70	0,142	0,127	0,142	não essencial
YBL105c/PKC1	268,1	54,96	0,205	0,172	0,171	essencial
YBL106c/	187,1	43,37	0,232	0,152	0,123	não essencial
YBL107c/	842,5	167,89	0,199	0,145	0,104	não essencial
YBR001c/NTH2	148,4	54,91	0,370	0,246	0,123	não essencial
YBR002c/	209,5	33,81	0,161	0,202	0,109	essencial
YBR003w/COQ1	176,4	48,22	0,273	0,215	0,140	não essencial
YBR004c/	393,3	59,26	0,151	0,176	0,154	essencial
YBR005w/	340,4	86,65	0,255	0,258	0,074	não essencial
YBR006w/	54,5	23,06	0,423	0,221	0,195	não essencial
YBR007c/	226,6	60,35	0,266	0,205	0,122	não essencial
YBR008c/	112,4	18,91	0,168	0,217	0,156	não essencial
YBR009c/HHF1_f	1932,4	695,52	0,360	0,459	0,734	não essencial
YBR010w/HHT1	3450,0	1240,07	0,359	0,419	0,622	não essencial
YBR011c/IPP1	1169,6	294,70	0,252	0,310	0,621	essencial
YBR014c/	655,1	99,84	0,152	0,108	0,154	não essencial
YBR015c/TTP1	334,1	62,64	0,188	0,189	0,170	não essencial
YBR016w/	1366,5	375,60	0,275	0,234	0,106	não essencial
YBR017c/	278,1	38,99	0,140	0,154	0,144	não essencial
YBR018c/GAL7	17,2	6,85	0,399	0,258	0,222	não essencial
YBR019c/GAL10	16,1	8,99	0,557	0,414	0,186	não essencial
YBR020w/GAL1	52,9	14,00	0,265	0,292	0,194	não essencial
YBR021w/FUR4	165,9	34,61	0,209	0,245	0,186	não essencial
YBR022w/	268,5	75,09	0,280	0,455	0,117	não essencial
YBR023c/CHS3	331,4	95,45	0,288	0,395	0,167	não essencial
YBR024w/SCO2	306,4	80,35	0,262	0,201	0,155	não essencial
YBR025c/	1359,9	274,39	0,202	0,291	0,567	não essencial
YBR026c/MRF1'	199,8	63,32	0,317	0,155	0,166	não essencial
YBR027c/	18,1	7,32	0,405	0,518	0,104	não essencial
YBR028c/	94,5	22,66	0,240	0,214	0,149	não essencial
YBR029c/CDS1	562,6	102,07	0,181	0,225	0,169	essencial
YBR030w/	122,2	27,33	0,224	0,190	0,153	não essencial
YBR031w/RPL2A_f	2742,8	1102,40	0,402	0,480	0,803	não essencial
YBR032w/	70,4	27,77	0,394	0,235	0,087	não essencial
YBR033w/	49,4	7,67	0,155	0,141	0,116	não essencial
YBR034c/HMT1	1147,8	209,56	0,183	0,241	0,267	não essencial
YBR035c/PDX3	875,2	242,09	0,277	0,323	0,241	não essencial
YBR036c/CSG2	587,4	122,27	0,208	0,281	0,142	não essencial
YBR037c/SCO1	120,6	33,40	0,277	0,211	0,111	não essencial
YBR038w/CHS2	216,9	119,74	0,552	0,352	0,172	essencial
YBR039w/ATP3	838,3	191,86	0,229	0,209	0,337	não essencial
YBR040w/FIG1	17,1	6,72	0,392	1,311	0,132	não essencial

YBR041w/FAT1	215,2	37,92	0,176	0,160	0,194	não essencial
YBR042c/	251,9	46,22	0,184	0,171	0,133	não essencial
YBR043c/	380,6	93,09	0,245	0,174	0,124	não essencial
YBR044c/	219,1	46,83	0,214	0,138	0,127	não essencial
YBR045c/GIP1	41,3	9,94	0,241	0,296	0,140	não essencial
YBR046c/	133,0	50,18	0,377	0,173	0,156	não essencial
YBR047w/	189,9	70,09	0,369	0,209	0,149	não essencial
YBR048w/RPS18B_ex1_f	1030,8	350,25	0,340	0,463	0,733	não essencial
YBR048w/RPS18B ex1 i	828,9	360,34	0,435	0,602	0,733	não essencial
YBR048w/RPS18B ex2 f	3147,7	1273,45	0,405	0,530	0,733	não essencial
YBR048w/RPS18B ex2 i	2892,2	1117,51	0,386	0,558	0,733	não essencial
YBR049c/REB1	171,4	45,19	0,264	0,209	0,199	essencial
YBR050c/	196,2	63,82	0,325	0,151	0,138	não essencial
YBR051w/	32,5	13,14	0,404	0,342	0,133	não essencial
YBR052c/	506,9	220,39	0,435	0,342	0,114	não essencial
YBR053c/	290,9	141,92	0,488	0,279	0,149	não essencial
	444,2	293,87	0,488	0,629		
YBR054w/YRO2	260,6	·	-	0,629	0,457	não essencial
YBR055c/PRP6		51,66	0,198		0,127	essencial
YBR056w/	108,6	41,05	0,378	0,298	0,202	não essencial
YBR057c/	259,5	47,57	0,183	0,195	0,123	não essencial
YBR058c/UBP14	232,7	35,50	0,153	0,163	0,162	não essencial
YBR059c/	331,0	77,03	0,233	0,180	0,146	não essencial
YBR060c/RRR1	158,5	37,95	0,239	0,362	0,140	essencial
YBR061c/	340,5	39,22	0,115	0,134	0,143	não essencial
YBR062c/	742,4	176,61	0,238	0,159	0,145	não essencial
YBR063c/	172,1	41,30	0,240	0,225	0,131	não essencial
YBR064w/	61,6	22,23	0,361	0,326	0,076	não essencial
YBR065c/	65,3	23,19	0,355	0,455	0,107	não essencial
YBR066c/	459,8	102,83	0,224	0,227	0,124	não essencial
YBR067c/TIP1	661,8	426,44	0,644	0,235	0,450	não essencial
YBR068c/BAP2	850,3	188,27	0,221	0,194	0,157	não essencial
YBR069c/VAP1	727,6	186,83	0,257	0,188	0,151	não essencial
YBR070c/	302,5	205,62	0,680	0,407	0,101	essencial
YBR071w/	837,0	433,74	0,518	0,449	0,139	não essencial
YBR072w/HSP26	85,2	95,17	1,117	0,294	0,338	não essencial
YBR073w/RDH54	1050,1	335,83	0,320	0,259	0,135	não essencial
YBR074w/	27,9	12,67	0,454	0,793	0,125	não essencial
YBR075w/	336,8	56,46	0,168	0,218		não essencial
YBR076w/	162,1	38,21	0,236	0,197	0,145	não essencial
YBR077c/	356,2	40,77	0,114	0,110	0,142	não essencial
YBR078w/_ex1	839,1	203,04	0,242	0,232	0,553	não essencial
YBR078w/_ex2	1023,1	211,52	0,207	0,206	0,553	não essencial
YBR079c/	1088,2	274,34	0,252	0,329	0,355	essencial
YBR080c/SEC18	498,1	59,75	0,120	0,116	0,193	essencial
YBR081c/SPT7	187,4	32,39	0,173	0,188	0,154	não essencial
YBR082c/UBC4 ex1	578,4	185,86	0,321	0,423	0,313	não essencial
YBR082c/UBC4_ex2	2265,2	481,07	0,212	0,279	0,313	não essencial
YBR083w/TEC1	470,6	272,73	0,579	0,297	0,121	não essencial
YBR084C-a/RPL19B ex1 f	2507,9	1102,98	0,440	0,569	0,686	não essencial
YBR084C-a/RPL19B_ex1_i	2056,6	868,47	0,422	0,424	0,686	não essencial
YBR084w/MIS1	518,3	89,79	0,173	0,165	0,208	não essencial
YBR085w/AAC3	192,9	64,28	0,333	0,204	0,198	não essencial
YBR086c/	997,9	221,38	0,333	0,194	0,136	não essencial
YBR087w/RFC5	547,6	118,77	0,222	0,134	0,170	essencial
YBR088c/POL30	998,8	496,24	0,497	0,173	0,152	essencial
YBR089w/	467,8	257,48	0,497	0,440	0,236	essencial
I DIZOGAM/	407,0	257,40	0,550	0,400	0,100	Coociiciai

YBR090c/_ex1	22,5	10,83	0,481	0,977	0,080	não essencial
YBR090c/_ex2_f	753,6	129,15	0,171	0,200	0,080	não essencial
YBR090c/_ex2_i	1552,2	277,20	0,179	0,204	0,080	não essencial
YBR090c-a/NHP6B	1581,4	348,00	0,220	0,282	,	não essencial
YBR091c/MRS5	435,8	70,53	0,162	0,169	0,068	essencial
YBR092c/PHO3	1159,8	581,41	0,501	0,503	0,354	não essencial
YBR093c/PHO5	2143,5	962,51	0,449	0,489	0,460	não essencial
YBR094w/	304,6	76,89	0,252	0,237	0,176	não essencial
YBR095c/	138,2	30,38	0,220	0,194	0,146	não essencial
YBR096w/	593,3	116,67	0,197	0,217	0,209	não essencial
YBR097w/VPS15	63,6	12,79	0,201	0,195	0,135	não essencial
YBR098w/	36,7	6,85	0,187	0,135	0,108	não essencial
YBR099c/	158,8	50,80	0,320	0,168	0,130	não essencial
YBR100w/	159,8	35,58	0,223	0,232	0,100	não essencial
YBR101c/	396,2	61,63	0,156	0,174	0,158	não essencial
YBR102c/	74,4	20,63	0,130	0,174	0,132	essencial
YBR103w/	376,9	59,18	0,277	0,203	0,132	não essencial
YBR104w/YMC2	569,8	126,67	0,137	0,122	0,108	não essencial
YBR105c/	115,2	55,39	0,222	0,208	0,119	
YBR106w/	1917,8	629,49	0,481	0,273	0,125	não essencial
						não essencial
YBR107c/	147,6	27,99	0,190	0,208	0,120	não essencial
YBR108w/	111,8	31,14	0,279	0,227	0,112	não essencial
YBR109c/CMD1	1340,6	290,28	0,217	0,273	0,220	essencial
YBR110w/ALG1	231,1	38,64	0,167	0,208	0,141	essencial
YBR111c/YSA1	1107,7	321,53	0,290	0,295	0,247	não essencial
YBR112c/CYC8	359,5	84,72	0,236	0,198	0,162	não essencial
YBR113w/	79,9	18,62	0,233	0,273	0,133	não essencial
YBR114w/RAD16	77,1	44,28	0,574	0,551	0,163	não essencial
YBR115c/LYS2	395,6	87,36	0,221	0,174	0,212	não essencial
YBR116c/	41,1	22,06	0,537	0,206	0,095	não essencial
YBR117c/TKL2	19,1	6,91	0,361	0,333	0,168	não essencial
YBR118w/TEF2_f	2952,5	1507,39	0,511	0,628	0,876	não essencial
YBR119w/MUD1_ex1	305,6	32,87	0,108	0,083	0,113	não essencial
YBR120c/CBP6	424,5	147,24	0,347	0,334	0,127	não essencial
YBR121c/GRS1	1315,7	255,50	0,194	0,249	0,414	essencial
YBR122c/MRPL36	576,8	155,64	0,270	0,289	0,174	não essencial
YBR123c/TFC1	228,8	62,75	0,274	0,277	0,135	essencial
YBR124w/	33,1	10,94	0,330	0,452	0,104	essencial
YBR125c/	378,6	74,37	0,196	0,194	0,129	não essencial
YBR126c/TPS1	313,8	99,91	0,318	0,220	0,187	não essencial
YBR127c/VMA2	966,1	256,58	0,266	0,306	0,390	não essencial
YBR128c/	72,8	14,33	0,197	0,189	0,104	não essencial
YBR129c/	209,8	46,95	0,224	0,155	0,141	não essencial
YBR130c/	246,1	50,36	0,205	0,154	0,149	não essencial
YBR131w/	96,7	13,31	0,138	0,111	0,129	não essencial
YBR132c/	13,6	5,63	0,413	0,566	0,142	não essencial
YBR133c/HSL7	228,0	67,47	0,296	0,300	0,127	não essencial
YBR134w/	19,5	7,19	0,368	0,641	0,105	não essencial
YBR135w/CKS1	771,6	109,87	0,142	0,143	0,144	essencial
YBR136w/ESR1	105,7	27,78	0,263	0,195	0,136	essencial
YBR137w/	320,4	76,93	0,240	0,218	0,157	não essencial
YBR138c/	213,2	101,85	0,478	0,290	0,130	não essencial
YBR139w/	144,6	58,69	0,406	0,256	0,150	não essencial
YBR140c/IRA1	252,2	65,84	0,261	0,278	0,140	essencial
YBR141c/	163,2	27,22	0,167	0,165	0,112	não essencial
YBR142w/MAK5	617,9	125,48	0,203	0,219	0,182	essencial

YBR143c/SUP45	1640,6	344,09	0,210	0,307	0,334	essencial
YBR145w/ADH5	240,7	95,23	0,396	0,228	0,253	não essencial
YBR146w/MRPS9	551,0	92,49	0,168	0,110	0,137	não essencial
YBR147w/	89,8	28,36	0,316	0,238	0,113	não essencial
YBR148w/YSW1	153,8	30,33	0,197	0,138	0,173	não essencial
YBR149w/	681,6	187,85	0,276	0,144	0,204	não essencial
YBR150c/	80,5	15,86	0,197	0,164	0,140	não essencial
YBR151w/	428,2	65,86	0,154	0,139	0,148	não essencial
YBR152w/	75,7	26,33	0,348	0,414	0,153	essencial
YBR153w/RIB7	269,6	63,51	0,236	0,327	0,087	essencial
YBR154c/RPB5	1281,6	234,45	0,183	0,260	0,257	essencial
YBR155w/	272,4	55,22	0,203	0,177	0,183	essencial
YBR156c/	149,8	45,60	0,304	0,186	0,126	não essencial
YBR157c/	146,8	66,72	0,454	0,371	0,128	não essencial
YBR158w/	799,2	386,23	0,483	0,303	0,129	não essencial
YBR159w/	841,8	193,93	0,230	0,193	0,231	não essencial
YBR160w/CDC28	666,5	150,93	0,226	0,227	0,168	essencial
YBR161w/	103,1	32,28	0,313	0,308	0,134	não essencial
YBR162c/	1674,3	529,79	0,316	0,365	0,381	não essencial
YBR162w-a/YSY6	2456,5	663,50	0,270	0,334	0,160	não essencial
YBR163w/	204,8	34,25	0,167	0,152	0,134	não essencial
YBR164c/ARL1	556,9	84,75	0,152	0,211	0,180	não essencial
YBR165w/	352,9	48,56	0,138	0,147	0,119	não essencial
YBR166c/TYR1	650,2	128,02	0,197	0,156	0,145	não essencial
YBR167c/	424,1	76,26	0,180	0,156	0,159	essencial
YBR168w/	47,8	10,51	0,220	0,275	0,117	não essencial
YBR169c/SSE2	117,6	65,41	0,556	0,189	0,192	não essencial
YBR170c/NPL4	177,4	33,40	0,188	0,151	0,129	não essencial
YBR171w/SEC66	651,2	106,69	0,164	0,187	0,172	não essencial
YBR172c/SMY2	546,4	83,33	0,153	0,171	0,157	não essencial
YBR173c/	1184,6	199,28	0,168	0,196	0,159	não essencial
YBR174c/	49,4	13,25	0,268	0,259	0,102	não essencial
YBR175w/	175,2	30,76	0,176	0,108	0,089	não essencial
YBR176w/	114,6	25,27	0,221	0,236	0,144	não essencial
YBR177c/	286,0	66,56	0,233	0,192	0,166	não essencial
YBR178w/	86,6	19,01	0,220	0,172	0,077	não essencial
YBR179c/	180,6	33,86	0,187	0,162	0,143	não essencial
YBR180w/	33,0	9,55	0,289	0,426	0,121	não essencial
YBR181c/RPS10A_ex1_f	2758,9	1506,79	0,546	0,712	0,846	não essencial
YBR182c/	102,9	32,27	0,314	0,286	0,112	não essencial
YBR183w/	175,7	95,17	0,542	0,321	0,116	não essencial
YBR184w/	57,2	29,91	0,523	0,414	0,121	não essencial
YBR185c/MBA1	464,4	56,48	0,122	0,137	0,136	não essencial
YBR186w/	139,2	35,66	0,256	0,240	0,102	não essencial
YBR187w/	1147,8	230,62	0,201	0,232	0,162	não essencial
YBR188c/	529,2	60,27	0,114	0,147	0,095	não essencial
YBR189w/SUP46_ex1	1882,0	1198,89	0,637	0,708	0,810	não essencial
YBR190w/	36,2	8,02	0,222	0,267	0,115	essencial
YBR191w/URP1_ex1	1963,1	1104,09	0,562	0,695	0,691	não essencial
YBR192w/RIM2	328,7	54,19	0,165	0,170	0,124	essencial
YBR193c/	150,8	19,67	0,130	0,117	0,140	essencial
YBR194w/	449,8	123,24	0,274	0,176	0,127	não essencial
YBR195c/MSI1	211,5	41,93	0,198	0,279	0,131	não essencial
YBR196c/PGI1	1520,8	358,39	0,236	0,268	0,681	essencial
YBR197c/	139,6	24,47	0,175	0,210	0,105	não essencial
YBR198c/	237,4	38,50	0,162	0,167	0,129	essencial

YBR199w/KTR4	521,0	98,69	0,189	0,207	0,133	não essencial
YBR200w/BEM1	251,0	81,44	0,324	0,246	0,156	não essencial
YBR201w/DER1	176,6	42,32	0,240	0,213	0,102	não essencial
YBR202w/CDC47	286,9	146,33	0,510	0,412	0,173	essencial
YBR203w/	127,6	20,38	0,160	0,156	0,159	não essencial
YBR204c/	149,5	38,58	0,258	0,196	0,125	não essencial
YBR205w/KTR3	437,4	97,04	0,222	0,258	0,186	não essencial
YBR206w/	1625,9	440,15	0,271	0,279	0,092	não essencial
YBR207w/	650,5	117,05	0,180	0,168	0,145	não essencial
YBR208c/DUR1,2	378,8	159,51	0,421	0,245	0,194	não essencial
YBR209w/	10,4	4,06	0,390	0,521	0,093	não essencial
YBR210w/	653,9	63,17	0,097	0,131	0,105	não essencial
YBR211c/	96,1	20,68	0,215	0,224	0,126	essencial
YBR212w/NGR1	393,1	59,64	0,152	0,119	0,119	não essencial
YBR213w/MET8	141,5	38,30	0,271	0,316	0,106	não essencial
YBR214w/	134,6	49,36	0,367	0,288	0,144	não essencial
YBR215w/HPC2	294,9	28,85	0,098	0,114	0,150	não essencial
YBR216c/	151,0	27,96	0,185	0,209	0,141	não essencial
YBR217w/	219,4	36,45	0,166	0,132	0,112	não essencial
YBR218c/PYC2	1004,4	335,82	0,334	0,282	0,308	não essencial
YBR219c/_ex1_f	347,1	57,42	0,165	0,149	0,089	não essencial
YBR220c/	212,1	29,65	0,140	0,188	0,107	não essencial
YBR221c/PDB1	767,5	115,49	0,150	0,145	0,343	não essencial
YBR222c/FAT2	374,1	53,84	0,144	0,108	0,197	não essencial
YBR223c/	43,0	11,84	0,275	0,364	0,108	não essencial
YBR224w/	22,2	7,72	0,348	0,523	0,086	não essencial
YBR225w/	108,5	20,74	0,191	0,192	0,141	não essencial
YBR226c/	131,5	16,65	0,127	0,107	0,088	não essencial
YBR227c/	194,8	27,52	0,141	0,137	0,166	não essencial
YBR228w/	73,9	18,52	0,251	0,254	0,114	não essencial
YBR229c/	118,6	26,69	0,225	0,271	0,167	não essencial
YBR230c/_ex1	517,5	147,95	0,286	0,259	0,177	não essencial
YBR231c/	187,3	42,32	0,226	0,236	0,114	não essencial
YBR232c/	32,1	12,78	0,398	0,448	0,084	não essencial
YBR233w/	118,7	32,66	0,275	0,305	0,132	não essencial
YBR234c/	337,3	94,62	0,281	0,208	0,197	essencial
YBR235w/	347,0	59,09	0,170	0,143	0,124	não essencial
YBR236c/ABD1	294,2	45,82	0,156	0,157	0,159	essencial
YBR237w/PRP5	63,1	19,31	0,306	0,385	0,131	essencial
YBR238c/	310,8	103,84	0,334	0,239	0,240	não essencial
YBR239c/	185,2	19,56	0,106	0,109	0,132	não essencial
YBR240c/	32,2	8,93	0,277	0,279	0,100	não essencial
YBR241c/	101,9	28,11	0,276	0,229	0,108	não essencial
YBR242w/	1169,3	316,81	0,271	0,213	0,146	não essencial
YBR243c/ALG7	141,8	37,84	0,267	0,233	0,133	essencial
YBR244w/	186,4	57,71	0,310	0,306	0,198	não essencial
YBR245c/	303,8	67,94	0,224	0,217	0,192	não essencial
YBR246w/	376,1	49,15	0,131	0,140	0,121	não essencial
YBR247C/ENP1	446,5	89,31	0,200	0,169	0,195	essencial
YBR248c/HIS7	303,9	48,69	0,160	0,178	0,160	não essencial
YBR249c/ARO4	1584,1	411,51	0,260	0,247	0,527	não essencial
YBR250w/	30,4	20,94	0,690	0,366	0,145	não essencial
YBR251w/MRPS5	97,1	20,55	0,212	0,181	0,138	não essencial
YBR252w/DUT1	855,6	165,10	0,193	0,230	0,183	essencial
YBR253w/SRB6	642,2	121,74	0,190	0,173	0,097	essencial
YBR254c/	433,6	67,73	0,156	0,130	0,100	essencial

YBR255w/	167,6	26,37	0,157	0,139	0,111	não essencial
YBR256c/RIB5	994,8	242,15	0,243	0,247	0,161	essencial
YBR257w/	504,4	90,50	0,179	0,207	0,126	essencial
YBR258c/	284,1	52,00	0,183	0,215	0,144	não essencial
YBR259w/	60,2	12,49	0,208	0,219	0,131	não essencial
YBR260c/	126,6	28,03	0,221	0,193	0,153	não essencial
YBR261c/	319,8	80,47	0,252	0,182	0,126	não essencial
YBR262c/	644,4	131,76	0,204	0,217	0,112	não essencial
YBR263w/SHM1	618,4	125,16	0,202	0,235	0,285	não essencial
YBR264c/	248,9	30,42	0,122	0,135	0,068	não essencial
YBR265w/	367,7	73,93	0,201	0,131	0,150	essencial
YBR266c/	259,3	77,44	0,299	0,327	0,113	não essencial
YBR267w/	580,9	182,34	0,314	0,234	0,167	não essencial
YBR268w/MRPL37	661,2	186,55	0,282	0,281	0,078	não essencial
YBR269c/	321,6	88,34	0,275	0,245	0,089	não essencial
YBR270c/	128,3	26,43	0,206	0,192	0,102	não essencial
YBR271w/	240,5	54,65	0,227	0,134	0,095	não essencial
YBR272c/	108,8	25,75	0,237	0,288	0,139	não essencial
YBR273c/	211,4	53,30	0,252	0,165	0,144	não essencial
YBR274w/	256,2	34,25	0,134	0,120	0,152	não essencial
YBR275c/RIF1	212,8	67,65	0,318	0,263	0,123	não essencial
YBR276c/	375,8	53,44	0,142	0,134	0,116	não essencial
YBR277c/	134,6	29,07	0,216	0,212	0,104	não essencial
YBR278w/DPB3	280,4	58,16	0,207	0,157	0,118	não essencial
YBR279w/PAF1	228,7	55,42	0,242	0,243	0,184	não essencial
YBR280c/	77,9	18,85	0,242	0,168	0,124	não essencial
YBR281c/	359,8	77,49	0,215	0,155	0,174	não essencial
YBR282w/MRPL27	498,6	122,11	0,245	0,255	0,139	não essencial
YBR283c/	1605,2	327,44	0,204	0,249	0,270	não essencial
YBR284w/	53,5	19,32	0,361	0,326	0,112	não essencial
YBR285w/	143,1	81,84	0,572	0,244	0,165	não essencial
YBR286w/APE3	1231,2	221,22	0,180	0,196	0,344	não essencial
YBR287w/	606,0	138,23	0,228	0,208	0,188	não essencial
YBR288c/APM3	288,8	52,51	0,182	0,140	0,123	não essencial
YBR289w/SNF5	205,1	72,81	0,355	0,309	0,119	não essencial
YBR290w/BSD2	597,2	78,85	0,132	0,148	0,106	não essencial
YBR291c/CTP1	359,5	90,85	0,253	0,142	0,148	não essencial
YBR292c/	117,9	49,48	0,419	0,167	0,123	não essencial
YBR293w/	210,6	40,25	0,191	0,181	0,087	não essencial
YBR294w/SUL1	20,7	10,88	0,526	0,290	0,130	não essencial
YBR295w/PCA1	81,3	17,53	0,216	0,203	0,146	não essencial
YBR296c/	50,5	21,65	0,429	0,277	0,254	não essencial
YBR297w/MAL33	80,2	26,68	0,333	0,257	0,124	não essencial
YBR298c/MAL31	70,5	22,64	0,321	0,242	0,164	não essencial
YBR300c/_f	23,6	5,40	0,229	0,280	0,094	não essencial
YBR301w/_f	304,4	48,85	0,160	0,148	0,657	não essencial
YCL001w/RER1	259,6	38,66	0,149	0,144	0,237	não essencial
YCL002c/	221,4	48,09	0,217	0,245	0,095	não essencial
YCL003w/PEL1	59,2	11,21	0,189	0,263		essencial
YCL004w/PEL1	29,4	7,38	0,251	0,316	0,125	essencial
YCL005w/	630,4	65,53	0,104	0,099	0,095	não essencial
YCL006c/	104,9	17,25	0,164	0,120		não essencial
YCL007c/CWH36	1433,2	329,96	0,230	0,271	0,130	não essencial
YCL008c/	59,4	16,73	0,282	0,354	0,101	não essencial
YCL009c/	1076,3	226,69	0,211	0,190	0,242	não essencial
YCL010c/	264,4	49,16	0,186	0,194	0,104	não essencial

YCL011c/GBP2	1147,1	154,15	0,134	0,174	0,168	não essencial
YCL013w/	56,7	34,46	0,608	0,543		não essencial
YCL014w/BUD3	81,0	45,50	0,562	0,379	0,141	não essencial
YCL016c/	160,8	22,10	0,137	0,161	0,119	não essencial
YCL017c/NFS1	620,9	124,33	0,200	0,172	0,226	essencial
YCL018w/LEU2	1519,8	523,13	0,344	0,287	0,438	não essencial
YCL022c/	89,5	60,43	0,675	0,643	0,084	não essencial
YCL023c/	26,8	8,26	0,308	0,316	0,129	não essencial
YCL024w/	77,5	46,11	0,595	0,427	0,114	não essencial
YCL025c/AGP1	556,1	286,89	0,516	0,306	0,245	não essencial
YCL026c/ f	27,3	7,74	0,284	0,243	-, -	não essencial
YCL026C-A	41,0	9,08	0,222	0,305	0,269	não essencial
YCL027w/FUS1	48,6	18,43	0,379	0,253	0,105	não essencial
YCL028w/	524,8	124,13	0,237	0,144	0,185	não essencial
YCL029c/BIK1	294,7	42,02	0,143	0,304	0,133	não essencial
YCL030c/HIS4	945,4	352,44	0,373	0,168	0,269	não essencial
YCL031c/	626,1	100,86	0,161	0,257	0,159	essencial
YCL032w/STE50	185,1	38,35	0,101	0,257	0,139	não essencial
YCL032w/31E30	717,0	198,26	0,207	0,184	0,120	não essencial
YCL034w/	446,2	97,97	0,277	0,186	0,120	não essencial
YCL035c/	1293,8	265,95	0,220	0,186	0,097	não essencial
YCL036w/	263,1	47,45	0,200	0,140	0,194	não essencial
YCL036W/ YCL037c/SRO9	290,8	67,88	0,180	0,265	0,095	
						não essencial
YCL038c/	213,9	69,32	0,324	0,230	0,121	não essencial
YCL039w/ YCL040w/GLK1	179,8	45,48	0,253	0,345	0,132	não essencial
	462,7	235,07	0,508	0,181	0,158	não essencial
YCL041c/	47,5	13,87	0,292	0,291	0,103	essencial
YCL042w/	57,2	29,56	0,516	0,288	0,060	não essencial
YCL043c/PDI1	1435,8	386,80	0,269	0,116	0,404	essencial
YCL044c/	144,3	24,61	0,171	0,156	0,130	não essencial
YCL045c/	457,3	66,28	0,145	0,555	0,165	não essencial
YCL046w/	86,8	34,11	0,393	0,167	0,120	não essencial
YCL047c/	264,7	107,21	0,405	0,312	0,112	não essencial
YCL048w/	42,0	13,35	0,318	0,171	0,168	não essencial
YCL049c/	319,3	62,15	0,195	0,109	0,143	não essencial
YCL050c/APA1	483,1	62,85	0,130	0,149	0,331	não essencial
YCL051w/LRE1	155,5	21,60	0,139	0,274	0,121	não essencial
YCL052c/PBN1	258,1	57,76	0,224	0,256	0,132	essencial
YCL053c/	570,4	127,06	0,223	0,199		essencial
YCL054w/	492,9	88,24	0,179	0,251	0,253	essencial
YCL055w/	100,3	20,50	0,204	0,217	0,167	não essencial
YCL056c/	549,4	109,10	0,199	0,223	0,094	não essencial
YCL057w/PRD1	227,4	46,30	0,204	0,279	0,190	não essencial
YCL058c/	268,4	70,18	0,262	0,249	0,151	não essencial
YCL059c/	564,9	108,72	0,192	0,345	0,215	essencial
YCL061c/	90,6	41,40	0,457	0,245	0,144	não essencial
YCL062w/	417,8	132,81	0,318	0,301		não essencial
YCL063w/	201,1	81,03	0,403	0,610	0,122	não essencial
YCL064c/CHA1	18,1	9,57	0,530	0,210	0,159	não essencial
YCL069w/_r	22,7	4,38	0,193	0,211	0,123	não essencial
YCR001w/	65,6	23,31	0,355	0,333	0,117	não essencial
YCR002c/CDC10	875,5	170,23	0,194	0,197	0,169	não essencial
YCR003w/MRPL32	467,6	101,38	0,217	0,165	0,187	não essencial
YCR004c/	671,8	152,68	0,227	0,188	0,199	não essencial
YCR005c/CIT2	374,8	176,24	0,470	0,270	0,186	não essencial
YCR006c/	28,4	6,64	0,234	0,230	0,061	não essencial

YCR007c/	86,5	56,37	0,651	0,264	0,134	não essencial
YCR008w/	256,9	33,29	0,130	0,172	0,146	não essencial
YCR009c/RVS161	543,1	87,74	0,162	0,124	0,210	não essencial
YCR010c/	26,6	6,93	0,260	0,314	0,212	não essencial
YCR011c/ADP1	371,7	121,60	0,327	0,200	0,140	não essencial
YCR012w/PGK1	2204,4	1136,24	0,515	0,551	0,815	essencial
YCR013c/	3201,2	1498,52	0,468	0,556	0,089	essencial
YCR014c/POL4	141,7	37,31	0,263	0,313	0,149	não essencial
YCR015c/	83,5	18,69	0,224	0,261	0,157	não essencial
YCR016w/	704,7	100,91	0,143	0,171	0,164	não essencial
YCR017c/	405,2	63,53	0,157	0,117	0,155	não essencial
YCR019w/MAK32	54,1	13,30	0,246	0,160	0,110	não essencial
YCR020c/PET18	88,1	20,37	0,231	0,176	0,207	não essencial
YCR020C-a/MAK31	341,4	80,18	0,235	0,227	0,140	não essencial
YCR021c/HSP30	76,8	49,30	0,642	0,218	0,230	não essencial
YCR022c/	37,1	11,48	0,309	0,216	0,084	não essencial
YCR023C/	359,8	89,11	0,248	0,127	0,133	não essencial
YCR024c/	134,8	35,28	0,262	0,250	0,145	não essencial
YCR024c-a/PMP1 f	1403,5	558,19	0,398	0,399	0,672	não essencial
YCR025c/	46,3	21,07	0,455	0,425	0,072	não essencial
YCR026c/	380,8	59,38	0,156	0,160	0,118	não essencial
YCR027c/	104,3	21,99	0,211	0,217	0,091	não essencial
YCR028c/	77,9	16,54	0,212	0,231	0,130	não essencial
YCR030c/	93,3	23,06	0,247	0,270	0,167	não essencial
YCR031c/CRY1 ex1	2445,7	912,86	0,373	0,442	0,805	não essencial
YCR032w/	93,0	23,35	0,251	0,258	0,121	não essencial
YCR033w/	278,7	50,40	0,181	0,126	0,120	não essencial
YCR034w/GNS1	816,7	211,54	0,259	0,261	0,239	não essencial
YCR035c/	349,6	72,76	0,208	0,232	0,147	essencial
YCR036w/RBK1	331,8	62,59	0,189	0,181	0,160	não essencial
YCR037c/PHO87	159,5	45,77	0,287	0,261	0,168	não essencial
YCR042c/TSM1	228,0	87,87	0,385	0,281	0,141	essencial
YCR043c/	526,8	110,50	0,210	0,216	0,169	não essencial
YCR044c/	191,7	64,71	0,338	0,294	0,137	não essencial
YCR045c/	99,8	20,48	0,205	0,207	0,119	não essencial
YCR046c/	507,5	122,41	0,241	0,214	0,114	não essencial
YCR047c/	365,8	155,07	0,424	0,267	0,075	não essencial
YCR048w/ARE1	256,2	55,84	0,218	0,182	0,114	não essencial
YCR049c/	77,1	21,26	0,276	0,256	0,124	não essencial
YCR050c/	373,6	76,30	0,204	0,165	0,082	não essencial
YCR051w/	571,9	143,24	0,250	0,271	0,141	não essencial
YCR052w/RSC6	594,2	65,88	0,111	0,115	0,130	essencial
YCR053w/THR4	1426,2	265,79	0,186	0,206	0,404	não essencial
YCR054c/	96,8	24,53	0,254	0,228	0,155	essencial
YCR057c/PWP2	99,9	33,57	0,336	0,249	0,162	essencial
YCR059c/	736,6	179,49	0,244	0,266	0,147	não essencial
YCR060w/	905,4	210,13	0,232	0,227	0,076	não essencial
YCR061w/	75,1	22,41	0,298	0,152	0,120	não essencial
YCR063w/	60,9	12,78	0,210	0,227	0,130	não essencial
YCR064c/	32,4	9,32	0,288	0,235	0,096	não essencial
YCR065w/HCM1	172,2	59,38	0,345	0,273	0,138	não essencial
YCR066w/RAD18	83,8	18,93	0,226	0,333	0,146	não essencial
YCR067c/SED4	216,3	38,69	0,179	0,183	0,134	não essencial
YCR068w/	23,8	6,88	0,289	0,288	0,121	não essencial
YCR069w/SCC3	188,9	36,02	0,191	0,227	0,181	não essencial
YCR071c/	444,1	99,60	0,224	0,185	0,106	não essencial

YCR072c/	254,4	56,80	0,223	0,229	0,169	essencial
YCR073c/	209,2	59,27	0,283	0,163	0,129	não essencial
YCR073W-A	281,8	56,17	0,199	0,241	0,116	não essencial
YCR075c/ERS1	155,9	38,01	0,244	0,144	0,088	não essencial
YCR076c/	271,7	53,60	0,197	0,087	0,084	não essencial
YCR077c/	611,4	73,34	0,120	0,169	0,181	não essencial
YCR079w/	105,4	18,39	0,175	0,575	0,088	não essencial
YCR081w/SRB8	61,2	14,27	0,233	0,192	0,155	não essencial
YCR082w/	676,5	138,28	0,204	0,210	0,159	não essencial
YCR083w/	438,5	135,12	0,308	0,132	0,157	não essencial
YCR084c/TUP1	325,8	61,98	0,190	0,345	0,181	não essencial
YCR085w/	112,1	51,67	0,461	0,221	0,102	não essencial
YCR086w/	216,6	59,37	0,274	0,367	0,087	não essencial
YCR087w/	1090,9	326,64	0,299	0,165	0,049	não essencial
YCR088w/ABP1	155,8	35,95	0,231	0,207	0,238	não essencial
YCR089w/FIG2	94,6	22,28	0,236	0,218	0,132	não essencial
YCR090c/	704,5	122,20	0,173	0,584	0,164	não essencial
YCR091w/KIN82	33,8	12,32	0,365	0,122	0,129	não essencial
YCR092c/MSH3	130,6	20,68	0,158	0,127	0,117	não essencial
YCR093w/CDC39	257,8	42,57	0,165	0,252	0,169	essencial
YCR094w/	77,5	18,30	0,236	0,179	0,130	não essencial
YCR095c/	165,6	27,83	0,168	0,278	0,108	não essencial
YCR098c/GIT1	88,4	71,49	0,809	0,223	0,193	não essencial
YCR099c/	77,8	30,46	0,391	0,584	0,156	não essencial
YCR100c/	20,3	10,08	0,497	0,279	0,120	não essencial
YCR102c/	187,6	58,95	0,314	0,355	0,200	não essencial
YCR105w/	40,4	9,14	0,227	0,185	0,187	não essencial
YCR106w/	85,8	16,88	0,197	0,373	0,123	não essencial
YDL001W/	146,3	19,69	0,135	0,136	0,140	não essencial
YDL002C/	355,1	33,77	0,095	0,101	0,103	não essencial
YDL003W/RHC21	723,8	456,63	0,631	0,687	0,136	essencial
YDL004W/ATP16	799,8	199,80	0,250	0,279	0,205	essencial
YDL005c/	431,9	64,97	0,150	0,157	0,168	não essencial
YDL006W/PTC1	201,6	39,34	0,195	0,206	0,119	não essencial
YDL007W/YTA5	728,2	159,39	0,219	0,156	0,155	essencial
YDL008w/	451,6	85,74	0,190	0,174	0,189	essencial
YDL009c/	1084,3	297,92	0,275	0,249	0,163	não essencial
YDL010w/	469,9	169,25	0,360	0,318	0,109	não essencial
YDL011c/	201,4	77,54	0,385	0,317	0,128	não essencial
YDL012c/_ex1	716,0	139,18	0,194	0,139	0,133	não essencial
YDL012c/_ex2	1148,8	191,42	0,167	0,212	0,133	não essencial
YDL013W/HEX3	98,6	9,92	0,101	0,120	0,112	não essencial
YDL014W/NOP1	1477,9	306,59	0,207	0,257	0,492	essencial
YDL015c/	545,3	90,29	0,166	0,176	0,240	essencial
YDL016c/	324,4	51,40	0,158	0,118	0,082	essencial
YDL017W/CDC7	161,8	36,64	0,226	0,183	0,130	essencial
YDL018c/	366,9	177,27	0,483	0,348	0,141	não essencial
YDL019c/	288,4	55,96	0,194	0,123	0,148	não essencial
YDL020C/SON1	190,1	28,97	0,152	0,167	0,141	não essencial
YDL021W/GPM2	65,3	80,75	1,237	0,384	0,172	não essencial
YDL022w/	224,8	130,44	0,580	0,293	0,460	não essencial
YDL023c/	197,3	89,94	0,456	0,236	0,094	não essencial
YDL024c/	13,3	12,98	0,976	0,539	0,124	não essencial
YDL025c/	176,3	47,38	0,269	0,260	0,154	não essencial
YDL026w/	22,1	6,55	0,296	0,282	0,092	não essencial
YDL027c/	155,9	36,14	0,232	0,284	0,119	não essencial

YDL028C/MPS1	142,5	33,71	0,237	0,220	0,113	essencial
YDL029W/ACT2 ex1	618,2	162,58	0,263	0,125	0,209	essencial
YDL030W/PRP9	125,1	24,02	0,192	0,182	0,134	essencial
YDL031w/	463,3	171,57	0,370	0,430	0,192	essencial
YDL032w/	52,3	8,36	0,160	0,147	0,121	não essencial
YDL033c/	148,8	23,89	0,161	0,119	0,113	não essencial
YDL034w/	67,4	17,96	0,266	0,283	0,103	não essencial
YDL035c/	169,4	35,28	0,208	0,254	0,122	não essencial
YDL036c/	285,5	29,54	0,103	0,074	0,128	não essencial
YDL038c/	116,7	149,95	1,285	0,393	0,193	não essencial
YDL039c/	278,9	287,52	1,031	0,260	0,156	não essencial
YDL040C/NAT1	349,2	49,53	0,142	0,127	0,197	não essencial
YDL041w/	15,4	5,04	0,327	0,305	0,153	não essencial
YDL042C/SIR2	139,2	36,34	0,261	0,228	0,148	não essencial
YDL043C/PRP11	225,9	47,19	0,209	0,194	0,153	essencial
YDL044c/	83,7	14,08	0,168	0,152	0,144	não essencial
YDL045C/FAD1	255,1	47,30	0,185	0,132	0,135	essencial
YDL046w/	661,5	162,42	0,246	0,155	0,228	não essencial
YDL047W/SIT4	505,4	123,58	0,245	0,229	0,133	não essencial
YDL048c/STP4	175,6	71,45	0,407	0,311	0,141	não essencial
YDL049C/KNH1	139,8	44,71	0,320	0,174	0,121	não essencial
YDL050c/	1145,6	232,30	0,203	0,223	0,150	não essencial
YDL051W/YLA1	1056,9	186,98	0,177	0,223	0,250	não essencial
YDL052C/SLC1	509,8	86,28	0,169	0,146	0,213	não essencial
YDL053c/	804,7	142,85	0,178	0,210	0,127	não essencial
YDL054c/	207,9	41,41	0,199	0,178	0,094	não essencial
YDL055C/PSA1	1280,1	384,44	0,300	0,366	0,600	essencial
YDL056W/MBP1	412,4	72,89	0,177	0,136	0,132	não essencial
YDL057w/	79,3	31,02	0,391	0,215	0,104	não essencial
YDL058W/USO1	286,6	60,43	0,211	0,201	0,172	essencial
YDL059C/RAD59	188,1	48,05	0,255	0,223	0,107	não essencial
YDL060w/	645,4	101,31	0,157	0,175	0,182	essencial
YDL061C/YS29B_f	2424,0	1026,15	0,423	0,416	0,760	não essencial
YDL061C/YS29B_i	1772,1	626,81	0,354	0,414	0,760	não essencial
YDL062w/	86,1	26,76	0,311	0,281	0,088	não essencial
YDL063c/	307,0	76,50	0,249	0,216	0,121	não essencial
YDL064w/_ex1	748,1	107,15	0,143	0,140	0,170	essencial
YDL065c/	398,8	43,68	0,110	0,116	0,151	não essencial
YDL066W/IDP1	757,3	190,67	0,252	0,181	0,319	não essencial
YDL067C/COX9	835,5	322,75	0,386	0,353	0,264	não essencial
YDL068w/	71,4	14,19	0,199	0,157	0,092	não essencial
YDL069C/CBS1	177,1	34,83	0,197	0,211	0,104	não essencial
YDL070w/	773,8	183,40	0,237	0,314	0,162	não essencial
YDL071c/	33,9	10,31	0,304	0,411	0,101	não essencial
YDL072c/	1125,0	295,69	0,263	0,232	0,176	não essencial
YDL073w/	286,5	44,69	0,156	0,135	0,135	não essencial
YDL074c/	545,3	93,30	0,171	0,146	0,141	não essencial
YDL075W/RPL43A_ex1_f	2416,5	770,34	0,319	0,355	0,737	não essencial
YDL075W/RPL43A_ex1_i	154,8	100,69	0,650	0,548	0,737	não essencial
YDL075W/RPL43A_ex2	2212,0	944,80	0,427	0,478	0,737	não essencial
YDL076c/	389,1	57,36	0,147	0,175	0,118	não essencial
YDL077c/	124,5	23,94	0,192	0,203	0,156	não essencial
YDL078C/MDH3	552,1	118,10	0,214	0,156	0,154	não essencial
YDL079C/MRK1_ex1	105,2	19,50	0,185	0,185	0,143	não essencial
YDL079C/MRK1_ex2	147,3	27,04	0,184	0,164	0,143	não essencial
YDL080c/	113,4	22,34	0,197	0,206	0,103	não essencial

YDL081C/RPLA1	2158,4	967,57	0,448	0,476	0,714	não essencial
YDL082w/_ex1	1886,6	588,97	0,312	0,345	0,652	não essencial
YDL083C/ ex1 f	2531,1	1016,20	0,401	0,391	0,764	não essencial
YDL084w/	1370,6	262,06	0,191	0,198	0,374	essencial
YDL085w/	27,4	7,63	0,278	0,227	0,139	não essencial
YDL086w/	480,7	147,55	0,307	0,224	0,179	não essencial
YDL087c/EXM2	32,2	9,95	0,309	0,533	0,091	essencial
YDL088C/ASM4	348,5	56,54	0,162	0,167	0,139	não essencial
YDL089w/	240,2	62,60	0,261	0,173	0,145	não essencial
YDL090C/RAM1	152,1	34,41	0,226	0,188	0,123	não essencial
YDL091c/	190,1	34,47	0,181	0,175	0,138	não essencial
YDL092W/SRP14	1010,8	176,51	0,175	0,251	0,145	essencial
YDL093W/PMT5	194,8	60,31	0,310	0,241	0,155	não essencial
YDL094c/	30,9	9,77	0,316	0,300	0,114	não essencial
YDL095W/PMT1	630,5	126,63	0,201	0,163	0,227	não essencial
YDL096c/	43,3	23,76	0,549	0,808	0,092	não essencial
YDL097c/	326,1	65,99	0,202	0,136	0,154	essencial
YDL098c/	120,6	30,77	0,255	0,217	0,121	essencial
YDL099w/	493,8	84,18	0,170	0,178	0,143	não essencial
YDL100c/	673,6	76,87	0,170	0,178	0,322	não essencial
YDL101C/DUN1	425,9	97,92	0,230	0,110	0,322	não essencial
YDL102W/CDC2	157,9	57,82	0,366	0,200	0,146	essencial
YDL103C/QRI1	346,6	86,49	0,350	0,202	0,170	essencial
YDL104C/QRI7	134,4	24,60	0,183	0,167	0,114	não essencial
YDL105W/QRI2	89,2	34,95	0,103	0,167	0,114	essencial
YDL106C/GRF10	192,4	26,37	0,332	0,303	0,148	não essencial
YDL107W/MSS2	194,1	41,07	0,137	0,158	0,146	não essencial
YDL108W/KIN28_ex1	322,3	38,17	0,212	0,138	0,115	essencial
YDL109c/	34,2	11,68	0,110	0,092	0,113	não essencial
YDL110c/	575,7	202,39	0,352	0,377	0,128	não essencial
YDL111c/	549,4	69,23	0,332	0,231	0,143	essencial
YDL112w/	525,2	83,79	0,120	0,127	0,110	não essencial
YDL113c/	90,5	25,95	0,100	0,138	0,147	
YDL114w/	26,5	14,99	0,267	0,240	0,141	não essencial não essencial
YDL115c/	283,3	53,45	0,363	0,239	0,099	não essencial
YDL116W/NUP84	295,8	61,51	0,189	0,142	0,133	não essencial
			-	-		
YDL117w/	343,6 62,6	118,72	0,346	0,248	0,136	não essencial
YDL118w/	203,4	26,02	0,415	0,399	0,110	não essencial
YDL119c/	396,3	71,92	0,354	0,209	0,093	não essencial
YDL120w/ YDL121c/	926,3	62,49	0,158	0,173	0,097	essencial
		116,82	0,126	0,166	0,151	não essencial
YDL122W/UBP1	469,5	56,54	0,120	0,088	0,189	não essencial
YDL123w/	186,1	31,86	0,171	0,104	0,117	não essencial
YDL124w/	484,8	179,51	0,370	0,206	0,197	não essencial
YDL125c/YHI1_ex1	848,2	125,91	0,148	0,149	0,231	não essencial
YDL125c/YHI1_ex2	1828,5	374,06	0,205	0,202	0,231	não essencial
YDL126C/CDC48	1459,6	344,82	0,236	0,210	0,307	essencial
YDL127w/PCL2	304,4	162,55	0,534	0,452	0,130	não essencial
YDL128W/VCX1	333,2	113,77	0,341	0,234	0,163	não essencial
YDL129w/	89,1	26,28	0,295	0,360	0,097	não essencial
YDL130W/RPLA3_ex1	2710,5	1055,38	0,389	0,446	0,713	não essencial
YDL130W/RPLA3_ex2	3973,0	1877,91	0,473	0,630	0,713	não essencial
YDL131w/	1100,9	158,21	0,144	0,142	0,329	não essencial
YDL132w/	611,6	120,99	0,198	0,193	0,158	essencial
YDL133w/	252,1	40,70	0,161	0,097	0,133	não essencial
YDL134C/PPH21	860,4	165,99	0,193	0,153	0,146	não essencial

YDL135C/RDI1	629,7	68,50	0,109	0,090	0,200	não essencial
YDL136w/_ex1_f	2576,1	1049,17	0,407	0,452	0,759	não essencial
YDL137W/ARF2	698,7	193,04	0,276	0,152	0,387	não essencial
YDL138W/RGT2	455,6	116,02	0,255	0,197	0,119	não essencial
YDL139c/	293,9	47,20	0,161	0,123	0,140	essencial
YDL140C/RPO21	1019,0	221,20	0,217	0,248	0,209	essencial
YDL141W/BPL1	101,6	24,72	0,243	0,201	0,131	essencial
YDL142c/PGS1	107,8	27,69	0,257	0,255	0,082	não essencial
YDL143W/CCT4	521,6	70,15	0,134	0,194	0,225	essencial
YDL144c/	157,5	35,94	0,228	0,186	0,118	não essencial
YDL145C/	436,9	63,34	0,145	0,149	0,237	essencial
YDL146w/	65,8	15,30	0,233	0,213	0,159	não essencial
YDL147w/	639,7	131,91	0,206	0,156	0,172	essencial
YDL148c/	377,8	76,69	0,203	0,194	0,214	essencial
YDL149w/	47,4	10,17	0,215	0,218	0,129	não essencial
YDL150W/RPC53	317,2	50,47	0,159	0,189	0,139	essencial
YDL152w/	161,2	57,26	0,355	0,503	0,136	essencial
YDL153c/SAS10	768,7	176,74	0,230	0,263	0,220	essencial
YDL154W/MSH5	96,8	18,26	0,189	0,206	0,123	não essencial
YDL155W/CLB3	325,6	64,47	0,198	0,160	0,130	não essencial
YDL156w/	83,4	38,60	0,463	0,381	0,131	não essencial
YDL157c/	792,4	181,05	0,228	0,257	0,216	não essencial
YDL158c/	461,9	120,82	0,262	0,190	0,192	não essencial
YDL159W/STE7	106,9	19,02	0,178	0,219	0,120	não essencial
YDL160C/DHH1	303,2	74,21	0,245	0,248	0,210	não essencial
YDL161w/	641,2	119,39	0,186	0,202	0,140	não essencial
YDL164C/CDC9	382,5	196,95	0,515	0,418	0,160	essencial
YDL165W/CDC36	566,1	119,69	0,211	0,150	0,131	essencial
YDL166c/	705,2	147,93	0,210	0,228	0,146	essencial
YDL167C/ARP1	376,1	86,05	0,229	0,240	0,136	não essencial
YDL168W/SFA1	176,7	41,00	0,232	0,244	0,243	não essencial
YDL169C/UGX2	51,6	46,23	0,895	0,522	0,102	não essencial
YDL170W/UGA3	234,2	38,57	0,165	0,149	0,130	não essencial
YDL171c/GLT1	799,3	206,51	0,258	0,193	0,287	não essencial
YDL172c/	842,2	139,90	0,166	0,170	0,141	não essencial
YDL173w/	443,1	51,95	0,117	0,075	0,164	não essencial
YDL174C/DLD1	279,5	87,36	0,313	0,135	0,202	não essencial
YDL175c/	106,5	22,70	0,213	0,234	0,131	não essencial
YDL176w/	103,1	22,62	0,219	0,219	0,112	não essencial
YDL177c/	410,4	84,07	0,205	0,200	0,140	não essencial
YDL178W/AIP2	347,9	62,37	0,179	0,224	0,193	não essencial
YDL179w/	352,2	220,52	0,626	0,483	0,115	não essencial
YDL180w/	278,5	71,89	0,258	0,169	0,108	não essencial
YDL181W/INH1	328,7	167,49	0,510	0,391	0,130	não essencial
YDL182w/	2284,1	566,34	0,248	0,313	0,321	não essencial
YDL183c/	68,2	15,70	0,230	0,188	0,104	não essencial
YDL185W/TFP1	772,1	130,14	0,169	0,160	0,305	não essencial
YDL186w/	177,7	59,24	0,333	0,211	0,122	não essencial
YDL187c/	119,9	52,98	0,442	0,242	0,100	não essencial
YDL188C/PPH22	912,4	183,64	0,201	0,185	0,160	não essencial
YDL189w/_ex2	409,8	64,00	0,156	0,184	0,121	não essencial
YDL190C/UFD2	343,6	57,14	0,166	0,168	0,177	não essencial
YDL191W/SOS1_ex1_f	3693,5	1617,17	0,438	0,487	0,798	não essencial
YDL192W/ARF1	2312,9	781,63	0,338	0,376	0,524	não essencial
YDL193w/	250,9	38,29	0,153	0,175	0,199	essencial
YDL194W/SNF3	101,1	17,27	0,171	0,128	0,130	não essencial

YDL195W/SEC31	761,5	108,62	0,143	0,162	0,204	essencial
YDL196w/	9,4	4,29	0,456	0,530	0,129	essencial
YDL197C/ASF2	260,2	90,30	0,347	0,265	0,123	não essencial
YDL198C/SHM1	686,5	246,52	0,359	0,119	0,209	não essencial
YDL199c/	48,6	11,81	0,243	0,248	0,104	não essencial
YDL200C/MGT1	380,0	52,10	0,137	0,107	0,128	não essencial
YDL201w/	362,9	67,70	0,187	0,211	0,190	não essencial
YDL202w/	453,8	83,84	0,185	0,184	0,122	não essencial
YDL203c/	144,2	22,17	0,154	0,195	0,118	não essencial
YDL204w/	100,7	24,91	0,247	0,224	0,184	não essencial
YDL205C/HEM3	124,8	29,70	0,238	0,257	0,184	essencial
YDL206w/	53,1	11,41	0,215	0,261	0,110	não essencial
YDL207w/	183,1	35,52	0,194	0,202	0,113	essencial
YDL208W/NHP2	2570,8	782,33	0,304	0,380	0,425	essencial
YDL209c/	110,1	20,97	0,191	0,202	0,114	essencial
YDL210W/UGA4	57,5	15,08	0,262	0,246	0,223	não essencial
YDL211c/	72,0	27,51	0,382	0,329	0,113	não essencial
YDL212W/SHR3	1088,9	160,61	0,148	0,156	0,239	essencial
YDL213c/	1554,5	316,31	0,203	0,265	0,189	não essencial
YDL214c/	23,5	14,89	0,633	0,749	0,134	não essencial
YDL215C/GDH2	251,4	42,86	0,170	0,151	0,208	não essencial
YDL217c/	271,5	57,11	0,210	0,190	0,104	essencial
YDL218w/	14,8	6,84	0,461	0,511	0,140	não essencial
YDL219w/_ex1	825,5	208,74	0,253	0,202	0,198	não essencial
YDL219w/_ex2	561,6	147,50	0,263	0,253	0,198	não essencial
YDL220C/CDC13	65,3	12,43	0,190	0,193	0,103	essencial
YDL221w/	97,6	31,63	0,324	0,273	0,083	essencial
YDL222c/	38,2	13,91	0,364	0,294	0,112	não essencial
YDL223c/	149,0	39,09	0,262	0,186	0,187	não essencial
YDL224c/	143,4	33,58	0,234	0,221	0,122	não essencial
YDL225w/	418,2	37,78	0,090	0,070	0,190	não essencial
YDL226C/GCS1	270,9	43,56	0,161	0,154	0,149	não essencial
YDL227C/HO	214,4	202,67	0,945	1,224	0,122	não essencial
YDL229W/SSB1	3466,6	1264,10	0,365	0,477	0,820	não essencial
YDL230W/PTP1	223,4	37,82	0,169	0,174	0,115	não essencial
YDL231c/	301,4	58,39	0,194	0,228	0,141	não essencial
YDL232W/OST4	1422,2	315,41	0,222	0,232	0,462	não essencial
YDL233w/	73,5	14,93	0,203	0,223	0,119	não essencial
YDL234C/GYP7	169,1	36,03	0,213	0,200	0,153	não essencial
YDL235c/	744,7	107,67	0,145	0,160	0,201	essencial
YDL236W/PHO13	315,9	35,00	0,111	0,131	0,196	não essencial
YDL237w/	221,2	43,29	0,196	0,188	0,151	não essencial
YDL238c/	28,2	10,70	0,379	0,302	0,126	não essencial
YDL239c/	102,8	30,00	0,292	0,235	0,131	não essencial
YDL240W/LRG1	94,5	31,54	0,334	0,327	0,139	não essencial
YDL241w/	604,3	141,87	0,235	0,145	0,096	não essencial
YDL242w/	46,1	15,80	0,343	0,264	0,128	não essencial
YDL243c/_i	805,0	169,03	0,210	0,170	0,160	não essencial
YDL243c/_r	118,1	34,55	0,293	0,264	0,160	não essencial
YDR001C/	383,6	94,26	0,246	0,171	0,168	não essencial
YDR002W/	1471,2	305,12	0,207	0,225	0,489	essencial
YDR003W/	150,5	30,94	0,206	0,170	0,098	não essencial
YDR004W/	87,0	23,35	0,268	0,336	0,104	não essencial
YDR005C/_ex1	257,7	60,78	0,236	0,184	0,119	não essencial
YDR006C/	325,8	50,67	0,156	0,165	0,147	não essencial
YDR007W/	301,0	58,43	0,194	0,197	0,121	não essencial

YDR008C/	378,9	90,24	0,238	0,146	0,119	não essencial
YDR009W/GAL3	45,6	15,46	0,339	0,211	0,137	não essencial
YDR010c/	22,5	16,33	0,725	0,668	0,094	não essencial
YDR011W/SNQ2	625,5	193,51	0,309	0,178	0,180	não essencial
YDR013w/	208,1	63,91	0,307	0,238	0,131	essencial
YDR014w/	51,8	14,37	0,278	0,321	0,124	não essencial
YDR016c/	742,9	228,30	0,307	0,189	0,101	essencial
YDR017C/KCS1	444,0	79,60	0,179	0,175	0,144	não essencial
YDR018c/	39,6	23,71	0,598	1,735	0,139	não essencial
YDR019C/GCV1	390,5	239,52	0,613	0,234	0,143	não essencial
YDR020c/	291,7	61,80	0,212	0,219	0,137	não essencial
YDR021w/	220,5	45,35	0,206	0,158	0,166	essencial
YDR022c/	162,6	45,05	0,277	0,158	0,137	não essencial
YDR023W/SES1	1033,9	168,35	0,163	0,183	0,392	essencial
YDR024w/	20,8	7,38	0,355	0,415	0,072	não essencial
YDR025W/RPS18A ex1 f	1671,6	670,84	0,401	0,508	0,705	não essencial
YDR025W/RPS18A ex1 i	2779,2	870,46	0,313	0,393	0,705	não essencial
YDR025W/RPS18A_ex2_f	3445,9	1201,56	0,349	0,384	0,705	não essencial
YDR025W/RPS18A ex2 i	3941,1	1592,04	0,404	0,527	0,705	não essencial
YDR026c/	164,8	25,96	0,158	0,154	0,155	não essencial
YDR027c/	247,7	49,68	0,201	0,185	0,116	não essencial
YDR028C/REG1	550,9	109,58	0,199	0,206	0,146	não essencial
YDR029w/	77,5	28,11	0,363	0,305	0,106	não essencial
YDR030c/	82,1	17,58	0,214	0,193	0,123	não essencial
YDR031w/	202,8	44,10	0,217	0,189	0,136	não essencial
YDR032c/	767,4	136,52	0,178	0,161	0,367	não essencial
YDR033w/	1917,6	978,76	0,510	0,384	0,508	não essencial
YDR034C/LYS14	185,6	37,06	0,200	0,152	0,130	não essencial
YDR035W/ARO3	1294,2	419,29	0,324	0,212	0,287	não essencial
YDR036c/	175,3	35,50	0,203	0,188	0,203	não essencial
YDR037W/KRS1	1539,4	284,31	0,185	0,166	0,422	essencial
YDR039C/ENA2_r	755,2	119,30	0,158	0,211	0,190	não essencial
YDR040C/ENA1	11,8	4,68	0,398	0,765	0,197	não essencial
YDR041W/	704,4	202,52	0,288	0,175	0,129	essencial
YDR042C/	183,8	73,55	0,400	0,277	0,111	não essencial
YDR043C/	255,2	48,61	0,190	0,115	0,106	não essencial
YDR044W/HEM13	968,3	576,34	0,595	0,318	0,448	essencial
YDR045C/	895,6	189,45	0,212	0,250	0,144	essencial
YDR046C/	602,1	219,13	0,364	0,308	0,156	não essencial
YDR047W/	293,8	62,26	0,212	0,168	0,160	essencial
YDR048C/	38,3	17,25	0,450	0,503	0,099	não essencial
YDR049W/	462,6	53,86	0,116	0,090	0,144	não essencial
YDR050C/	2982,6	1251,96	0,420	0,406	0,817	essencial
YDR051c/	334,8	52,21	0,156	0,137	0,161	não essencial
YDR052C/DBF4	426,4	60,15	0,141	0,155	0,137	essencial
YDR053w/	80,5	17,26	0,214	0,173	0,122	essencial
YDR054c/	502,0	93,60	0,186	0,188	0,189	essencial
YDR055w/	1170,4	488,02	0,417	0,283	0,267	não essencial
YDR056c/	677,4	129,75	0,192	0,172	0,152	não essencial
YDR057w/	343,2	65,73	0,192	0,232	0,117	não essencial
YDR058c/TGL2	82,3	33,06	0,402	0,221	0,136	não essencial
YDR059C/UBC5_ex1	308,8	76,55	0,248	0,217	0,186	não essencial
YDR059C/UBC5_ex2	236,9	52,61	0,222	0,191	0,186	não essencial
YDR060w/	1307,8	230,10	0,176	0,177	0,200	essencial
YDR061w/	240,6	44,89	0,187	0,143	0,099	não essencial
YDR062W/LCB2	662,3	94,44	0,143	0,114	0,217	essencial

YDR063w/	445,9	50,96	0,114	0,097	0,156	não essencial
YDR064W/RPS13C ex1	2254,6	908,96	0,403	0,376	0,776	essencial
YDR065w/	178,5	51,42	0,288	0,281	0,135	não essencial
YDR066c/	226,6	39,03	0,172	0,151	0,086	não essencial
YDR067c/	532,7	86,98	0,163	0,160	0,129	não essencial
YDR068W/DOS1	484,9	102,19	0,211	0,122	0,181	não essencial
YDR069C/DOA4	29,3	7,47	0,255	0,316	0,154	não essencial
YDR070c/	141,8	46,19	0,326	0,221	0,266	não essencial
YDR071c/	1322,3	267,49	0,202	0,247	0,244	não essencial
YDR072c/	446,2	97,09	0,218	0,123	0,135	não essencial
YDR073W/SNF11	257,6	48,42	0,188	0,139	0,066	não essencial
YDR074W/TPS2	191,3	54,21	0,283	0,183	0,236	não essencial
YDR075W/PPH3	148,2	28,46	0,192	0,184	0,133	não essencial
YDR076W/RAD55	152,9	29,64	0,194	0,219	0,110	não essencial
YDR077W/SED1	2574,8	830,77	0,323	0,312	0,520	não essencial
YDR078c/	147,4	26,14	0,177	0,148	0,123	não essencial
YDR079w/	534,9	131,85	0,247	0,261	0,101	não essencial
YDR080w/	308,9	36,10	0,117	0,141	0,152	não essencial
YDR081C/PDC2	266,4	38,59	0,145	0,176	0,130	essencial
YDR082w/	161,9	38,91	0,240	0,239	0,121	essencial
YDR083w/	504,1	118,96	0,236	0,231	0,194	não essencial
YDR084c/	422,3	75,48	0,179	0,173	0,119	não essencial
YDR085C/AFR1	211,8	60,51	0,286	0,228	0,131	não essencial
YDR086C/SSS1	1236,4	336,45	0,272	0,277	0,441	essencial
YDR087c/	652,8	75,94	0,116	0,106	0,157	essencial
YDR088C/SLU7	169,9	23,18	0,136	0,148	0,159	essencial
YDR089w/	241,5	68,71	0,284	0,200	0,131	não essencial
YDR090C/	133,8	20,13	0,150	0,141	0,155	não essencial
YDR091C/	561,8	101,24	0,180	0,229	0,369	essencial
YDR092W/UBC13_ex1	721,8	152,88	0,212	0,179	0,128	não essencial
YDR093W/	222,9	36,81	0,165	0,147	0,153	não essencial
YDR094W/	764,4	191,27	0,250	0,294	0,091	não essencial
YDR095C/	75,4	19,68	0,261	0,295	0,067	não essencial
YDR096W/GIS1	89,1	20,23	0,227	0,302	0,149	não essencial
YDR097C/	233,4	135,94	0,583	0,496	0,152	não essencial
YDR098C/	851,9	118,39	0,139	0,168	0,177	não essencial
YDR099w/BMH2	787,2	159,10	0,202	0,200	0,385	não essencial
YDR100W/	333,2	59,58	0,179	0,164	0,136	não essencial
YDR101C/	560,6	89,30	0,159	0,118	0,238	não essencial
YDR102C/	5,5	3,78	0,690	1,209	0,098	não essencial
YDR103w/STE5	174,9	29,04	0,166	0,171	0,135	não essencial
YDR104C/	63,6	13,41	0,211	0,337	0,126	não essencial
YDR105C/	153,1	35,35	0,231	0,292	0,108	não essencial
YDR107C/	103,1	19,46	0,189	0,181	0,129	não essencial
YDR108w/GSG1	140,6	24,55	0,175	0,203	0,127	não essencial
YDR109C/	66,1	11,88	0,180	0,238	0,119	não essencial
YDR110W/	241,9	27,06	0,112	0,120	0,129	não essencial
YDR111C/	147,6	48,45	0,328	0,287	0,158	não essencial
YDR112W/	47,9	19,67	0,411	0,389	0,121	não essencial
YDR113c/PDS1	281,4	134,06	0,476	0,341	0,131	essencial
YDR114C/	116,9	20,31	0,174	0,227	0,105	não essencial
YDR115W/	540,6	73,20	0,135	0,142	0,125	não essencial
YDR116C/	306,9	78,83	0,257	0,224	0,124	não essencial
YDR117C/	255,5	45,30	0,177	0,186	0,176	não essencial
YDR118W/	109,9	21,04	0,191	0,215	0,114	essencial
YDR119W/	452,6	95,94	0,212	0,201	0,123	não essencial

VDD120a/TDM1	500 F	112 21	0.222	0.254	0.155	não coconcial
YDR120c/TRM1 YDR121W/	509,5 421,7	113,31	0,222	0,254	0,155	não essencial
		77,83	0,185	0,226	0,125	não essencial
YDR122w/KIN1	162,9	31,82	0,195	0,216	0,127	não essencial
YDR123c/INO2	109,4	28,91	0,264	0,184	0,123	não essencial
YDR124W/	73,7	20,80	0,282	0,134	0,092	não essencial
YDR125C/	46,2	13,00	0,281	0,141	0,129	não essencial
YDR126W/	93,2	27,77	0,298	0,260	0,108	não essencial
YDR127w/ARO1	609,5	90,70	0,149	0,114	0,217	não essencial
YDR128W/	177,6	35,77	0,201	0,181	0,117	não essencial
YDR129c/SAC6_ex1	484,3	80,29	0,166	0,155	0,234	não essencial
YDR130C/	147,5	51,59	0,350	0,405	0,088	não essencial
YDR131C/	129,0	23,42	0,182	0,204	0,132	não essencial
YDR132C/	88,6	16,79	0,189	0,268	0,132	não essencial
YDR133C/	4229,7	1342,59	0,317	0,399	0,052	não essencial
YDR134C/_f	2115,5	670,98	0,317	0,412	0,710	não essencial
YDR134C/_i	1647,9	483,94	0,294	0,326	0,710	não essencial
YDR135c/YCF1	566,4	128,73	0,227	0,213	0,149	não essencial
YDR136C/	15,8	7,36	0,465	0,517	0,077	não essencial
YDR137w/RGP1	100,2	17,44	0,174	0,202	0,112	não essencial
YDR138w/HPR1	116,5	22,11	0,190	0,188	0,157	não essencial
YDR139C/_ex1	1115,6	163,82	0,147	0,145	0,111	não essencial
YDR139C/_ex2	1121,1	200,15	0,179	0,161	0,111	não essencial
YDR140W/	279,3	23,02	0,082	0,080	0,123	não essencial
YDR141C/	434,6	61,09	0,141	0,169	0,127	essencial
YDR142c/PAS7	187,4	30,69	0,164	0,208	0,112	não essencial
YDR143c/SAN1	307,5	55,27	0,180	0,234	0,154	não essencial
YDR144c/MKC7	506,0	106,25	0,210	0,171	0,145	não essencial
YDR145W/	703,9	102,39	0,145	0,183	0,115	essencial
YDR146c/SWI5	511,4	250,55	0,490	0,308	0,143	não essencial
YDR147W/	377,3	100,06	0,265	0,182	0,134	não essencial
YDR148c/KGD2	155,1	50,65	0,327	0,291	0,240	não essencial
YDR149C/	40,8	21,11	0,518	0,526	0,135	não essencial
YDR150w/NUM1	317,8	93,59	0,295	0,287	0,163	não essencial
YDR151c/CTH1	224,9	36,28	0,161	0,199	0,122	não essencial
YDR152W/	867,9	123,34	0,142	0,163	0,182	não essencial
YDR153C/	518,5	69,93	0,135	0,139	0,160	não essencial
YDR154C/	6045,4	1970,92	0,326	0,393	0,103	não essencial
YDR155c/CPH1	1879,8	520,88	0,277	0,324	0,614	não essencial
YDR156w/RPA14	454,0	82,12	0,181	0,210	0,152	não essencial
YDR157W/	833,1	187,92	0,226	0,256	0,135	não essencial
YDR158w/HOM2	1544,2	533,41	0,345	0,226	0,431	não essencial
YDR159w/SAC3	246,6	43,58	0,177	0,205	0,141	não essencial
YDR160W/	154,6	41,04	0,265	0,355	0,112	essencial
YDR161W/	318,7	46,94	0,147	0,140	0,122	não essencial
YDR162c/NBP2	429,7	61,21	0,142	0,144	0,110	não essencial
YDR163W/	488,0	55,67	0,114	0,116	0,088	não essencial
YDR164c/SEC1	206,6	36,82	0,178	0,190	0,159	essencial
YDR165W/	899,4	87,37	0,097	0,120	0,192	não essencial
YDR166C/	146,2	29,14	0,199	0,218	0,160	essencial
YDR167W/TAF25	688,5	121,56	0,177	0,136	0,096	essencial
YDR168w/CDC37	592,0	109,67	0,185	0,199	0,201	essencial
YDR169c/STB3	200,5	39,51	0,197	0,133	0,108	não essencial
YDR170c/SEC7	501,8	59,91	0,137	0,153	0,100	essencial
YDR171w/HSP42	107,4	51,51	0,480	0,133	0,193	não essencial
YDR172w/SUP35	813,9	164,73	0,480	0,212	0,162	essencial
YDR173c/ARG82	98,0	27,40	0,202	0,227	0,313	
IDRI/30/ARG02	90,0	21,40	0,∠00	0,271	0,111	não essencial

YDR174W/	921,2	214,32	0,233	0,119	0,314	não essencial
YDR175C/	279,9	52,34	0,187	0,121	0,136	não essencial
YDR176w/NGG1	366,1	59,24	0,162	0,132	0,133	não essencial
YDR177w/UBC1	1312,6	196,08	0,149	0,138	0,158	essencial
YDR178w/SDH4	361,7	74,17	0,205	0,187	0,194	não essencial
YDR179C/	407,8	130,19	0,319	0,213	0,109	não essencial
YDR179W-a/	351,2	91,86	0,262	0,247	0,132	não essencial
YDR180W/	171,2	40,01	0,234	0,235	0,141	essencial
YDR181C/	211,8	37,04	0,175	0,252	0,132	não essencial
YDR182w/CDC1	356,5	63,01	0,177	0,180	0,120	essencial
YDR183W/	194,1	43,74	0,225	0,215	0,126	não essencial
YDR184C/BAT1	457,7	132,70	0,290	0,218	0,156	não essencial
YDR185C/	157,9	39,27	0,249	0,280	0,116	não essencial
YDR186C/	462,8	119,20	0,258	0,150	0,113	não essencial
YDR187C/	240,3	70,55	0,294	0,130	0,089	essencial
YDR188w/CCT6	693,9	103,76	0,294	0,203	0,009	essencial
YDR189w/SLY1	· ·	·			·	
	790,6	80,87	0,102	0,104	0,188	essencial
YDR190C/	578,9	76,27	0,132	0,122	0,190	essencial
YDR191W/	99,9	54,06	0,541	0,468	0,123	não essencial
YDR192c/NUP42	260,6	29,91	0,115	0,109	0,092	não essencial
YDR193W/	48,3	11,92	0,247	0,320	0,083	não essencial
YDR194c/MSS116	541,4	138,97	0,257	0,219	0,205	não essencial
YDR195w/REF2	265,1	72,39	0,273	0,272	0,149	não essencial
YDR196C/	683,6	116,69	0,171	0,161	0,121	essencial
YDR197w/CBS2	190,7	49,29	0,258	0,229	0,132	não essencial
YDR198C/	144,1	35,44	0,246	0,286	0,125	não essencial
YDR199W/	328,0	66,68	0,203	0,165	0,098	não essencial
YDR200C/	259,6	57,00	0,220	0,193	0,121	não essencial
YDR201W/	316,0	63,82	0,202	0,205	0,156	essencial
YDR202C/	193,6	47,23	0,244	0,234	0,141	não essencial
YDR203W/	63,8	16,72	0,262	0,214	0,082	não essencial
YDR204W/	165,7	64,43	0,389	0,211	0,124	não essencial
YDR205W/	99,9	21,62	0,216	0,290	0,116	não essencial
YDR206W/	353,9	82,98	0,234	0,243	0,117	não essencial
YDR207c/UME6	234,3	47,76	0,204	0,256	0,145	não essencial
YDR208w/MSS4	356,2	59,04	0,166	0,145	0,143	essencial
YDR209C/	1165,6	260,93	0,224	0,193	0,154	não essencial
YDR210W/	2026,8	448,41	0,221	0,245	0,290	não essencial
YDR211w/GCD6	422,6	89,86	0,213	0,249	0,198	essencial
YDR212w/TCP1	616,9	128,17	0,208	0,253	0,244	essencial
YDR213W/	190,5	76,09	0,399	0,242	0,123	não essencial
YDR214W/	608,8	316,48	0,520	0,113	0,170	não essencial
YDR216w/ADR1	50,7	19,19	0,378	0,260	0,154	não essencial
YDR217c/RAD9	123,9	23,73	0,192	0,168	0,121	não essencial
YDR218C/	75,6	41,03	0,542	0,163	0,144	não essencial
YDR219C/	175,2	59,40	0,339	0,350	0,111	não essencial
YDR221W/	127,5	23,52	0,184	0,196	0,152	não essencial
YDR222W/	85,0	16,96	0,199	0,176	0,185	não essencial
YDR223W/	52,0	14,73	0,193	0,170	0,104	não essencial
YDR224c/HTB1	1364,6	456,31	0,334	0,412	0,658	essencial
YDR225w/HTA1 f	1669,5	576,86	0,334	0,317	0,654	não essencial
YDR225w/HTA1_i	1482,6	486,85	0,346	0,324	0,654	não essencial
					·	
YDR226w/ADK1	2224,5	590,43	0,265	0,223	0,532	não essencial
YDR227w/SIR4	155,6	41,98	0,270	0,260	0,136	não essencial
YDR228C/	443,6	72,36	0,163	0,142	0,169	essencial
YDR229W/	428,5	68,95	0,161	0,176	0,107	não essencial

YDR230W/	266,5	51,53	0,193	0,196	0,095	não essencial
YDR231C/	194,7	44,32	0,228	0,238	0,114	não essencial
YDR232w/HEM1	356,5	79,45	0,223	0,222	0,213	essencial
YDR233C/	1349,7	280,49	0,208	0,191	0,398	não essencial
YDR234w/LYS4	330,9	63,90	0,193	0,229	0,200	não essencial
YDR235W/	143,1	26,16	0,183	0,239	0,131	essencial
YDR236C/	325,6	75,67	0,232	0,215	0,144	essencial
YDR237W/	445,5	109,29	0,245	0,205	0,173	não essencial
YDR238c/SEC26	693,2	96,16	0,139	0,144	0,218	essencial
YDR239C/	198,4	31,38	0,158	0,166	0,123	não essencial
YDR240C/	172,2	37,99	0,221	0,278	0,121	essencial
YDR241W/	34,5	5,92	0,172	0,208	0,092	não essencial
YDR242w/AMD2	221,2	52,72	0,238	0,194	0,032	não essencial
YDR243c/PRP28	324,1	51,42	0,159	0,116	0,162	essencial
YDR244w/PAS10	174,9	40,02	0,139	0,110	0,102	não essencial
YDR245w/MNN10	694,4	130,85	0,229	0,331	0,114	não essencial
YDR246W/	168,0	33,53	0,188	0,196	0,127	essencial
	· ·	· ·		-		
YDR247W/	34,4	12,17	0,354	0,388	0,169	não essencial
YDR248C/	264,8	68,81	0,260	0,196	0,161	não essencial
YDR249C/	113,6	36,88	0,325	0,384	0,115	não essencial
YDR250C/	13,3	7,24	0,545	1,277	0,091	não essencial
YDR251w/PAM1	435,7	68,20	0,157	0,139	0,126	não essencial
YDR252w/BTT1	142,4	40,76	0,286	0,356	0,121	não essencial
YDR253C/	481,3	144,42	0,300	0,263	0,122	não essencial
YDR254w/CHL4	107,3	26,22	0,244	0,342	0,104	não essencial
YDR255C/	127,9	33,07	0,259	0,282	0,137	não essencial
YDR256c/CTA1	38,7	14,11	0,365	0,584	0,159	não essencial
YDR257C/RMS1	257,7	48,50	0,188	0,241	0,171	não essencial
YDR258c/HSP78	124,4	165,94	1,334	0,328	0,207	não essencial
YDR259C/	60,3	20,21	0,335	0,393	0,130	não essencial
YDR260C/	285,1	36,73	0,129	0,173	0,086	não essencial
YDR261c/EXG2	447,6	74,17	0,166	0,131	0,150	não essencial
YDR262w/	343,2	63,84	0,186	0,239	0,118	não essencial
YDR263c/DIN7	201,8	56,44	0,280	0,307	0,131	não essencial
YDR264c/AKR1	434,8	55,60	0,128	0,114	0,133	não essencial
YDR265W/	172,9	32,76	0,189	0,199	0,138	não essencial
YDR266C/	250,2	44,08	0,176	0,207	0,171	não essencial
YDR267C/	238,8	25,69	0,108	0,103	0,134	essencial
YDR268w/MSW1	156,3	29,39	0,188	0,169	0,126	não essencial
YDR270w/CCC2	97,9	23,19	0,237	0,284	0,135	não essencial
YDR271C/	124,2	36,01	0,290	0,284	0,113	não essencial
YDR272W/	510,6	121,23	0,237	0,210	0,154	não essencial
YDR273W/	43,8	13,63	0,311	0,241	0,136	não essencial
YDR275W/	231,4	55,18	0,238	0,284	0,116	não essencial
YDR276C/	1761,3	660,63	0,375	0,338	0,338	não essencial
YDR277c/MTH1	135,4	51,91	0,383	0,344	0,115	não essencial
YDR279W/	186,8	54,42	0,291	0,275	0,126	não essencial
YDR280W/	391,9	55,18	0,141	0,156	0,136	essencial
YDR281C/	246,1	140,41	0,571	0,372	0,081	não essencial
YDR282C/	60,5	14,64	0,242	0,235	0,107	não essencial
YDR283c/GCN2	149,2	27,05	0,181	0,197	0,138	não essencial
YDR284C/	480,6	146,15	0,304	0,253	0,156	não essencial
YDR285w/ZIP1	134,7	31,99	0,237	0,195	0,136	não essencial
YDR286C/	251,6	63,28	0,251	0,190	0,140	não essencial
YDR287W/	164,4	36,94	0,231	0,190	0,134	não essencial
YDR288W/	150,1	36,49	0,223	0,208	0,123	essencial
I DUSOOAA	150,1	30,49	0,243	0,210	0,122	Coochicidi

YDR289C/	304,8	60,43	0,198	0,181	0,156	não essencial
YDR290W/	141,2	35,94	0,255	0,258	0,180	não essencial
YDR291W/	281,3	44,55	0,158	0,153	0,141	não essencial
YDR292c/SRP101	444,4	53,78	0,121	0,095	0,149	essencial
YDR293C/SSD1	433,4	93,12	0,215	0,205	0,186	não essencial
YDR294C/	199,9	41,32	0,207	0,208	0,161	não essencial
YDR295C/	109,3	23,62	0,216	0,272	0,128	não essencial
YDR296W/	602,9	143,66	0,238	0,216	0,107	não essencial
YDR297w/SUR2	797,6	253,20	0,317	0,287	0,209	não essencial
YDR298c/ATP5	681,6	149,58	0,219	0,179	0,232	não essencial
YDR299W/	484,1	79,17	0,164	0,196	0,206	essencial
YDR300c/PRO1	259,5	44,03	0,170	0,201	0,198	não essencial
YDR301W/	136,3	33,86	0,170	0,247	0,153	essencial
YDR302W/	277,1	74,89	0,270	0,233	0,133	essencial
YDR303C/	201,4	37,98	0,270	0,235	0,147	
YDR304c/CYP5	· ·					essencial
	1364,9	323,58	0,237	0,228	0,261	não essencial
YDR305C/_ex1_f	167,7	42,33	0,252	0,264	0,157	não essencial
YDR305C/_ex1_i	132,2	41,84	0,317	0,346	0,157	não essencial
YDR305C/_ex2	505,2	56,96	0,113	0,111	0,157	não essencial
YDR306C/	213,2	37,42	0,175	0,159	0,124	não essencial
YDR307W/	112,4	24,02	0,214	0,204	0,137	não essencial
YDR308c/SRB7	422,0	84,95	0,201	0,221	0,144	essencial
YDR309C/	674,9	279,34	0,414	0,412	0,152	não essencial
YDR310c/SUM1	551,0	58,62	0,106	0,127	0,134	não essencial
YDR311w/TFB1	337,4	47,01	0,139	0,194	0,192	essencial
YDR312w/SSF2	451,3	102,33	0,227	0,281	0,160	não essencial
YDR313C/	218,9	46,46	0,212	0,213	0,120	não essencial
YDR314C/	31,6	11,69	0,370	0,352	0,143	não essencial
YDR315C/	218,6	38,20	0,175	0,183	0,119	não essencial
YDR316W/	240,5	63,99	0,266	0,280	0,150	não essencial
YDR317W/	96,1	28,88	0,301	0,178	0,133	não essencial
YDR318W/	241,0	36,80	0,153	0,129	0,132	não essencial
YDR319C/	204,2	33,31	0,163	0,187	0,118	não essencial
YDR320C/	161,1	33,26	0,207	0,190	0,151	não essencial
YDR321w/ASP1	552,8	87,38	0,158	0,173	0,221	não essencial
YDR322W/	315,5	63,56	0,201	0,236	0,157	não essencial
YDR323c/PEP7	54,2	13,61	0,251	0,318	0,128	não essencial
YDR324C/	463,8	117,44	0,253	0,286	0,169	essencial
YDR325W/	376,7	100,00	0,265	0,249	0,132	essencial
YDR327W/	1137,9	357,12	0,314	0,302	0,101	essencial
YDR328c/SKP1	1179,7	188,57	0,160	0,175	0,193	essencial
YDR329c/PAS3	630,2	113,34	0,180	0,213	0,098	não essencial
YDR330W/	137,7	37,73	0,274	0,284	0,160	não essencial
YDR331W/	222,2	46,09	0,207	0,274	0,129	essencial
YDR332W/	98,4	18,89	0,192	0,155	0,118	não essencial
YDR333C/	221,4	27,94	0,126	0,154	0,154	não essencial
YDR334W/	190,9	41,70	0,120	0,194	0,145	não essencial
YDR335w/MSN5	342,5	69,38	0,213	0,194	0,143	
YDR336W/	169,6	36,66	0,203	0,228	0,134	não essencial não essencial
YDR337w/MRPS28	365,8	112,33	0,210	0,287	0,129	não essencial
	80,9	14,50				
YDR338C/			0,179	0,283	0,118	não essencial
YDR339C/	826,2	202,57	0,245	0,302	0,154	essencial
YDR341C/	1464,5	224,29	0,153	0,165	0,285	essencial
YDR342c/HXT7_f	648,8	145,29	0,224	0,209	0,519	não essencial
YDR343c/HXT6_f	583,0	144,84	0,248	0,231	0,519	não essencial
YDR344C/	30,6	9,19	0,300	0,321	0,103	não essencial

YDR345c/HXT3	1182,8	425,11	0,359	0,359	0,494	não essencial
YDR346C/	733,1	124,52	0,170	0,125	0,254	não essencial
YDR347w/MRP1	445,6	93,10	0,209	0,228	0,102	não essencial
YDR348C/	323,7	64,79	0,200	0,195	0,146	não essencial
YDR349C/	780,6	123,43	0,158	0,181	0,116	não essencial
YDR350c/TCM10	150,1	28,19	0,188	0,257	0,106	não essencial
YDR351w/SBE2	162,5	34,04	0,209	0,229	0,111	não essencial
YDR352W/	349,9	61,51	0,176	0,225	0,104	não essencial
YDR353W/	1834,8	594,10	0,324	0,410	0,315	essencial
YDR354w/TRP4	314,4	69,12	0,220	0,154	0,142	não essencial
YDR356w/NUF1	141,3	56,32	0,399	0,261	0,153	essencial
YDR357C/	770,2	189,26	0,246	0,232	0,136	não essencial
YDR358W/	110,9	51,63	0,466	0,445	0,130	não essencial
YDR359C/	183,4	38,88	0,400	0,184	0,117	não essencial
YDR361C/	557,4	104,06	0,212	0,104	0,117	
	· ·					essencial
YDR362C/	57,2	17,19	0,300	0,320	0,110	essencial
YDR363W/	140,5	37,87	0,269	0,282	0,144	não essencial
YDR364c/CDC40	172,9	37,86	0,219	0,251	0,136	não essencial
YDR365C/	938,4	220,85	0,235	0,241	0,229	essencial
YDR367W/_ex1	354,4	43,61	0,123	0,113	0,158	essencial
YDR368w/YPR1	285,3	79,63	0,279	0,184	0,260	não essencial
YDR369c/XRS2	186,6	37,70	0,202	0,216	0,140	não essencial
YDR370C/	290,4	52,85	0,182	0,207	0,121	não essencial
YDR371W/	219,7	40,59	0,185	0,284	0,137	não essencial
YDR372C/	448,7	46,87	0,104	0,110	0,183	não essencial
YDR373W/	388,0	60,22	0,155	0,184	0,150	essencial
YDR374C/	124,7	69,10	0,554	0,423	0,164	não essencial
YDR375c/BCS1	277,1	56,92	0,205	0,267	0,147	não essencial
YDR376w/ARH1	167,8	31,97	0,191	0,218	0,150	essencial
YDR377W/	599,7	154,41	0,257	0,209	0,209	não essencial
YDR378C/	799,0	182,45	0,228	0,266	0,126	não essencial
YDR379W/	166,1	52,06	0,313	0,525	0,116	não essencial
YDR380W/	535,9	378,28	0,706	0,256	0,160	não essencial
YDR381W/	1724,5	611,77	0,355	0,314	0,282	essencial
YDR382w/RPL45	3639,2	1670,21	0,459	0,540	0,762	não essencial
YDR383C/	132,5	40,29	0,304	0,341	0,107	não essencial
YDR384C/	384,5	54,45	0,142	0,172	0,127	não essencial
YDR385w/EFT2_f	2219,2	803,47	0,362	0,365	0,800	não essencial
YDR386W/	61,8	15,87	0,257	0,260	0,118	não essencial
YDR387C/	136,1	24,90	0,183	0,244	0,123	não essencial
YDR388w/RVS167	516,9	127,74	0,247	0,230	0,177	não essencial
YDR389w/SAC7	239,4	74,35	0,311	0,354	0,126	não essencial
YDR390c/UBA2	408,0	90,65	0,222	0,263	0,151	essencial
YDR391C/	204,6	64,22	0,314	0,173	0,169	não essencial
YDR392w/SPT3	242,0	41,64	0,172	0,196	0,135	não essencial
YDR393W/	277,9	51,41	0,172	0,189	0,133	não essencial
YDR394w/YTA2	508,8	172,70	0,183	0,189	0,140	
YDR395W/	461,8	51,67		0,249	· ·	essencial
	· ·	· ·	0,112		0,196	não essencial
YDR396W/	534,6	111,35	0,208	0,163	0,207	essencial
YDR397C/_ex1	1265,9	301,84	0,238	0,212	0,113	essencial
YDR398W/	668,3	81,86	0,122	0,152	0,167	essencial
YDR399W/	1795,6	386,73	0,215	0,252	0,286	não essencial
YDR400W/	160,5	38,25	0,238	0,238	0,138	não essencial
YDR401W/	32,3	8,96	0,277	0,291	0,114	não essencial
YDR402C/	30,5	15,97	0,524	0,347	0,135	não essencial
YDR403w/DIT1	45,8	13,67	0,298	0,239	0,167	não essencial

YDR404c/RPB7	855,2	201,95	0,236	0,221	0,152	essencial
YDR405w/MRP20	259,2	40,57	0,157	0,214	0,086	não essencial
YDR406w/PDR15	124,2	23,34	0,188	0,197	0,183	não essencial
YDR407C/	401,0	70,63	0,176	0,203	0,142	essencial
YDR408c/ADE8	645,2	124,40	0,193	0,146	0,119	não essencial
YDR409W/	126,9	28,52	0,225	0,188	0,116	não essencial
YDR410c/STE14	254,1	27,98	0,110	0,106	0,116	não essencial
YDR411C/	402,9	66,66	0,165	0,164	0,103	não essencial
YDR412W/	415,6	72,52	0,174	0,169	0,160	essencial
YDR413C/	497,0	112,14	0,226	0,259	0,128	essencial
YDR414c/ERD1	135,4	23,19	0,171	0,256	0,108	não essencial
YDR415C/	165,5	33,18	0,200	0,254	0,143	não essencial
YDR416W/	180,5	34,27	0,190	0,210	0,133	essencial
YDR418w/RPL15A	2742,1	1206,17	0,440	0,503	0,766	não essencial
YDR419W/	176,9	41,28	0,233	0,216	0,111	não essencial
YDR420w/HKR1	176,6	39,72	0,225	0,144	0,099	não essencial
YDR421W/	154,5	39,24	0,254	0,233	0,115	não essencial
YDR422c/SIP1	95,2	14,49	0,152	0,179	0,129	não essencial
YDR423c/CAD1	127,8	30,94	0,242	0,239	0,111	não essencial
YDR424c/DYN2_ex1	1073,7	242,76	0,226	0,215	0,164	não essencial
YDR425W/	168,8	41,26	0,244	0,301	0,152	não essencial
YDR426C/	147,3	36,51	0,248	0,208	0,205	não essencial
YDR427W/	685,1	136,12	0,199	0,222	0,218	essencial
YDR428C/	296,0	60,22	0,203	0,211	0,142	não essencial
YDR429C/	1134,5	246,44	0,217	0,239	0,249	essencial
YDR430C/	113,9	24,95	0,219	0,239	0,150	não essencial
YDR432w/NPL3	1082,4	338,73	0,313	0,293	0,359	não essencial
YDR433W/_i	4030,3	1291,04	0,320	0,339	0,091	não essencial
YDR433W/_r	1769,5	729,81	0,412	0,401	0,091	não essencial
YDR434W/	474,5	86,14	0,182	0,154	0,144	essencial
YDR435C/	105,5	28,14	0,267	0,301	0,122	não essencial
YDR436w/PPZ2	73,5	12,73	0,173	0,188	0,109	não essencial
YDR437W/	22,5	10,52	0,468	1,411	0,101	essencial
YDR438W/	96,1	20,14	0,210	0,238	0,113	não essencial
YDR439W/	157,3	26,94	0,171	0,203	0,104	não essencial
YDR440W/	96,9	32,39	0,334	0,400	0,126	não essencial
YDR441c/APT2	435,6	76,94	0,177	0,238	0,139	não essencial
YDR442W/	119,1	19,16	0,161	0,179	0,068	não essencial
YDR443c/SCA1	74,2	15,54	0,209	0,249	0,125	não essencial
YDR445C/	340,0	73,75	0,217	0,192	0,111	não essencial
YDR446W/	14,4	6,06	0,422	0,506	0,112	não essencial
YDR447c/RP51B_ex1_f	2117,5	836,18	0,395	0,376	0,757	não essencial
YDR448w/ADA2	180,8	30,35	0,168	0,171	0,119	não essencial
YDR449C/	701,4	117,05	0,167	0,206	0,181	essencial
YDR450W/_ex2_f	2889,8	1231,70	0,426	0,440	0,775	não essencial
YDR450W/_ex2_i	2809,2	1382,99	0,492	0,554	0,775	não essencial
YDR451C/	186,5	94,58	0,507	0,426	0,133	não essencial
YDR452W/	617,0	148,38	0,240	0,173	0,149	não essencial
YDR453C/	173,7	73,80	0,425	0,231	0,273	não essencial
YDR454c/GUK1	1529,4	344,03	0,225	0,230	0,314	essencial
YDR455C/	29,4	7,19	0,245	0,311	0,107	não essencial
YDR456W/	275,3	57,44	0,209	0,222	0,156	não essencial
YDR457W/	414,4	110,11	0,266	0,328	0,155	não essencial
YDR458C/	188,8	35,27	0,187	0,170	0,129	não essencial
YDR459C/	190,9	36,61	0,192	0,152	0,117	não essencial
YDR460W/	262,4	41,20	0,157	0,134	0,141	essencial

YDR462W/	339,5	86,01	0,253	0,219	0,109	não essencial
YDR463w/STP1	489,8	81,94	0,233	0,219	0,109	não essencial
YDR464w/SPP41	378,8	96,95	0,167	0,100	0,143	essencial
YDR465C/	650,7	147,62	0,230	0,241	0,141	não essencial
YDR466W/	239,2	40,97	0,227	0,318	0,176	não essencial
YDR467C/	361,4	65,40	0,171	0,197	0,108	não essencial
YDR468C/	514,9	103,64	0,181	0,173	0,095	
	688,9		· ·	· ·	·	essencial
YDR469W/ YDR470C/	· ·	170,52	0,248	0,264	0,106 0,146	não essencial não essencial
YDR471w/RPL27B ex1	187,4	45,21	0,241	0,258		não essencial
	2381,6	860,18	0,361 0,162	0,388	0,517	
YDR472W/ YDR473C/	244,6	39,57	•	0,111	0,129	essencial
	237,8	41,12	0,173	0,216	0,130	essencial
YDR474C/	153,8	31,32	0,204	0,184	0.000	não essencial
YDR476C/	378,0	65,42	0,173	0,222	0,099	não essencial
YDR477w/SNF1	333,9	70,58	0,211	0,239	0,188	não essencial
YDR478w/SNM1	295,2	67,92	0,230	0,264	0,109	essencial
YDR479C/	406,5	93,06	0,229	0,209	0,109	não essencial
YDR480W/	125,2	32,67	0,261	0,194	0,135	não essencial
YDR481c/PHO8	1044,1	256,31	0,245	0,220	0,159	não essencial
YDR482C/	319,5	59,42	0,186	0,204	0,056	não essencial
YDR483w/KRE2	1032,9	174,08	0,169	0,139	0,279	não essencial
YDR484w/SAC2	205,5	35,74	0,174	0,187	0,144	não essencial
YDR485C/	132,6	17,04	0,128	0,142	0,137	não essencial
YDR486C/	514,4	66,95	0,130	0,123	0,136	não essencial
YDR487c/RIB3	1154,5	291,23	0,252	0,244	0,198	essencial
YDR488c/PAC11	104,5	36,49	0,349	0,335	0,080	não essencial
YDR489W/	251,6	58,98	0,234	0,229	0,164	essencial
YDR490C/	279,9	48,22	0,172	0,235	0,108	não essencial
YDR491C/	80,1	37,95	0,474	0,559	0,081	não essencial
YDR492W/	540,7	222,19	0,411	0,293	0,193	não essencial
YDR494W/	359,5	101,20	0,282	0,259	0,129	não essencial
YDR495c/VPS3	66,7	13,21	0,198	0,315	0,125	não essencial
YDR496C/	470,0	76,24	0,162	0,150	0,247	não essencial
YDR497c/ITR1	915,4	114,35	0,125	0,108	0,195	não essencial
YDR498c/SEC20	350,5	53,99	0,154	0,123	0,140	essencial
YDR499W/	91,8	18,98	0,207	0,171	0,119	essencial
YDR500c/RPL35B_ex1	2897,3	1050,40	0,363	0,355	0,711	não essencial
YDR501W/	37,9	17,93	0,473	0,523	0,141	não essencial
YDR502c/SAM2	1226,4	302,19	0,246	0,193	0,498	não essencial
YDR503C/	128,6	54,88	0,427	0,474	0,111	não essencial
YDR504C/	460,8	140,58	0,305	0,322	0,210	não essencial
YDR505c/PSP1	250,1	77,27	0,309	0,237	0,148	não essencial
YDR506C/	42,6	10,39	0,244	0,214	0,141	não essencial
YDR507c/GIN4	696,5	298,24	0,428	0,392	0,158	não essencial
YDR508c/GNP1	502,0	86,45	0,172	0,118	0,196	não essencial
YDR509W/	80,9	22,37	0,277	0,306	0,149	não essencial
YDR510w/SMT3	1002,2	252,46	0,252	0,247	0,306	essencial
YDR511W/	299,1	109,76	0,367	0,285	0,135	não essencial
YDR512C/	335,4	93,72	0,279	0,269	0,077	não essencial
YDR513w/TTR1	625,4	196,74	0,315	0,295	0,212	não essencial
YDR514C/	204,4	59,68	0,292	0,367	0,110	não essencial
YDR515w/SLF1	170,4	40,91	0,240	0,204	0,156	não essencial
YDR516C/	176,2	51,90	0,295	0,260	0,178	não essencial
YDR517W/	532,7	108,49	0,204	0,247	0,129	não essencial
YDR518w/EUG1	900,6	188,95	0,210	0,269	0,200	não essencial
YDR519w/FKB2	579,7	116,58	0,201	0,258	0,189	não essencial

YDR520C/	144,1	18,23	0,127	0,153	0,118	não essencial
YDR521W/	49,8	15,71	0,316	0,288	0,122	não essencial
YDR522c/SPS2	29,3	11,52	0,393	0,357	0,160	não essencial
YDR523c/SPS1	82,8	42,32	0,511	0,219	0,142	não essencial
YDR524C/	365,1	41,92	0,115	0,150	0,145	não essencial
YDR525W/	43,1	19,14	0,444	0,713	0,082	não essencial
YDR526C/	72,1	19,21	0,266	0,344	0,103	essencial
YDR527W/	242,2	51,52	0,213	0,251	0,162	essencial
YDR528W/	226,2	98,44	0,435	0,418	0,142	não essencial
YDR529c/QCR7	1801,4	757,15	0,420	0,341	0,197	não essencial
YDR530c/APA2	93,9	25,49	0,271	0,214	0,141	não essencial
YDR531W/	499,6	172,27	0,345	0,311	0,142	essencial
YDR532C/	135,4	32,12	0,237	0,264	0,142	não essencial
YDR533C/	255,7	36,56	0,143	0,108	0,236	não essencial
YDR534C/	27,6	7,83	0,143	0,108	0,259	não essencial
YDR535C/ ex1 f	21,6	13,87	0,284	1,306	0,239	não essencial
	· ·	·				
YDR536w/STL1	24,5 243,4	10,98	0,448	0,586	0,188	não essencial
YDR537C/	,	70,69	0,290	0,251	0,099	não essencial
YDR538w/PAD1	191,5	64,13	0,335	0,292	0,133	não essencial
YDR539W/	310,9	66,53	0,214	0,245	0,158	não essencial
YDR540C/	83,4	31,52	0,378	0,459	0,144	não essencial
YDR541C/	120,2	28,67	0,238	0,269	0,181	não essencial
YEL001c/	364,7	81,56	0,224	0,214	0,160	não essencial
YEL002c/WBP1	339,8	51,35	0,151	0,158	0,174	essencial
YEL003w/	716,2	99,26	0,139	0,184	0,152	não essencial
YEL004w/	52,9	19,47	0,368	0,214	0,101	não essencial
YEL005c/	129,8	38,01	0,293	0,187	0,119	não essencial
YEL006w/	87,6	15,88	0,181	0,204	0,107	não essencial
YEL007w/	368,2	84,49	0,229	0,266	0,141	não essencial
YEL008w/	23,8	6,30	0,264	0,224	0,097	não essencial
YEL009c/GCN4	1639,0	392,28	0,239	0,244	0,233	não essencial
YEL011w/GLC3	33,5	12,32	0,368	0,284	0,177	não essencial
YEL012w/UBC8	161,1	38,81	0,241	0,224	0,132	não essencial
YEL013w/	382,1	56,71	0,148	0,157	0,186	não essencial
YEL014c/	324,8	53,04	0,163	0,161	0,108	não essencial
YEL015w/	224,1	25,56	0,114	0,125	0,153	não essencial
YEL016c/	57,4	11,15	0,194	0,239	0,114	não essencial
YEL017c-a/PMP2_f	999,0	346,04	0,346	0,333	0,544	não essencial
YEL017c-a/PMP2_i	1346,6	344,25	0,256	0,229	0,544	não essencial
YEL017w/	98,8	34,98	0,354	0,360	0,124	não essencial
YEL018w/	152,5	34,79	0,228	0,221	0,117	não essencial
YEL019c/MMS21	19,4	7,76	0,401	1,113	0,161	essencial
YEL020c/	74,7	14,59	0,195	0,163	0,116	não essencial
YEL021w/URA3	356,2	65,22	0,183	0,227	0,180	não essencial
YEL022w/	342,1	58,88	0,172	0,162	0,154	não essencial
YEL023c/	74,1	16,55	0,224	0,271	0,130	não essencial
YEL024w/RIP1	213,6	75,83	0,355	0,234	0,327	não essencial
YEL025c/	60,3	28,13	0,467	0,376	0,128	não essencial
YEL026w/	962,1	217,11	0,226	0,273	0,635	essencial
YEL027w/CUP5	809,8	187,15	0,231	0,230	0,584	não essencial
YEL028w/	96,5	16,93	0,175	0,193	0,108	não essencial
YEL029c/	69,8	14,85	0,173	0,193	0,140	não essencial
YEL030w/	70,3	21,66	0,308	0,200	0,140	não essencial
YEL030W/	435,0	68,65	0,308	0,190	0,202	não essencial
YEL031W/ YEL032w/MCM3	205,2		0,156	0,166	0,257	essencial
		59,54		-		
YEL033w/	659,8	242,69	0,368	0,309	0,072	não essencial

YEL034w/HYP2	1305,1	593,24	0,455	0,393	0,814	essencial
YEL035c/UTR5	12,4	11,02	0,888	1,200	0,074	essencial
YEL036c/ANP1	714,4	119,73	0,168	0,139	0,157	não essencial
YEL037c/RAD23	215,0	47,93	0,223	0,241	0,164	não essencial
YEL038w/UTR4	245,9	52,16	0,212	0,185	0,126	não essencial
YEL039c/CYC7	249,6	134,28	0,538	0,323	0,183	não essencial
YEL040w/UTR2	907,6	137,95	0,152	0,168	0,235	não essencial
YEL041w/	17,6	5,94	0,336	0,331	0,110	não essencial
YEL042w/GDA1	208,7	45,53	0,218	0,245	0,227	não essencial
YEL043w/	172,6	34,95	0,202	0,217	0,149	não essencial
YEL044w/	804,6	194,41	0,242	0,211	0,106	não essencial
YEL045c/	19,6	10,46	0,534	0,370	0,101	não essencial
YEL046c/GLY1	305,1	57,93	0,190	0,212	0,330	não essencial
YEL047c/	204,8	66,28	0,324	0,289	0,260	não essencial
YEL048c/	59,2	19,08	0,322	0,329	0,144	não essencial
YEL049w/PAU2_f	228,1	57,35	0,251	0,180	0,604	não essencial
YEL050c/	261,9	61,04	0,233	0,179	0,172	não essencial
YEL051w/VMA8	505,0	104,64	0,207	0,234	0,322	não essencial
YEL052w/AFG1	51,3	11,20	0,218	0,262	0,139	não essencial
YEL053c/MAK10	102,4	23,92	0,234	0,344	0,153	não essencial
YEL054c/RPL15B	1520,7	440,55	0,290	0,282	0,605	não essencial
YEL055c/	283,8	46,69	0,165	0,208	0,153	essencial
YEL056w/	131,7	26,37	0,200	0,232	0,150	não essencial
YEL057c/	168,7	72,75	0,431	0,176	0,154	não essencial
YEL058w/PCM1	353,9	53,77	0,152	0,162	0,156	essencial
YEL059C-a/SOM1	756,8	134,89	0,178	0,176	0,083	não essencial
YEL059w/	16,4	2,52	0,154	0,172	0,087	não essencial
YEL060c/PRB1	202,6	41,56	0,205	0,167	0,300	não essencial
YEL061c/CIN8	97,8	43,58	0,446	0,356	0,142	não essencial
YEL062w/NPR2	47,9	19,54	0,408	0,337	0,132	não essencial
YEL063c/CAN1	133,4	34,71	0,260	0,232	0,218	não essencial
YEL064c/	69,8	21,77	0,312	0,391	0,120	não essencial
YEL065w/	100,4	51,80	0,516	0,280	0,191	não essencial
YEL066w/	406,2	121,49	0,299	0,173	0,141	não essencial
YEL067c/	26,9	6,10	0,226	0,204	0,089	não essencial
YEL068c/	146,4	24,08	0,164	0,170	0,129	não essencial
YEL071w/	571,5	138,83	0,243	0,187	0,220	não essencial
YEL072w/	91,4	21,54	0,236	0,230	0,124	não essencial
YER001w/MNN1	611,1	229,68	0,376	0,318	0,164	não essencial
YER002w/	657,9	109,10	0,166	0,202	0,180	não essencial
YER003c/PMI40_ex1	287,9	98,96	0,344	0,268	0,288	essencial
YER004w/	222,9	52,11	0,234	0,176	0,119	não essencial
YER005w/	151,7	25,80	0,170	0,193	0,119	não essencial
YER006w/	678,5	147,95	0,218	0,177	0,210	essencial
YER007C-a/_ex1	725,5	108,59	0,150	0,156	0,235	não essencial
YER007w/PAC2	53,2	15,94	0,299	0,173	0,123	não essencial
YER008c/SEC3	281,6	35,70	0,127	0,129	0,149	essencial
YER009w/NTF2	970,7	257,15	0,265	0,296	0,326	essencial
YER010c/	209,8	47,49	0,226	0,151	0,117	não essencial
YER011w/TIR1	1404,1	582,56	0,415	0,411	0,609	não essencial
YER012w/PRE1	482,2	63,30	0,131	0,159	0,204	essencial
YER013w/PRP22	41,2	7,13	0,173	0,205	0,130	essencial
YER014w/HEM14	281,4	80,28	0,285	0,194	0,124	não essencial
YER016w/BIM1	252,4	73,24	0,290	0,237	0,101	não essencial
YER017c/AFG3	176,0	25,68	0,146	0,171	0,140	não essencial
YER018c/	137,0	49,14	0,359	0,212	0,064	essencial

YER019C-a/SEB2	866,2	180,96	0,209	0,241	0,206	não essencial
YER019w/	239,9	73,98	0,308	0,217	0,134	não essencial
YER020w/GPA2	218,4	46,87	0,215	0,233	0,100	não essencial
YER021W/SUN2	233,2	60,19	0,258	0,230	0,183	essencial
YER022w/SRB4	114,2	25,65	0,224	0,225	0,151	essencial
YER023w/PRO3	448,2	60,35	0,135	0,132	0,210	essencial
YER024w/	115,2	30,08	0,261	0,215	0,149	não essencial
YER025w/GCD11	432,9	69,67	0,161	0,164	0,333	essencial
YER026c/CHO1	304,5	61,31	0,201	0,169	0,177	não essencial
YER027c/GAL83	198,7	26,45	0,133	0,139	0,141	não essencial
YER028c/	69,5	31,33	0,451	0,200	0,141	não essencial
YER029c/	395,2	53,83	0,136	0,260	0,094	essencial
YER030w/	563,9	87,14	0,155	0,128	0,246	não essencial
YER031c/YPT31	797,2	175,47	0,133	0,120	0,240	não essencial
YER032w/	305,4	119,29	0,220	0,199	0,130	não essencial
YER033c/	44,6	11,14	0,391	0,287	0,140	não essencial
					·	
YER034w/	178,7	36,32	0,203	0,264	0,091	não essencial
YER035w/	200,4	36,53 110,04	0,182	0,171	0,095	não essencial
YER036c/	691,6	·	0,159	0,168	0,372	essencial
YER037w/	521,6	112,62	0,216	0,158	0,162	não essencial
YER038c/	51,7	13,85	0,268	0,179	0,156	essencial
YER039c/	25,4	6,53	0,257	0,310	0,119	não essencial
YER040w/GLN3	52,3	8,16	0,156	0,156	0,112	não essencial
YER041w/	167,2	40,21	0,241	0,138	0,132	não essencial
YER042w/	349,4	100,19	0,287	0,221	0,168	não essencial
YER043c/SAH1	1126,3	205,30	0,182	0,199	0,641	essencial
YER044c/	715,2	233,92	0,327	0,232	0,353	não essencial
YER044c-a/MEI4_ex1	24,9	16,10	0,645	1,931	0,118	não essencial
YER045c/	274,5	43,47	0,158	0,150	0,160	não essencial
YER046w/	255,6	37,52	0,147	0,171	0,116	não essencial
YER047c/	49,4	10,09	0,204	0,185	0,131	não essencial
YER048c/CAJ1	392,8	48,30	0,123	0,147	0,186	não essencial
YER049w/	600,8	94,14	0,157	0,164	0,255	não essencial
YER050c/	573,3	81,38	0,142	0,180	0,137	não essencial
YER051w/	40,0	5,76	0,144	0,159	0,126	não essencial
YER052c/HOM3	500,8	125,45	0,250	0,225	0,258	não essencial
YER053c/	219,1	110,68	0,505	0,240	0,158	não essencial
YER054c/GIP2	36,8	19,98	0,543	0,204	0,136	não essencial
YER055c/HIS1	1528,2	306,77	0,201	0,229	0,192	não essencial
YER056c/FCY2	598,7	108,49	0,181	0,204	0,202	não essencial
YER056c-a/_ex1	1855,6	721,95	0,389	0,406	0,763	não essencial
YER057c/	923,8	183,92	0,199	0,179	0,307	não essencial
YER058w/PET117	205,2	54,23	0,264	0,255	0,086	não essencial
YER059w/	109,0	26,53	0,243	0,195	0,107	não essencial
YER060w/FCY21_f	57,5	9,10	0,158	0,182	0,142	não essencial
YER061c/CEM1	81,3	19,80	0,244	0,186	0,114	não essencial
YER062c/HOR2	354,1	156,92	0,443	0,196	0,292	não essencial
YER063w/	237,4	69,32	0,292	0,233	0,190	não essencial
YER064c/	320,4	81,26	0,254	0,247	0,133	não essencial
YER065c/ICL1	43,1	6,52	0,151	0,202	0,251	não essencial
YER066w/	87,8	14,47	0,165	0,146	0,135	não essencial
YER067w/	74,7	35,00	0,468	0,316	0,208	não essencial
YER068w/MOT2	187,9	20,67	0,110	0,143	0,151	não essencial
YER069w/ARG5,6	239,1	103,11	0,431	0,351	0,198	não essencial
YER070w/RNR1	309,5	206,97	0,669	0,770	0,130	não essencial
YER071c/	334,1	46,93	0,009	0,170	0,312	não essencial
I LINOT IG	JJ4, I	70,33	U, 1 4 U	0,107	U, 13 4	Hac coociiciai

YER072w/	1054,1	246,43	0,234	0,239	0,137	não essencial
YER073w/	640,8	140,92	0,220	0,202	0,202	não essencial
YER074w/RPS24EA ex1 f	1150,4	436,16	0,379	0,376	0,816	não essencial
YER074w/RPS24EA ex1 i	539,9	151,26	0,280	0,266	0,816	não essencial
YER075c/	49,1	8,59	0,175	0,185	0,136	não essencial
YER077c/	282,7	61,02	0,216	0,252	0,119	não essencial
YER078c/	130,2	19,54	0,150	0,131	0,161	não essencial
YER079w/	114,5	51,74	0,452	0,267	0,166	não essencial
YER080w/	322,9	61,36	0,190	0,185	0,199	não essencial
YER081w/	322,4	181,57	0,563	0,318	0,328	não essencial
YER082c/	258,1	57,12	0,221	0,297	0,161	essencial
YER083c/	331,1	46,43	0,140	0,163	0,118	não essencial
YER084w/	42,2	12,50	0,296	0,439	0,086	não essencial
YER086w/ILV1	293,0	55,25	0,189	0,179	0,312	não essencial
YER087C-a/SEB1	656,3	128,35	0,196	0,212	0,082	não essencial
YER087w/	123,2	23,78	0,193	0,162	0,130	não essencial
YER088c/	401,1	80,69	0,201	0,133	0,167	não essencial
YER090w/TRP2	357,4	49,58	0,139	0,153	0,216	não essencial
YER091c/MET6	977,4	275,36	0,282	0,261	0,657	não essencial
YER092w/	347,5	82,48	0,237	0,192	0,094	não essencial
YER093c/	154,9	25,84	0,167	0,208	0,113	essencial
YER093C-a/ ex1	32,3	11,71	0,363	0,245	0,118	não essencial
YER093C-a/_ex2	297,9	61,27	0,206	0,180	0,118	não essencial
YER094c/PUP3	611,5	97,85	0,160	0,129	0,159	essencial
YER095w/RAD51	260,8	80,45	0,308	0,243	0,173	não essencial
YER096w/	33,3	16,00	0,480	0,242	0,146	não essencial
YER097w/	9,7	2,14	0,221	0,308	0,088	não essencial
YER098w/UBP9	97,2	27,25	0,280	0,130	0,135	não essencial
YER099c/PRS2	374,9	56,90	0,152	0,181	0,133	não essencial
YER100w/UBC6	488,8	67,56	0,138	0,106	0,148	não essencial
YER101c/AST2	58,5	12,00	0,205	0,163	0,147	não essencial
YER103w/SSA4	115,2	86,98	0,755	0,260	0,184	não essencial
YER105c/NUP157	145,5	29,56	0,203	0,273	0,133	não essencial
YER107c/	324,2	50,06	0,154	0,215	0,109	não essencial
YER108c/FLO8	89,6	17,56	0,196	0,221		não essencial
YER109c/FLO8	26,6	7,46	0,281	0,350	0,104	não essencial
YER110c/	376,0	87,67	0,233	0,197	0,343	não essencial
YER111c/SWI4	104,9	42,36	0,404	0,314	0,145	não essencial
YER112w/USS1	909,6	156,16	0,172	0,177	0,213	essencial
YER113c/	120,7	24,81	0,206	0,218	0,112	não essencial
YER114c/BOI2	120,0	31,54	0,263	0,211	0,132	não essencial
YER115c/SPR6	291,4	58,30	0,200	0,141	0,112	não essencial
YER116c/	117,2	32,44	0,277	0,208	0,130	não essencial
YER117w/RPL17B_ex2_f	1550,1	502,52	0,324	0,299	0,648	não essencial
YER117w/RPL17B_ex2_i	850,6	338,03	0,397	0,403	0,648	não essencial
YER118c/SSU81	230,8	71,62	0,310	0,251	0,162	não essencial
YER119c/	94,4	25,68	0,272	0,273	0,101	não essencial
YER120w/SCS2	794,5	152,03	0,191	0,215	0,194	não essencial
YER121w/	105,1	46,62	0,444	0,162	0,154	não essencial
YER122c/GLO3	913,8	154,38	0,169	0,173	0,165	não essencial
YER123w/YCK3	140,5	25,01	0,178	0,194	0,166	não essencial
YER124c/	69,3	61,94	0,894	0,654	0,143	não essencial
YER125w/RSP5	202,6	36,43	0,180	0,160	0,186	essencial
YER126c/	554,3	100,98	0,182	0,178	0,299	essencial
YER127w/	448,4	100,88	0,225	0,181	0,159	essencial
YER128w/	206,0	58,89	0,286	0,178	0,156	não essencial

YER129w/PAK1	98,8	23,19	0,235	0,248	0,115	não essencial
YER130c/	157,6	34,08	0,216	0,157	0,148	não essencial
YER131w/RPS26B	2670,6	805,77	0,302	0,342	0,711	não essencial
YER132c/	384,7	94,62	0,246	0,264	0,120	não essencial
YER133w/GLC7 ex1	389,4	69,94	0,180	0,191	0,229	essencial
YER133w/GLC7_ex2	555,8	102,56	0,185	0,213	0,229	essencial
YER134c/	169,2	22,25	0,132	0,128	0,137	não essencial
YER135c/	5,8	3,17	0,544	0,532	0,134	não essencial
YER136w/GDI1	484,0	80,68	0,167	0,109	0,233	essencial
YER137c/	297,8	105,63	0,355	0,132	0,112	não essencial
YER139c/	47,0	14,80	0,335	0,152	0,112	não essencial
YER140w/	117,6	34,07	0,313	0,337	0,142	não essencial
YER141w/COX15	181,5	55,09	0,290	0,222	0,185	não essencial
YER142c/MAG1	76,8	28,81	0,303	0,213	0,134	não essencial
	-	·				
YER143w/	69,3	16,88	0,244	0,305	0,125	não essencial
YER144c/UBP5	37,9	4,62	0,122	0,157	0,125	não essencial
YER145c/	287,6	60,39	0,210	0,149	0,194	não essencial
YER146w/	535,0	116,23	0,217	0,187	0,101	essencial
YER147c/	127,2	28,85	0,227	0,226	0,079	essencial
YER148w/SPT15	545,7	71,35	0,131	0,118	0,173	essencial
YER149c/PEA2	257,8	62,46	0,242	0,151	0,127	não essencial
YER150w/	121,9	155,99	1,280	0,336	0,171	não essencial
YER151c/UBP3	269,6	52,04	0,193	0,164	0,179	não essencial
YER152c/	351,9	103,30	0,294	0,184	0,092	não essencial
YER153c/PET122	22,4	6,81	0,304	0,336	0,046	não essencial
YER154w/OXA1	194,8	43,29	0,222	0,210	0,156	não essencial
YER155c/BEM2	297,5	50,11	0,168	0,201	0,149	não essencial
YER156c/	514,9	100,60	0,195	0,228	0,162	não essencial
YER157w/	168,4	36,31	0,216	0,148	0,181	essencial
YER158c/	84,1	18,19	0,216	0,157	0,129	não essencial
YER159c/NCB1	899,9	152,78	0,170	0,150	0,083	essencial
YER161c/SPT2	156,2	23,99	0,154	0,148	0,118	não essencial
YER162c/RAD4	78,7	13,13	0,167	0,118	0,134	não essencial
YER163c/	280,4	82,74	0,295	0,112	0,098	não essencial
YER164w/	234,4	48,64	0,207	0,147	0,170	não essencial
YER165w/PAB1	610,0	120,97	0,198	0,221	0,488	essencial
YER166w/	99,9	17,96	0,180	0,184	0,163	não essencial
YER167w/BCK2	533,4	64,31	0,121	0,142	0,141	não essencial
YER168c/CCA1	216,3	27,96	0,129	0,133	0,137	essencial
YER169w/	112,8	27,56	0,244	0,198	0,118	não essencial
YER170w/ADK2	57,2	25,67	0,449	0,334	0,098	não essencial
YER171w/RAD3	139,2	27,64	0,199	0,216	0,150	essencial
YER172c/BRR2	165,1	36,54	0,221	0,284	0,132	essencial
YER173W/RAD24	91,1	13,61	0,149	0,158	0,113	não essencial
YER174c/	258,5	64,15	0,143	0,135	0,113	não essencial
YER175c/	70,4	27,38	0,389	0,180	0,163	não essencial
YER176w/	178,6	27,03	0,369	0,100	0,103	não essencial
YER177w/BMH1	2136,9	568,12	0,151	0,128	0,140	não essencial
YER178w/PDA1	496,5	85,28	0,200	0,240	0,323	não essencial
YER179w/DMC1_ex1	56,5	29,46	0,172	2,419	0,290	não essencial
	123,5					
YER180c/ISC10	· ·	26,57	0,215	0,190	0,131	não essencial
YER182w/	253,9	44,71	0,176	0,131	0,125	não essencial
YER183c/	156,9	25,05	0,160	0,153	0,121	não essencial
YER184c/	33,5	4,78	0,143	0,132	0,126	não essencial
YER185w/	14,9	6,25	0,420	0,264	0,104	não essencial
YER186c/	193,8	37,77	0,195	0,168	0,098	não essencial

YER187w/	38,2	8,34	0,218	0,255	0,096	não essencial
YER188w/	117,9	30,98	0,263	0,257	0,128	não essencial
YFL001W/DEG1	135,5	28,02	0,207	0,203	0,148	não essencial
YFL002C/SPB4	155,8	26,53	0,170	0,193	0,130	essencial
YFL003C/MSH4	20,0	6,49	0,325	0,371	0,108	não essencial
YFL004W/	495,5	92,41	0,186	0,161	0,196	não essencial
YFL005W/SEC4	538,6	100,59	0,187	0,248	0,196	essencial
YFL006W/	154,2	36,29	0,235	0,213		não essencial
YFL007W/	41,6	9,61	0,231	0,225	0,150	não essencial
YFL008W/SMC1	181,9	76,41	0,420	0,302	0,163	essencial
YFL009W/CDC4	249,5	45,59	0,183	0,136	0,139	essencial
YFL011W-a/AUA1	710,8	127,19	0,179	0,174	0,136	não essencial
YFL013C/	252,9	33,05	0,131	0,129	0,134	não essencial
YFL014W/HSP12	565,3	362,95	0,642	0,311	0,639	não essencial
YFL015C/	11,7	2,89	0,247	0,245	0,099	não essencial
YFL016C/MDJ1	227,1	64,95	0,286	0,167	0,161	não essencial
YFL017C/	430,6	76,82	0,178	0,150	0,144	essencial
YFL018C/LPD1	568,5	117,78	0,170	0,130	0,144	não essencial
YFL018W-a/SNP2	321,4	43,72	0,136	0,217	0,233	essencial
YFL019C/	19,5	6,45	0,331	0,137	0,150	não essencial
YFL020C/PAU5 f	70,6	11,90	0,331	0,349	0,130	não essencial
YFL021W/GAT1	525,5	140,81	0,100	0,160	0,300	não essencial
YFL022C/FRS2	542,6	73,42	0,208	0,184	0,119	essencial
YFL023W/	164,8	33,96	0,133	0,173	0,314	não essencial
YFL024C/	195,1	43,10	0,200	0,173	0,155	essencial
YFL025C/	96,8	14,73	0,221	0,198	0,134	não essencial
YFL026W/STE2	14,6	4,95	0,132	0,169	0,126	
YFL027C/	67,1	12,27	0,336	0,261	0,136	não essencial
		·			·	não essencial
YFL028C/ YFL029C/CAK1	258,6	37,60	0,145	0,163	0,174	não essencial
	148,4	24,44	0,165	0,166	0,135	essencial
YFL030W/	36,4	15,05	0,414	0,217 0,154	0,121	não essencial
YFL031W/HAC1	395,2	77,14	0,195	•	0,102	não essencial
YFL032W/	133,2	50,79	0,381	0,191	0,109	não essencial
YFL033C/	139,1	22,15	0,159	0,175	0,129	não essencial
YFL034W/	99,9	17,46	0,175	0,185	0,157	não essencial
YFL035C/_r	188,4	24,09	0,128	0,129	0,106	essencial
YFL035C-a/_ex1	322,1	59,99	0,186	0,208	0,106	essencial
YFL035C-b/_ex1	915,1	279,98	0,306	0,285	0,291	não essencial
YFL036W/RPO41	90,0	14,23	0,158	0,157	0,169	não essencial
YFL037W/TUB2	683,9	134,86	0,197	0,205	0,271	essencial
YFL038C/YPT1	918,2	134,03	0,146	0,176	0,185	essencial
YFL039C/ACT1_ex1	1049,8	265,14	0,253	0,223	0,711	essencial
YFL040W/	12,6	3,74	0,297	0,291	0,103	não essencial
YFL041W/	110,3	24,61	0,223	0,201	0,145	não essencial
YFL042C/	22,7	6,45	0,284	0,356	0,130	não essencial
YFL044C/	50,6	21,40	0,423	0,263	0,180	não essencial
YFL045C/SEC53	1230,9	289,18	0,235	0,242	0,540	essencial
YFL046W/	101,3	15,64	0,154	0,181	0,126	não essencial
YFL047W/	260,0	38,47	0,148	0,124	0,138	não essencial
YFL048C/EMP47	548,1	80,14	0,146	0,152	0,177	não essencial
YFL049W/	97,1	20,34	0,209	0,160	0,143	não essencial
YFL050C/ALR2	28,0	12,92	0,461	0,372	0,122	não essencial
YFL051C/	23,5	14,13	0,600	0,407	0,114	não essencial
YFL054C/	58,2	20,67	0,355	0,185	0,116	não essencial
YFL055W/	15,1	6,86	0,456	0,407	0,122	não essencial
YFL056C/	42,8	10,03	0,234	0,262	0,126	não essencial

YFL058W/THI5_f	147,3	77,83	0,528	0,183	0,547	não essencial
YFL060C/_f	63,2	20,09	0,318	0,216	0,143	não essencial
YFR001W/	659,4	113,57	0,172	0,194	0,182	não essencial
YFR002W/NIC96	223,2	37,11	0,166	0,182	0,155	essencial
YFR003C/	137,5	40,12	0,292	0,214	0,121	essencial
YFR004W/MPR1	452,1	99,24	0,220	0,192	0,204	essencial
YFR005C/	127,5	29,61	0,232	0,186	0,121	essencial
YFR006W/	548,9	74,83	0,136	0,119	0,210	não essencial
YFR007W/	113,4	20,63	0,182	0,116	0,153	não essencial
YFR008W/	55,3	13,54	0,245	0,200	0,129	não essencial
YFR009W/GCN20	401,0	43,14	0,108	0,093	0,287	não essencial
YFR010W/	446,6	68,70	0,154	0,152	0,208	não essencial
YFR011C/	190,2	33,29	0,175	0,126	0,215	não essencial
YFR012W/	23,0	16,64	0,723	0,249	0,111	não essencial
YFR013W/	268,7	37,05	0,138	0,107	0,140	não essencial
YFR014C/CMK1	67,5	12,66	0,188	0,169	0,163	não essencial
YFR015C/GSY1	112,2	41,38	0,369	0,315	0,188	não essencial
YFR016C/	160,5	28,17	0,175	0,174	0,152	não essencial
YFR017C/	78,6	38,34	0,487	0,382	0,129	não essencial
YFR018C/	219,6	45,48	0,407	0,186	0,063	não essencial
YFR019W/FAB1	70,5	22,80	0,323	0,100	0,003	não essencial
YFR020W/	68,5	9,96	0,145	0,155	0,161	não essencial
YFR021W/	31,2	9,00	0,143	0,193	0,132	não essencial
YFR022W/	42,9	9,20	0,214	0,166	0,113	não essencial
YFR023W/PES4	51,8	44,78	0,865	0,100	0,115	não essencial
YFR024C/ r	144,9	33,40	0,003	0,239	0,143	não essencial
YFR024C-a/ ex1	58,3	18,50	0,231	0,239	0,205	não essencial
YFR024C-a/_ex1	62,4	18,57	0,317	0,442	0,205	não essencial
YFR025C/HIS2	194,3	52,82	0,298	0,229	0,203	não essencial
YFR026C/	69,1	33,66	0,272	0,291	0,139	não essencial
YFR027W/	64,1	38,82	0,487	0,220	0,093	essencial
YFR028C/CDC14	366,1	77,76	0,003	0,391	0,078	essencial
YFR029W/	89,9	19,48	0,212	0,197	0,130	essencial
YFR030W/MET10	244,5	127,34	0,521	0,183	0,119	não essencial
YFR031C/SMC2	239,1	37,59	0,321	0,303	0,250	essencial
YFR031C-a/RPL5B ex1 f	1443,5	533,46	0,137	0,140	0,131	não essencial
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
YFR031C-a/RPL5B_ex1_i	1748,4 1870,6	395,31 413,79	0,226	0,229	0,773	não essencial
YFR031C-a/RPL5B_ex1_r_i			0,221 0,336	0,212 0,314	0,773	não essencial
YFR032C/OCR6	38,3 980,7	12,87	-	0,314	0,168	não essencial
YFR033C/QCR6 YFR034C/PHO4	330,8	221,72	0,226		0,211 0,068	não essencial
		66,00	0,200	0,168		não essencial
YFR035C/	97,0	31,99	0,330	0,335	0,091	não essencial
YFR036W/CDC26	409,5	102,27	0,250	0,164	0,134	não essencial
YFR037C/	414,4	69,52	0,168	0,165	0,128	essencial
YFR038W/	56,3	15,82	0,281	0,284	0,157	não essencial
YFR039C/	306,5	66,59	0,217	0,156	0,131	não essencial
YFR040W/SAP155	147,7	15,80	0,107	0,121	0,157	não essencial
YFR041C/	121,9	29,18	0,239	0,291	0,159	não essencial
YFR042W/	124,6	24,99	0,200	0,190	0,108	essencial
YFR043C/	118,6	20,52	0,173	0,178	0,133	não essencial
YFR044C/	762,4	191,99	0,252	0,181	0,313	não essencial
YFR045W/	73,0	16,96	0,232	0,182	0,128	não essencial
YFR046C/	91,9	18,64	0,203	0,148	0,108	não essencial
YFR047C/	273,7	73,29	0,268	0,137	0,188	não essencial
YFR048W/	114,6	19,28	0,168	0,134	0,128	não essencial
YFR049W/YMR31	284,9	73,77	0,259	0,189	0,112	não essencial

YFR050C/PRE4	502,9	70,57	0,140	0,153	0,148	essencial
YFR051C/	342,5	41,09	0,120	0,132	0,197	essencial
YFR052W/NIN1	355,8	65,99	0,185	0,127	0,180	essencial
YFR053C/HXK1	158,7	91,62	0,577	0,407	0,461	não essencial
YFR054C/	9,2	5,37	0,581	0,556	0,149	não essencial
YFR055W/	127,2	50,27	0,395	0,282	0,140	não essencial
YFR056C/	64,9	33,98	0,524	0,363	0,091	não essencial
YGL001C/	735,3	116,29	0,158	0,155	0,204	essencial
YGL002W/	127,5	21,25	0,167	0,170	0,157	não essencial
YGL003C/	65,0	15,84	0,244	0,169	0,113	não essencial
YGL004C/	89,8	19,09	0,213	0,206	0,115	não essencial
YGL005C/	155,5	35,25	0,213	0,200	0,123	não essencial
YGL006W/PMC1	66,9	19,24	0,288	0,227	0,117	não essencial
YGL000W/I WCT	13,1	4,54	0,266	0,803	0,159	não essencial
YGL007W/	The state of the s					
	997,4	288,35	0,289	0,211	0,734	essencial
YGL009C/LEU1	926,6	237,65	0,256	0,237	0,336	não essencial
YGL010W/	104,1	15,74	0,151	0,189	0,123	não essencial
YGL011C/SCL1	736,1	110,41	0,150	0,194	0,178	essencial
YGL012W/ERG4	1008,4	204,01	0,202	0,144	0,230	não essencial
YGL013C/PDR1	153,4	28,69	0,187	0,192	0,142	não essencial
YGL014W/	231,9	48,61	0,210	0,150	0,152	não essencial
YGL015C/	55,9	15,52	0,278	0,187	0,141	não essencial
YGL016W/PDR6	138,4	39,99	0,289	0,173	0,180	não essencial
YGL017W/ATE1	82,9	18,19	0,219	0,213	0,124	não essencial
YGL018C/	122,2	22,28	0,182	0,198	0,206	essencial
YGL019W/CKB1	388,2	38,45	0,099	0,106	0,126	não essencial
YGL020C/	374,4	57,24	0,153	0,115	0,161	não essencial
YGL021W/ALK1	225,0	98,79	0,439	0,255	0,142	não essencial
YGL022W/STT3	453,2	84,65	0,187	0,167	0,214	essencial
YGL023C/	123,1	31,34	0,255	0,144	0,097	não essencial
YGL024W/	35,9	9,21	0,257	0,158	0,135	não essencial
YGL025C/PGD1	157,2	65,23	0,415	0,336	0,105	não essencial
YGL026C/TRP5	332,2	50,21	0,151	0,138	0,320	não essencial
YGL027C/CWH41	335,7	82,04	0,244	0,183	0,150	não essencial
YGL028C/	83,7	68,21	0,815	0,640	0,280	não essencial
YGL029W/	660,6	145,92	0,221	0,239	0,217	não essencial
YGL030W/RPL32_ex1	1529,6	590,29	0,386	0,333	0,865	essencial
YGL031C/RPL30A	1857,2	598,70	0,322	0,290	0,759	não essencial
YGL032C/AGA2	48,1	21,17	0,440	0,152	0,089	não essencial
YGL033W/_ex1	19,0	13,02	0,685	0,253	0,138	não essencial
YGL034C/	6,1	2,25	0,371	0,618	0,078	não essencial
YGL035C/MIG1	291,3	49,19	0,169	0,178	0,152	não essencial
YGL036W/	333,9	68,53	0,205	0,161	0,148	não essencial
YGL037C/	643,6	318,68	0,495	0,240	0,319	não essencial
YGL038C/OCH1	171,3	46,14	0,269	0,224	0,149	não essencial
YGL039W/	139,2	47,76	0,343	0,166	0,202	não essencial
YGL040C/HEM2	224,9	44,59	0,198	0,155	0,203	essencial
YGL041C/	175,1	23,63	0,135	0,092	0,152	não essencial
YGL041C/	327,2	38,21	0,133	0,032	0,132	não essencial
YGL042U/DST1	252,5	52,45	0,117	0,121	0,139	não essencial
YGL043W/D311	191,9	25,83	0,208	0,109	0,187	essencial
YGL044C/KNATS	126,6	33,15	0,133	0,138	0,097	não essencial
	120,0			0,166	0,112	
YGL046W/	-	5,62	0,295		0.425	não essencial
YGL047W/	220,2	40,11	0,182	0,158	0,125	essencial
YGL048C/SUG1	519,0	83,97	0,162	0,138	0,218	essencial
YGL049C/TIF4632	251,4	38,13	0,152	0,129	0,177	não essencial

YGL050W/	265,5	38,53	0,145	0,112	0,125	não essencial
YGL051W/	36,2	9,18	0,254	0,164	0,104	não essencial
YGL053W/	69,2	22,96	0,332	0,219	0,128	não essencial
YGL054C/	554,6	82,81	0,149	0,168	0,311	não essencial
YGL055W/OLE1	580,1	326,75	0,563	0,321	0,543	essencial
YGL056C/	239,8	36,46	0,152	0,139	0,117	não essencial
YGL057C/	114,1	14,12	0,124	0,102	0,114	não essencial
YGL058W/RAD6	401,2	49,02	0,122	0,119	0,225	não essencial
YGL059W/	99,9	29,95	0,300	0,203	0,148	não essencial
YGL060W/	58,6	15,47	0,264	0,245	0,148	não essencial
YGL061C/	147,9	49,66	0,336	0,224	0,127	essencial
YGL062W/PYC1	77,0	24,43	0,317	0,172	0,261	não essencial
YGL063W/PUS2	36,8	14,31	0,389	0,173	0,066	não essencial
YGL064C/	165,2	25,20	0,152	0,115	0,129	não essencial
YGL065C/ALG2	77,9	16,27	0,209	0,166	0,120	essencial
YGL066W/	82,6	15,50	0,203	0,175	0,170	não essencial
YGL067W/	369,7	55,10	0,149	0,173	0,152	não essencial
YGL068W/	639,5	73,74	0,149	0,119	0,132	essencial
YGL069C/	301,4	79,21	0,115	0,127	0,204	essencial
YGL069C/ YGL070C/RPB9		52,03	0,263	0,192	0,108	não essencial
	314,5					
YGL071W/RCS1	177,1	30,18	0,170	0,197	0,133	não essencial
YGL072C/	102,1	18,13	0,178	0,122	0,074	não essencial
YGL073W/HSF1	274,5	42,67	0,155	0,161	0,125	essencial
YGL074C/	14,1	2,82	0,200	0,243	0,063	essencial
YGL075C/	46,8	13,91	0,297	0,254	0,114	essencial
YGL076C/RPL6A_ex1	1165,2	295,55	0,254	0,248	0,760	não essencial
YGL076C/RPL6A_ex2_f	1454,1	470,54	0,324	0,279	0,760	não essencial
YGL077C/HNM1	132,7	23,33	0,176	0,163	0,205	não essencial
YGL078C/	740,8	142,57	0,192	0,157	0,271	não essencial
YGL079W/	236,2	38,57	0,163	0,134	0,155	não essencial
YGL080W/	354,4	66,40	0,187	0,174	0,133	não essencial
YGL081W/	58,1	24,67	0,425	0,227	0,139	não essencial
YGL082W/	225,9	43,64	0,193	0,140	0,135	não essencial
YGL083W/SCY1	131,5	25,67	0,195	0,177	0,156	não essencial
YGL084C/	92,4	24,16	0,262	0,186	0,169	não essencial
YGL085W/	86,9	10,99	0,127	0,125	0,131	não essencial
YGL086W/MAD1	320,9	47,47	0,148	0,149	0,142	não essencial
YGL087C/_ex1	629,9	132,55	0,210	0,149	0,223	não essencial
YGL088W/	38,4	12,68	0,331	0,274	0,094	não essencial
YGL089C/MF(alpha)2	527,9	337,43	0,639	0,583	0,276	não essencial
YGL090W/	67,2	19,02	0,283	0,288	0,134	não essencial
YGL091C/NBP35	145,7	16,32	0,112	0,119	0,124	essencial
YGL092W/NUP145	278,8	44,48	0,160	0,123	0,134	essencial
YGL093W/	166,4	48,35	0,291	0,223	0,118	essencial
YGL094C/PAN2	173,3	46,45	0,268	0,220	0,142	não essencial
YGL095C/VPS45	219,3	28,12	0,128	0,068	0,146	não essencial
YGL096W/	63,1	31,77	0,503	0,192	0,103	não essencial
YGL097W/SRM1	267,3	48,55	0,182	0,152	0,204	essencial
YGL098W/	83,1	14,97	0,180	0,155	0,138	essencial
YGL099W/	233,7	41,07	0,176	0,190	0,205	essencial
YGL101W/	217,8	70,86	0,325	0,237	0,184	não essencial
YGL102C/	1204,5	590,22	0,490	0,383	0,186	essencial
YGL103W/CYH2 ex1	1274,4	426,83	0,335	0,344	0,705	essencial
YGL103W/CYH2_ex2	1730,5	663,25	0,383	0,337	0,705	essencial
YGL104C/	55,5	16,23	0,292	0,253	0,120	não essencial
YGL105W/	654,8	118,46	0,181	0,207	0,388	não essencial
		1	-,	-,		1 2200

YGL106W/	723,1	76,83	0,106	0,140	0,217	essencial
YGL107C/	184,4	28,44	0,154	0,170	0,141	não essencial
YGL108C/	191,4	47,18	0,247	0,125	0,126	não essencial
YGL109W/	137,4	31,50	0,229	0,149	0,114	não essencial
YGL110C/	128,6	9,67	0,075	0,083	0,140	não essencial
YGL111W/	300,4	56,97	0,190	0,139	0,127	essencial
YGL112C/TAF60	158,9	22,75	0,143	0,147	0,147	essencial
YGL113W/	110,1	25,63	0,233	0,170	0,118	essencial
YGL114W/	87,2	13,05	0,150	0,114	0,098	não essencial
YGL115W/SNF4	217,9	33,25	0,153	0,092	0,160	não essencial
YGL116W/CDC20	91,9	56,94	0,619	0,303	0,140	essencial
YGL117W/	404,6	151,53	0,374	0,303	0,140	não essencial
YGL118C/	8,8	3,86	0,438	0,409	0,104	não essencial
YGL119W/ABC1	201,4	36,80	0,438	0,409	0,100	não essencial
YGL120C/	· ·				-	
	531,9	89,80	0,169	0,107	0,206	essencial
YGL121C/	200,7	163,22	0,813	0,197	0,149	não essencial
YGL122C/NAB2	339,8	53,13	0,156	0,146	0,160	essencial
YGL123W/SUP44	1769,6	572,45	0,323	0,308	0,801	essencial
YGL124C/	135,4	18,00	0,133	0,119	0,113	não essencial
YGL125W/	326,1	94,11	0,289	0,207	0,221	não essencial
YGL126W/SCS3	227,9	71,95	0,316	0,153	0,066	não essencial
YGL127C/SOH1	200,6	51,16	0,255	0,207	0,097	não essencial
YGL128C/	103,4	23,51	0,228	0,138	0,136	essencial
YGL129C/	132,5	45,70	0,345	0,286	0,147	não essencial
YGL130W/CEG1	276,1	25,53	0,092	0,122	0,137	essencial
YGL131C/	46,9	10,36	0,221	0,161	0,131	não essencial
YGL132W/	51,5	9,03	0,175	0,192	0,072	não essencial
YGL133W/	158,2	25,43	0,161	0,151	0,146	não essencial
YGL134W/	56,6	15,94	0,282	0,228	0,121	não essencial
YGL135W/SSM2_f	1250,6	382,94	0,306	0,283	0,832	não essencial
YGL136C/	88,5	15,97	0,180	0,174	0,142	não essencial
YGL137W/SEC27_ex1	394,2	52,42	0,133	0,086	0,208	essencial
YGL138C/	7,5	2,24	0,297	0,468	0,124	não essencial
YGL139W/	128,8	32,36	0,251	0,188	0,142	não essencial
YGL140C/	121,3	25,13	0,207	0,177	0,124	não essencial
YGL141W/	45,8	14,57	0,318	0,344	0,154	não essencial
YGL142C/	400,1	63,67	0,159	0,126	0,109	essencial
YGL143C/MRF1	121,4	22,81	0,188	0,136	0,137	não essencial
YGL144C/	46,6	12,08	0,259	0,217	0,131	não essencial
YGL145W/TIP20	157,6	23,08	0,146	0,149	0,162	essencial
YGL146C/	8,1	2,83	0,348	0,421	0,078	não essencial
YGL147C/RPL9A f	1492,2	419,80	0,281	0,261	0,771	não essencial
YGL147C/RPL9A i	863,4	225,90	0,262	0,207	0,771	não essencial
YGL148W/ARO2	514,4	94,30	0,183	0,180	0,323	não essencial
YGL149W/	11,4	2,74	0,241	0,248	0,086	não essencial
YGL150C/	159,9	20,20	0,126	0,112	0,192	essencial
YGL151W/	138,5	15,12	0,109	0,148	0,145	não essencial
YGL152C/	99,8	14,43	0,145	0,135	0,091	não essencial
YGL153W/	126,0	17,59	0,140	0,133	0,138	não essencial
YGL154C/LYS5	179,9	25,40	0,140	0,098	0,135	não essencial
YGL155W/CDC43	86,5	13,23	0,141	0,098	0,133	essencial
YGL156W/AMS1	99,8	41,36	0,133	0,194	0,111	não essencial
YGL157W/	212,0	53,06	0,413	0,223	0,176	não essencial
YGL158W/RCK1	19,8	12,03	0,607	0,266	0,149	não essencial
YGL159W/	126,1	23,46	0,186	0,154	0,170	não essencial
YGL160W/	130,1	33,05	0,254	0,200	0,125	não essencial

YGL161C/	410,9	91,77	0,223	0,099	0,117	não essencial
YGL162W/STO1	71,9	20,41	0,284	0,226	0,134	não essencial
YGL163C/RAD54	143,1	28,72	0,201	0,147	0,155	não essencial
YGL164C/	163,0	11,82	0,073	0,081	0,119	não essencial
YGL165C/	184,8	31,55	0,171	0,118	0,070	não essencial
YGL166W/CUP2	125,4	36,11	0,288	0,177	0,117	não essencial
YGL167C/PMR1	264,3	26,27	0,099	0,099	0,196	não essencial
YGL168W/	456,2	76,93	0,169	0,165	0,064	não essencial
YGL169W/SUA5	155,2	45,82	0,295	0,220	0,113	essencial
YGL170C/	37,7	25,73	0,682	0,175	0,149	não essencial
YGL171W/ROK1	264,9	44,65	0,169	0,154	0,171	essencial
YGL172W/NUP49	295,6	37,81	0,128	0,121	0,099	essencial
YGL173C/KEM1	356,6	82,13	0,230	0,232	0,194	não essencial
YGL174W/	78,1	13,51	0,173	0,131	0,107	não essencial
YGL175C/SAE2	7,1	3,47	0,492	0,568	0,133	não essencial
YGL176C/	80,7	12,28	0,152	0,175	0,125	não essencial
YGL177W/	11,5	3,50	0,304	0,324	0,118	não essencial
YGL178W/MPT5 ex1	485,3	77,50	0,160	0,088	0,172	não essencial
YGL179C/	61,4	31,55	0,514	0,155	0,104	não essencial
YGL180W/	12,2	4,16	0,341	0,547	0,139	não essencial
YGL181W/GTS1	465,5	108,65	0,233	0,249	0,111	não essencial
YGL183C/	21,1	5,93	0,282	0,368	0,122	não essencial
YGL184C/	133,9	118,84	0,887	0,431	0,131	não essencial
YGL187C/COX4	585,4	181,22	0,310	0,171	0,285	não essencial
YGL189C/RPS26A	3957,6	1362,48	0,344	0,342	0,781	não essencial
YGL190C/CDC55	215,6	44,77	0,208	0,145	0,131	não essencial
YGL191W/COX13	906,0	242,21	0,267	0,234	0,212	não essencial
YGL194C/	59,2	10,50	0,177	0,186	0,123	não essencial
YGL195W/GCN1	809,6	141,71	0,175	0,148	0,189	não essencial
YGL196W/	156,3	54,66	0,350	0,160	0,135	não essencial
YGL197W/	83,1	23,22	0,279	0,248	0,125	não essencial
YGL198W/	188,1	35,23	0,187	0,127	0,074	não essencial
YGL199C/	130,1	25,13	0,193	0,124	0,084	não essencial
YGL200C/EMP24	480,1	96,60	0,201	0,177	0,223	não essencial
YGL201C/	109,5	36,48	0,333	0,291	0,172	essencial
YGL202W/	717,6	123,63	0,172	0,137	0,269	não essencial
YGL203C/KEX1	169,9	24,80	0,146	0,165	0,151	não essencial
YGL206C/CHC1	246,7	54,30	0,220	0,224	0,266	não essencial
YGL207W/SPT16	261,8	59,50	0,227	0,180	0,211	essencial
YGL208W/SIP2	60,7	14,67	0,242	0,141	0,114	não essencial
YGL209W/MIG2	146,1	71,14	0,487	0,392	0,136	não essencial
YGL210W/YPT32	231,6	49,07	0,212	0,136	0,152	não essencial
YGL211W/	123,8	27,64	0,223	0,264	0,115	não essencial
YGL212W/VAM7	68,7	19,75	0,288	0,187	0,111	não essencial
YGL213C/SKI8	131,2	18,51	0,141	0,119	0,170	não essencial
YGL214W/	257,4	31,37	0,122	0,134	0,111	não essencial
YGL215W/CLG1	603,3	89,32	0,148	0,146	0,157	não essencial
YGL216W/	109,6	30,34	0,277	0,206	0,118	não essencial
YGL218W/	69,4	8,33	0,120	0,162	0,128	não essencial
YGL219C/	159,4	33,74	0,212	0,202	0,118	não essencial
YGL220W/	781,4	116,49	0,149	0,162	0,103	não essencial
YGL221C/NIF3	399,9	70,66	0,177	0,107	0,182	não essencial
YGL222C/	30,5	6,79	0,223	0,271	0,132	não essencial
YGL223C/	345,9	61,26	0,177	0,149	0,166	não essencial
YGL224C/	286,6	69,80	0,244	0,194	0,146	não essencial
YGL225W/GOG5	448,4	113,05	0,252	0,197	0,318	essencial

YGL226W/	235,2	42,88	0,182	0,134	0,070	não essencial
YGL227W/	52,1	10,24	0,196	0,213	0,170	não essencial
YGL228W/	211,8	27,30	0,129	0,107	0,174	não essencial
YGL229C/SAP4	43,9	13,31	0,303	0,216	0,166	não essencial
YGL230C/	82,7	78,03	0,943	0,211	0,157	não essencial
YGL231C/	734,8	105,46	0,144	0,175	0,139	não essencial
YGL232W/_ex1	400,4	113,28	0,283	0,307	0,171	não essencial
YGL232W/_ex2	249,6	55,10	0,221	0,203	0,171	não essencial
YGL233W/SEC15	245,7	35,42	0,144	0,157	0,154	essencial
YGL234W/ADE5,7	226,0	73,44	0,325	0,201	0,258	não essencial
YGL235W/	20,0	6,76	0,338	0,306	0,124	não essencial
YGL236C/	81,4	28,36	0,348	0,278	0,121	não essencial
YGL237C/HAP2	81,2	15,78	0,194	0,153	0,117	não essencial
YGL238W/CSE1	323,5	50,28	0,155	0,139	0,188	essencial
YGL239C/	21,5	7,41	0,345	0,417	0,089	essencial
YGL241W/	135,8	20,93	0,154	0,137	0,142	não essencial
YGL242C/	154,3	28,54	0,185	0,170	0,197	não essencial
YGL243W/	111,6	22,51	0,202	0,116	0,118	não essencial
YGL244W/	252,6	32,08	0,127	0,131	0,198	não essencial
YGL245W/	729,8	145,12	0,199	0,158	0,461	essencial
YGL246C/	138,5	25,02	0,181	0,206	0,137	não essencial
YGL247W/	199,4	37,13	0,186	0,148	0,090	essencial
YGL248W/PDE1	155,8	39,22	0,252	0,116	0,123	não essencial
YGL249W/	38,1	13,54	0,355	0,199	0,142	não essencial
YGL250W/	56,9	15,57	0,273	0,282	0,152	não essencial
YGL251C/HFM1	47,3	9,16	0,194	0,185	0,118	não essencial
YGL252C/RTG2	146,5	19,31	0,132	0,120	0,142	não essencial
YGL253W/HXK2	1085,6	225,20	0,207	0,230	0,643	não essencial
YGL254W/FZF1	98,8	20,16	0,204	0,179	0,139	não essencial
YGL255W/ZRT1	229,9	76,97	0,335	0,238	0,255	não essencial
YGL256W/ADH4	249,2	32,18	0,129	0,102	0,421	não essencial
YGL257C/	99,2	19,36	0,195	0,177	0,114	não essencial
YGL258W/	19,3	8,15	0,423	0,637	0,365	não essencial
YGL259W/	9,1	4,09	0,449	0,459	0,109	não essencial
YGL260W/_f	20,3	5,13	0,253	0,274	0,078	não essencial
YGL261C/_f	262,2	62,11	0,237	0,167	0,580	não essencial
YGL262W/	41,1	18,68	0,455	0,235	0,088	não essencial
YGL263W/	148,5	24,85	0,167	0,172	0,122	não essencial
YGR001C/_ex1	238,2	44,27	0,186	0,128	0,225	não essencial
YGR001C/_ex2	408,1	72,05	0,177	0,145	0,225	não essencial
YGR002C/	163,1	23,21	0,142	0,156	0,121	essencial
YGR003W/	99,3	15,41	0,155	0,124	0,125	não essencial
YGR004W/	58,4	12,07	0,207	0,158	0,114	não essencial
YGR005C/TFG2	356,7	47,75	0,134	0,120	0,182	essencial
YGR006W/PRP18	35,1	8,89	0,253	0,139	0,127	não essencial
YGR007W/MUQ1	192,9	27,95	0,145	0,151	0,143	não essencial
YGR008C/STF2	578,4	250,30	0,433	0,189	0,339	não essencial
YGR009C/SEC9	326,6	44,35	0,136	0,120	0,127	essencial
YGR010W/	75,8	10,96	0,145	0,176	0,146	não essencial
YGR011W/	163,1	25,40	0,156	0,161	0,092	não essencial
YGR012W/	85,7	18,51	0,216	0,165	0,151	não essencial
YGR013W/	65,5	12,61	0,192	0,251	0,134	essencial
YGR014W/MSB2	359,5	109,36	0,304	0,274	0,118	não essencial
YGR015C/	103,3	19,39	0,188	0,136	0,108	não essencial
YGR016W/	27,8	3,99	0,143	0,126	0,134	não essencial
YGR017W/	320,8	77,39	0,241	0,183	0,168	não essencial

YGR018C/	192,0	37,50	0,195	0,131	0,139	não essencial
YGR019W/UGA1	162,1	54,43	0,336	0,187	0,287	não essencial
YGR020C/VMA7	815,3	264,14	0,324	0,276	0,298	não essencial
YGR021W/	292,3	63,01	0,216	0,165	0,102	não essencial
YGR022C/	30,0	10,24	0,341	0,390	0,086	não essencial
YGR023W/	121,1	35,05	0,289	0,230	0,113	não essencial
YGR024C/	388,2	43,69	0,113	0,122	0,127	essencial
YGR025W/	39,5	6,36	0,161	0,166	0,125	não essencial
YGR026W/	321,8	67,66	0,210	0,215	0,196	não essencial
YGR027C/RPS31A	973,3	485,65	0,499	0,424	0,716	não essencial
YGR028W/MSP1	183,2	42,76	0,233	0,127	0,125	não essencial
YGR029W/ERV1	370,6	71,80	0,194	0,242	0,136	essencial
YGR030C/	267,9	49,93	0,186	0,166	0,175	essencial
YGR031W/	116,8	15,48	0,132	0,156	0,173	não essencial
YGR032W/GSC2	287,8	107,52	0,132	0,130	0,091	não essencial
YGR033C/						
	207,4	29,84	0,144	0,156	0,111	não essencial
YGR034W/_ex1	1253,8	451,12	0,360	0,307	0,677	não essencial
YGR035C/	277,6	139,91	0,504	0,275	0,140	não essencial
YGR036C/	107,2	25,60	0,239	0,222	0,110	não essencial
YGR037C/ACB1	1398,6	322,63	0,231	0,195	0,360	não essencial
YGR038W/	191,6	39,48	0,206	0,114	0,159	não essencial
YGR039W/	84,8	55,50	0,654	0,149	0,103	não essencial
YGR040W/KSS1	92,6	15,34	0,166	0,180	0,119	não essencial
YGR041W/	63,0	26,23	0,416	0,323	0,117	não essencial
YGR042W/	224,8	38,35	0,171	0,141	0,120	não essencial
YGR043C/	40,7	27,30	0,671	0,211	0,171	não essencial
YGR044C/RME1	201,0	119,66	0,595	0,469	0,106	não essencial
YGR045C/	45,5	10,92	0,240	0,212	0,084	não essencial
YGR046W/	90,9	16,79	0,185	0,164	0,121	essencial
YGR047C/TFC4	71,2	16,10	0,226	0,214	0,135	essencial
YGR048W/UFD1	136,4	25,81	0,189	0,118	0,125	essencial
YGR049W/SCM4	831,4	139,76	0,168	0,179	0,197	não essencial
YGR050C/	32,6	6,97	0,214	0,151	0,074	não essencial
YGR051C/	47,5	11,57	0,243	0,174	0,086	não essencial
YGR052W/	26,8	7,16	0,267	0,265	0,172	não essencial
YGR053C/	33,6	14,08	0,419	0,235	0,135	não essencial
YGR054W/	455,8	86,46	0,190	0,160	0,219	não essencial
YGR055W/MUP1	245,1	88,11	0,360	0,251	0,238	não essencial
YGR056W/	108,1	14,86	0,137	0,153	0,133	não essencial
YGR057C/	99,8	23,95	0,240	0,112	0,145	não essencial
YGR058W/	40,1	13,33	0,332	0,264	0,131	não essencial
YGR059W/SPR3	27,9	17,98	0,645	0,299	0,174	não essencial
YGR060W/ERG25	1987,6	635,02	0,319	0,291	0,501	essencial
YGR061C/ADE6	477,2	94,93	0,199	0,155	0,277	não essencial
YGR062C/COX18	165,5	44,23	0,167	0,175	0,070	não essencial
YGR063C/SPT4	756,9	123,28	0,267	0,173	0,070	não essencial
YGR064W/	290,1	36,43	0,103	0,172	0,109	
YGR065C/	48,5	10,16		0,123	0,110	não essencial
			0,209		· ·	essencial
YGR066C/	21,1	8,68	0,412	0,355	0,146	não essencial
YGR067C/	25,1	10,14	0,405	0,213	0,150	não essencial
YGR068C/	43,8	10,73	0,245	0,222	0,105	não essencial
YGR069W/	12,4	4,35	0,350	0,372	0,106	não essencial
YGR070W/ROM1	74,4	19,09	0,257	0,208	0,127	não essencial
YGR071C/	54,5	10,45	0,192	0,220	0,127	não essencial
YGR072W/UPF3	249,0	44,97	0,181	0,173	0,152	não essencial
YGR073C/	216,6	33,66	0,155	0,171	0,112	essencial

YGR074W/SMD1	474,6	77,27	0,163	0,092	0,126	essencial
YGR075C/PRP38	161,4	20,77	0,129	0,113	0,151	essencial
YGR076C/MRPL25	267,4	51,18	0,191	0,157	0,163	não essencial
YGR077C/	218,8	41,24	0,188	0,144	0,130	não essencial
YGR078C/PAC10	217,6	45,14	0,207	0,209	0,123	não essencial
YGR079W/	176,1	34,34	0,195	0,130	0,133	não essencial
YGR080W/	169,4	31,17	0,184	0,145	0,139	não essencial
YGR081C/	404,1	51,06	0,126	0,146	0,179	não essencial
YGR082W/TOM20	619,9	59,61	0,096	0,125	0,224	essencial
YGR083C/GCD2	247,2	24,53	0,099	0,130	0,156	essencial
YGR084C/MRP13	466,8	87,60	0,188	0,172	0,111	não essencial
YGR085C/RPL16A_f	2015,6	630,72	0,313	0,273	0,727	não essencial
YGR085C/RPL16A_i	2734,9	823,63	0,301	0,292	0,727	não essencial
YGR086C/	931,2	372,97	0,401	0,220	0,353	não essencial
YGR088W/CTT1	48,5	18,50	0,381	0,265	0,242	não essencial
YGR089W/	233,9	64,16	0,274	0,235	0,162	não essencial
YGR090W/	351,2	63,33	0,180	0,156	0,187	essencial
YGR091W/PRP31	101,9	18,05	0,177	0,187	0,138	essencial
YGR092W/DBF2	222,0	84,31	0,380	0,186	0,141	não essencial
YGR093W/	158,2	28,79	0,182	0,166	0,113	não essencial
YGR094W/VAS1	598,1	89,93	0,150	0,142	0,369	essencial
YGR095C/	329,5	52,22	0,158	0,109	0,123	essencial
YGR096W/	78,5	14,24	0,182	0,128	0,114	não essencial
YGR097W/ASK10	245,7	42,46	0,173	0,127	0,148	não essencial
YGR098C/ESP1	103,4	30,29	0,293	0,283	0,113	essencial
YGR099W/TEL2	70,8	21,59	0,305	0,270	0,095	essencial
YGR100W/MIC1	101,7	18,82	0,185	0,206	0,146	não essencial
YGR101W/	95,8	24,89	0,260	0,159	0,080	não essencial
YGR102C/	234,2	40,32	0,172	0,130	0,105	não essencial
YGR103W/	674,4	107,14	0,159	0,163	0,266	essencial
YGR104C/SRB5	95,4	14,06	0,147	0,194	0,123	não essencial
YGR105W/VMA21	641,2	81,79	0,128	0,147	0,110	não essencial
YGR106C/	571,2	92,08	0,161	0,180	0,239	não essencial
YGR108W/CLB1	215,7	111,59	0,517	0,375	0,139	não essencial
YGR109C/CLB6	238,4	170,32	0,715	0,539	0,175	não essencial
YGR110W/	24,5	13,35	0,545	0,354	0,141	não essencial
YGR111W/	85,9	13,89	0,162	0,173	0,147	não essencial
YGR112W/	71,4	16,81	0,235	0,300	0,125	não essencial
YGR113W/	197,1	65,45	0,332	0,229	0,133	essencial
YGR114C/	37,3	10,82	0,290	0,312	0,193	essencial
YGR115C/	83,0	21,58	0,260	0,168	0,116	essencial
YGR116W/SPT6	209,2	45,14	0,216	0,173	0,218	essencial
YGR117C/	110,4	26,18	0,237	0,180	0,134	não essencial
YGR118W/RPS28A_ex1_f	1025,7	415,51	0,405	0,360	0,726	não essencial
YGR118W/RPS28A_ex2_f	874,5	343,36	0,393	0,363	0,726	não essencial
YGR119C/NUP57	236,1	32,43	0,137	0,122	0,102	essencial
YGR120C/	153,5	19,47	0,127	0,084	0,142	essencial
YGR121C/MEP1	110,9	20,89	0,188	0,155	0,109	não essencial
YGR122W/	54,0	9,47	0,175	0,214	0,101	não essencial
YGR123C/PPT1	278,6	49,59	0,178	0,161	0,173	não essencial
YGR124W/ASN2	804,4	118,69	0,148	0,110	0,317	não essencial
YGR125W/	259,8	60,97	0,235	0,152	0,125	não essencial
YGR126W/	20,4	5,50	0,270	0,327	0,189	não essencial
YGR127W/	70,7	13,05	0,185	0,146	0,124	não essencial
YGR128C/	266,6	49,90	0,187	0,163	0,167	essencial
YGR129W/	117,6	31,98	0,272	0,224	0,128	não essencial

YGR130C/	197,1	43,64	0,221	0,186	0,193	não essencial
YGR131W/	171,2	56,66	0,331	0,170	0,102	não essencial
YGR132C/PHB1	325,9	49,36	0,151	0,133	0,223	não essencial
YGR133W/PAS2	95,4	14,68	0,154	0,175	0,102	não essencial
YGR134W/	76,1	17,28	0,227	0,187	0,114	não essencial
YGR135W/PRE9	719,5	111,72	0,155	0,149	0,182	não essencial
YGR136W/	320,9	57,64	0,180	0,143	0,120	não essencial
YGR137W/	294,6	54,70	0,186	0,132	0,070	não essencial
YGR138C/	95,1	44,19	0,465	0,303	0,310	não essencial
YGR139W/	26,2	10,15	0,388	0,279	0,098	não essencial
YGR140W/CBF2	180,5	65,26	0,362	0,232	0,140	essencial
YGR141W/	58,6	10,57	0,180	0,123	0,115	não essencial
YGR142W/	42,4	27,67	0,653	0,231	0,183	não essencial
YGR143W/SKN1	103,0	56,36	0,547	0,391	0,137	não essencial
YGR144W/THI4	22,8	11,11	0,487	0,281	0,423	não essencial
YGR145W/	308,6	66,23	0,215	0,165	0,222	essencial
YGR146C/	491,4	143,46	0,292	0,215	0,167	não essencial
YGR147C/NAT2	314,1	51,68	0,165	0,161	0,096	essencial
YGR148C/RPL30B	1539,9	527,73	0,343	0,270	0,756	não essencial
YGR149W/	67,5	21,69	0,321	0,234	0,150	não essencial
YGR150C/	76,1	17,72	0,233	0,226	0,137	não essencial
YGR151C/ i	193,6	116,27	0,601	0,307	0,080	não essencial
YGR151C/ r	998,4	347,25	0,348	0,300	0,080	não essencial
YGR152C/RSR1	242,5	104,42	0,431	0,296	0,138	não essencial
YGR153W/	77,5	18,52	0,239	0,227	0,107	não essencial
YGR154C/	36,5	6,60	0,181	0,220	0,150	não essencial
YGR155W/CYS4	612,6	92,03	0,150	0,163	0,346	não essencial
YGR156W/	180,9	43,04	0,238	0,135	0,122	essencial
YGR157W/CHO2	239,2	33,19	0,139	0,132	0,170	não essencial
YGR158C/MTR3	203,8	30,49	0,150	0,126	0,142	essencial
YGR159C/NSR1	931,8	170,48	0,183	0,225	0,493	não essencial
YGR160W/	447,8	80,99	0,181	0,172	0,187	não essencial
YGR161C/	186,8	32,17	0,172	0,161	0,144	não essencial
YGR162W/TIF4631	390,2	80,97	0,207	0,216	0,254	não essencial
YGR163W/	62,6	8,27	0,132	0,133	0,116	não essencial
YGR164W/	107,1	29,61	0,276	0,261	0,119	não essencial
YGR165W/	306,6	40,48	0,132	0,084	0,145	não essencial
YGR166W/KRE11	178,6	19,69	0,110	0,080	0,116	não essencial
YGR167W/CLC1	192,8	38,54	0,200	0,193	0,228	não essencial
YGR168C/	104,2	20,58	0,198	0,165	0,119	não essencial
YGR169C/	75,1	23,14	0,308	0,204	0,125	não essencial
YGR170W/PSD2	159,4	21,56	0,135	0,140	0,130	não essencial
YGR171C/MSM1	91,8	15,39	0,168	0,150	0,141	não essencial
YGR172C/YIP1	347,9	37,02	0,106	0,118	0,152	essencial
YGR173W/	160,4	24,81	0,155	0,162	0,206	não essencial
YGR174C/CBP4	226,6	38,23	0,169	0,171	0,109	não essencial
YGR175C/ERG1	822,2	127,14	0,155	0,141	0,441	essencial
YGR176W/	295,8	75,13	0,254	0,206	0,059	não essencial
YGR177C/ATF2	294,8	73,83	0,250	0,160	0,168	não essencial
YGR178C/	424,1	38,63	0,091	0,107	0,168	não essencial
YGR179C/	88,4	22,46	0,254	0,217	0,116	essencial
YGR180C/RNR4	524,5	130,02	0,248	0,238	0,497	não essencial
YGR181W/	667,0	67,35	0,101	0,112	0,216	não essencial
YGR182C/	601,9	190,72	0,317	0,205	0,082	não essencial
YGR183C/QCR9_ex1	670,9	227,01	0,338	0,236	0,185	não essencial
YGR184C/UBR1	153,8	23,55	0,153	0,111	0,146	não essencial

YGR185C/TYS1	628,1	64,97	0,103	0,107	0,302	essencial
YGR186W/TFG1	196,1	39,10	0,199	0,119	0,147	essencial
YGR187C/HGH1	247,4	40,21	0,163	0,162	0,184	não essencial
YGR188C/BUB1	35,1	18,86	0,538	0,390	0,113	não essencial
YGR189C/	1051,2	298,32	0,284	0,268	0,233	não essencial
YGR190C/	42,1	11,87	0,282	0,351	0,092	essencial
YGR191W/HIP1	174,3	32,35	0,186	0,166	0,194	essencial
YGR192C/TDH3	1706,5	491,79	0,288	0,270	0,924	não essencial
YGR193C/PDX1	217,1	30,16	0,139	0,144	0,159	não essencial
YGR194C/	77,5	28,30	0,365	0,219	0,142	não essencial
YGR195W/	256,4	27,81	0,108	0,101	0,139	essencial
YGR196C/	95,2	17,11	0,180	0,157	0,128	não essencial
YGR197C/SNG1	58,8	11,59	0,197	0,220	0,133	não essencial
YGR198W/	91,3	22,30	0,244	0,246	0,134	essencial
YGR199W/	198,1	51,59	0,260	0,188	0,126	não essencial
YGR200C/	335,9	61,31	0,280	0,100	0,120	não essencial
YGR201C/	195,6	27,32	0,140	0,191	0,180	
YGR201C/ YGR202C/PCT1	203,3	·	0,140	0,111		não essencial
		13,71			0,157	não essencial
YGR203W/	100,1	22,06	0,220	0,170	0,056	não essencial
YGR204W/ADE3	500,8	74,87	0,150	0,127	0,277	não essencial
YGR205W/	13,6	4,78	0,350	0,270	0,166	não essencial
YGR206W/	233,5	63,45	0,272	0,219	0,154	não essencial
YGR207C/	127,6	20,11	0,158	0,200	0,178	não essencial
YGR208W/SER2	515,6	89,77	0,174	0,153	0,205	não essencial
YGR209C/TRX2	804,2	168,85	0,210	0,204	0,425	não essencial
YGR210C/	429,6	95,24	0,222	0,133	0,126	não essencial
YGR211W/	335,8	60,10	0,179	0,146	0,244	essencial
YGR212W/	49,5	12,99	0,263	0,198	0,129	não essencial
YGR213c/RTA1	79,0	19,98	0,253	0,283	0,118	não essencial
YGR214W/YST1_ex1_f	942,0	188,64	0,200	0,204	0,668	não essencial
YGR214W/YST1_ex1_i	1869,9	481,79	0,258	0,276	0,668	não essencial
YGR214W/YST1_ex2	1606,0	482,11	0,300	0,275	0,668	não essencial
YGR215W/	248,1	48,70	0,196	0,144	0,120	não essencial
YGR216C/	145,1	18,26	0,126	0,140	0,119	essencial
YGR217W/	59,1	8,62	0,146	0,089	0,113	não essencial
YGR218W/CRM1	174,9	22,42	0,128	0,130	0,205	essencial
YGR219W/	333,1	80,64	0,242	0,221	0,242	não essencial
YGR220C/MRPL9	275,2	36,64	0,133	0,105	0,158	não essencial
YGR221C/	51,8	33,74	0,652	0,730	0,106	não essencial
YGR222W/PET54	313,3	46,69	0,149	0,139	0,100	não essencial
YGR223C/	172,5	35,55	0,206	0,198	0,127	não essencial
YGR226C/	11,7	5,74	0,491	0,659	0,125	não essencial
YGR227W/DIE2	125,8	29,28	0,233	0,148	0,127	não essencial
YGR228W/	353,8	64,24	0,182	0,178	0,134	não essencial
YGR229C/KNR4	676,9	90,98	0,134	0,164	0,187	não essencial
YGR230W/	213,8	97,08	0,454	0,279	0,079	não essencial
YGR231C/	346,5	76,60	0,221	0,192	0,165	não essencial
YGR232W/	133,4	28,76	0,216	0,181	0,167	não essencial
YGR233C/PHO81	264,8	38,97	0,147	0,131	0,134	não essencial
YGR234W/YHB1	1298,4	320,94	0,247	0,239	0,267	não essencial
YGR235C/	287,2	34,34	0,120	0,233	0,267	não essencial
YGR236C/	23,9	6,21	0,120	0,110	0,132	não essencial
	127,5			0,291		
YGR237C/		25,78	0,202		0,140	não essencial
YGR238C/	85,4	25,01	0,293	0,233	0,112	não essencial
YGR239C/	166,7	32,81	0,197	0,206	0,112	não essencial
YGR240C/PFK1	708,2	136,00	0,192	0,128	0,466	não essencial

YGR241C/	372,0	55,08	0,148	0,131	0,156	não essencial
YGR242W/	16,7	6,45	0,386	0,362	0,074	não essencial
YGR243W/	97,9	32,03	0,327	0,243	0,099	não essencial
YGR244C/	169,9	43,62	0,257	0,155	0,189	não essencial
YGR245C/	167,7	38,61	0,230	0,284	0,201	essencial
YGR246C/BRF1	165,8	17,92	0,108	0,109	0,181	essencial
YGR247W/	68,0	16,39	0,241	0,190	0,109	não essencial
YGR248W/SOL4	25,4	22,19	0,873	0,265	0,124	não essencial
YGR249W/MGA1	34,1	12,53	0,368	0,314	0,114	não essencial
YGR250C/	282,9	46,94	0,166	0,171	0,145	não essencial
YGR251W/	161,1	25,79	0,160	0,133	0,120	essencial
YGR252W/GCN5	160,3	33,92	0,212	0,160	0,121	não essencial
YGR253C/PUP2	367,3	70,01	0,191	0,114	0,162	essencial
YGR254W/ENO1	673,6	251,91	0,374	0,222	0,871	não essencial
YGR256W/GND2	27,2	10,04	0,369	0,265	0,201	não essencial
YGR258C/RAD2	27,2	11,49	0,422	0,203	0,201	não essencial
YGR259C/	47,8	15,39	0,322	0,280	0,084	não essencial
YGR260W/	224,6	38,50	0,322	0,280	0,004	não essencial
YGR261C/YKS5	223,4	33,87	0,171	0,159	0,193	não essencial
	173,6	*		0,132		
YGR262C/		26,08	0,150		0,148	não essencial
YGR263C/	188,8	54,18	0,287	0,242	0,148	não essencial
YGR264C/MES1	321,4	64,85	0,202	0,192	0,293	essencial
YGR266W/	175,5	42,30	0,241	0,161	0,168	não essencial
YGR267C/	549,8	117,07	0,213	0,164	0,208	essencial
YGR268C/	104,8	30,45	0,290	0,233	0,107	não essencial
YGR269W/	5,4	2,50	0,462	0,760	0,104	não essencial
YGR270W/YTA7	219,9	38,97	0,177	0,128	0,143	não essencial
YGR271W/	34,1	11,32	0,332	0,299	0,154	não essencial
YGR274C/TAF145	262,0	38,76	0,148	0,101	0,166	essencial
YGR275W/	274,2	62,44	0,228	0,257	0,120	não essencial
YGR276C/	213,1	25,58	0,120	0,135	0,151	não essencial
YGR277C/	338,2	46,49	0,137	0,118	0,114	essencial
YGR278W/	131,4	18,31	0,139	0,155	0,127	essencial
YGR279C/	470,2	150,77	0,321	0,199	0,546	não essencial
YGR280C/	637,3	91,69	0,144	0,147	0,150	essencial
YGR281W/YOR1	206,4	59,83	0,290	0,155	0,175	não essencial
YGR282C/BGL2	877,1	168,03	0,192	0,197	0,476	não essencial
YGR283C/	446,9	52,73	0,118	0,102	0,126	não essencial
YGR284C/	300,3	60,79	0,202	0,137	0,235	não essencial
YGR285C/ZUO1	985,5	194,76	0,198	0,153	0,504	não essencial
YGR286C/BIO2	299,8	197,29	0,658	0,272	0,228	não essencial
YGR287C/	30,3	5,86	0,193	0,185	0,241	não essencial
YGR288W/	36,0	12,60	0,350	0,290	0,110	não essencial
YGR295C/	251,4	44,43	0,177	0,127	0,133	não essencial
YHL002W/	204,1	24,25	0,119	0,122	0,127	não essencial
YHL003c/LAG1	424,9	70,16	0,165	0,161	0,158	não essencial
YHL004w/MRP4	146,9	27,17	0,185	0,165	0,168	não essencial
YHL005C/	12,3	6,13	0,499	1,123	0,063	não essencial
YHL006C/	55,6	10,89	0,196	0,164	0,053	não essencial
YHL007c/STE20	109,1	23,41	0,215	0,243	0,152	não essencial
YHL008C/	60,1	16,34	0,272	0,159	0,113	não essencial
YHL009C/	44,2	9,21	0,209	0,196	0,162	não essencial
YHL010C/	47,1	6,80	0,144	0,152	0,135	não essencial
YHL011c/PRS3	379,6	54,73	0,144	0,163	0,242	não essencial
11120110/1100			,	,	, , .—	
YHL012W/	16,8	5,16	0,307	0,380	0,123	não essencial

YHL014c/YLF2	49,2	9,56	0,194	0,170	0,129	não essencial
YHL015w/URP2	1891,9	602,01	0,318	0,323	0,827	essencial
YHL016c/DUR3	21,0	2,24	0,106	0,111	0,155	não essencial
YHL017W/	260,4	57,67	0,222	0,231	0,148	não essencial
YHL019c/APM2	83,4	17,67	0,212	0,149	0,120	não essencial
YHL020c/OPI1	251,6	49,64	0,197	0,169	0,089	não essencial
YHL021C/	148,1	71,90	0,486	0,221	0,163	não essencial
YHL022c/SPO11	26,3	11,57	0,440	0,290	0,162	não essencial
YHL023C/	220,1	22,69	0,103	0,111	0,144	não essencial
YHL024W/	43,6	14,35	0,329	0,218	0,181	não essencial
YHL025w/SNF6	308,1	56,49	0,183	0,139	0,083	não essencial
YHL026C/	92,9	47,69	0,513	0,381	0,158	não essencial
YHL027w/RIM1'	176,8	21,81	0,123	0,107	0,147	não essencial
YHL028W/	75,1	75,35	1,004	0,966	0,090	não essencial
YHL029C/	216,7	40,27	0,186	0,300	0,030	não essencial
YHL030W/	233,3	60,22	0,160	0,120	0,145	não essencial
		·				
YHL031C/	356,9	59,93	0,168	0,148 0,192	0,118	não essencial
YHL032c/GUT1	47,1	10,71	0,227	·	0,150	não essencial
YHL033c/RPL4A	1022,4	233,02	0,228	0,210	0,842	não essencial
YHL034c/SBP1	582,4	80,18	0,138	0,151	0,346	não essencial
YHL035C/	41,1	12,41	0,302	0,207	0,136	não essencial
YHL036W/MUP3	37,8	12,67	0,335	0,322	0,116	não essencial
YHL037C/	19,8	15,85	0,800	0,302	0,125	não essencial
YHL038c/CBP2	167,9	23,52	0,140	0,134	0,137	não essencial
YHL039W/	168,6	32,09	0,190	0,230	0,152	não essencial
YHL040C/	81,3	16,44	0,202	0,189	0,242	não essencial
YHL041W/	6,9	2,89	0,420	0,476	0,110	não essencial
YHL042W/	34,4	13,17	0,383	0,214	0,165	não essencial
YHL043W/	51,2	13,86	0,271	0,152	0,189	não essencial
YHL044W/	94,2	26,85	0,285	0,195	0,145	não essencial
YHL046C/_f	261,4	44,69	0,171	0,151	0,613	não essencial
YHL047C/	81,4	11,38	0,140	0,149	0,128	não essencial
YHR001w-a/QCR10_ex1	483,9	155,23	0,321	0,305	0,136	não essencial
YHR002W/	43,1	6,09	0,141	0,165	0,097	não essencial
YHR003C/	192,8	23,76	0,123	0,100	0,128	não essencial
YHR004C/	78,5	13,49	0,172	0,193	0,117	não essencial
YHR005c/GPA1	183,3	74,71	0,408	0,319	0,154	não essencial
YHR006W/STP2	87,2	21,68	0,249	0,182	0,122	não essencial
YHR007c/ERG11	1722,8	484,59	0,281	0,224	0,506	essencial
YHR008c/SOD2	915,1	209,48	0,229	0,169	0,226	não essencial
YHR009C/	237,7	31,70	0,133	0,133	0,165	não essencial
YHR010w/RPL27_ex1	1502,3	543,48	0,362	0,308	0,736	não essencial
YHR011W/	59,8	19,21	0,321	0,276	0,099	não essencial
YHR012w/PEP11 ex1	101,9	21,33	0,209	0,239	0,148	não essencial
YHR012w/PEP11 ex2	177,7	29,68	0,167	0,148	0,148	não essencial
YHR013c/ARD1	184,0	40,42	0,220	0,210	0,176	não essencial
YHR014w/SPO13	57,6	32,80	0,570	0,177	0,115	não essencial
YHR015W/	54,0	19,97	0,370	0,168	0,136	não essencial
YHR016c/YSC84 ex1	20,1	12,08	0,602	0,485	0,153	não essencial
YHR016c/YSC84_ex2	83,2	29,73	0,357	0,405	0,153	não essencial
YHR017w/YSC83	126,1	26,60	0,337	0,275	0,133	não essencial
YHR018c/ARG4	576,6	258,23	0,211	0,203	0,114	não essencial
YHR019c/DED81	529,9	97,02	0,448	0,139	0,230	essencial
YHR020W/	510,6	85,46	0,167	0,145	0,355	essencial
YHR021c/RPS27B_ex1	1918,6	575,97	0,300	0,268	0,660	não essencial
YHR022C/	78,1	33,63	0,431	0,279	0,133	não essencial

VHR028/DG/P2 337,3 52,32 0,155 0,129 0,139 não essencial ryHR030C/SLT2 281,5 114,55 0,407 0,173 0,157 não essencial ryHR030C/SLT2 301,8 63,93 0,212 0,209 0,138 não essencial ryHR031C/ 69,6 20,99 0,302 0,281 0,142 não essencial radios/sesencial ryHR033W/ 142,3 40,29 0,283 0,204 0,100 não essencial ryHR033W/ 142,3 40,29 0,283 0,204 0,100 não essencial radios/sesencial ryHR033W/ 28,1 2,64 0,994 0,105 não essencial rão rão sesencial radios/sesencial radios/s	YHR023w/MYO1	324,0	142,29	0,439	0,252	0,157	essencial
YHR02EW/PPA1 952.8 157,58 0,165 0,123 0,251 não essencial essencial essencial YHR02B/DAP2 YHR02PC/ 650,5 99,57 0,153 0,135 0,206 essencial essencial YHR02B/DAP2 YHR02B/DAP2 337,3 52,32 0,155 0,129 0,139 não essencial APHR030S/DAP2 YHR03D/SIZ2 301,8 63,93 0,212 0,209 0,138 não essencial APHR030S/W YHR03D/W/HR0	YHR024c/MAS2	93,2	18,83	0,202	0,148	0,141	essencial
YHR027C/C 650.5 89.57 0.153 0.135 0.206 essencial ryHR029C/ 337.3 52.32 0.155 0.129 0.139 não essencial ryHR029C/ 281.5 114,55 0.407 0.173 0.157 não essencial ryHR030C/SLT2 301.8 63.93 0.212 0.209 0.138 não essencial ryHR030C/SLT2 301.8 63.93 0.212 0.209 0.138 não essencial responsability 142.0 32.80 0.284 0.196 0.121 não essencial responsability 142.3 40.29 0.283 0.204 0.100 não essencial responsability 147.033W/YHR033W/YH	YHR025w/THR1	580,4	71,05	0,122	0,114	0,271	não essencial
YHR027C/C 650.5 89.57 0.153 0.135 0.206 essencial ryHR029C/ 337.3 52.32 0.155 0.129 0.139 não essencial ryHR029C/ 281.5 114,55 0.407 0.173 0.157 não essencial ryHR030C/SLT2 301.8 63.93 0.212 0.209 0.138 não essencial ryHR030C/SLT2 301.8 63.93 0.212 0.209 0.138 não essencial responsability 142.0 32.80 0.284 0.196 0.121 não essencial responsability 142.3 40.29 0.283 0.204 0.100 não essencial responsability 147.033W/YHR033W/YH	YHR026w/PPA1	952,8		0,165	0,123		não essencial
VHR028/DG/P2 337,3 52,32 0,155 0,129 0,139 não essencial ryHR030C/SLT2 281,5 114,55 0,407 0,173 0,157 não essencial ryHR030C/SLT2 301,8 63,93 0,212 0,209 0,138 não essencial ryHR031C/ 69,6 20,99 0,302 0,281 0,142 não essencial radios/sesencial ryHR033W/ 142,3 40,29 0,283 0,204 0,100 não essencial ryHR033W/ 142,3 40,29 0,283 0,204 0,100 não essencial radios/sesencial ryHR033W/ 28,1 2,64 0,994 0,105 não essencial rão rão sesencial radios/sesencial radios/s	YHR027C/					·	
YHR029C/ YHR030C/SILT2 281.5 114.55 0.407 0.173 0.157 não essencial YHR031C/ 69.6 20.99 0.302 0.281 0.142 não essencial YHR031C/ 69.6 20.99 0.302 0.281 0.142 não essencial não essencial YHR033W/ 142.3 40.29 0.283 0.204 0.100 não essencial não essencial NHR033W/ 142.3 40.29 0.283 0.204 0.100 não essencial não essencial não essencial NHR033W/ 142.3 40.29 0.283 0.204 0.100 não essencial não essencial não essencial não essencial não essencial não essencial vierto não essencial não essencial vierto não esse				•		· ·	
YHR030c/SLT2 301.8 63.93 0.212 0.209 0.138 nåo essencial nåo essencial nåo essencial yHR032V/ YHR031C/ 69.6 20.99 0.302 0.281 0.142 nåo essencial nåo essencial nåo essencial yHR033W/ 142.3 32.80 0.254 0.196 0.121 nåo essencial nåo essencial yHR033W/ 142.3 40.29 0.283 0.204 0.100 nåo essencial nåo essencial yHR033W/ 28.1 2.64 0.094 0.105 nåo essencial essencial yHR036W/ 143.4 20.87 0.146 0.099 0.130 essencial essencial essencial yHR036W/ 143.4 20.87 0.146 0.099 0.130 essencial essencial essencial yHR038W/ 240.2 53.57 0.223 0.166 0.155 nåo essencial yHR038W/ 143.4 20.87 0.223 0.166 0.155 nåo essencial yHR038W/ 145.8 168.33 0.354 0.213 0.212 nåo essencial yHR038W/ 145.8 168.33 0.354 0.213 0.212 nåo essencial yHR038W/ 145.2 0.260 0.248 0.154 0.102 nåo essencial yHR034W/ <td></td> <td></td> <td>The state of the s</td> <td>· ·</td> <td></td> <td></td> <td></td>			The state of the s	· ·			
YHR031C/ 69.6 20,99 0,302 0.281 0,142 não essencial não essencial YHR033W/ 129,0 32,80 0,254 0,196 0,121 não essencial não essencial YHR033W/ 142,3 40,29 0,283 0,204 0,100 não essencial YHR035W/ 25,04 0,251 0,139 0,092 não essencial SESENCIAL NICOS PARTICIDA NICOS PARTIC		· ·					
YHR032W/ 129.0 32.80 0.254 0.196 0.121 não essencial não essencial YHR034C/ 99.9 25.04 0.283 0.204 0,100 não essencial não essencial YHR035W/ 28.1 2.64 0.094 0.105 0.152 não essencial YHR035W/ 28.1 2.64 0.094 0.105 0.152 não essencial NHR035W/ 143.4 20.87 0.146 0.099 0.130 essencial não essencial YHR036W/ 143.4 20.87 0.146 0.099 0.130 essencial não essencial YHR036W/ 142.4 47.34 0.381 0.247 0.178 não essencial NHR036W/ 142.2 47.53 0.223 0.166 0.155 não essencial PHR036W/ 140.2 53.57 0.223 0.166 0.155 não essencial PHR036W/ 140.2<		·	· ·				
YHR033W/ 142,3 40,29 0,283 0,204 0,100 não essencial não essencial YHR034C/ 99,9 25,04 0,251 0,139 0,092 não essencial não essencial YHR035W/ 28,1 2,64 0,094 0,105 0,152 não essencial NHR036W/ 143,4 20,87 0,146 0,099 0,130 essencial YHR036W/ 143,4 20,87 0,146 0,099 0,130 essencial YHR036W/ 240,2 47,34 0,381 0,247 0,178 não essencial NHR036W/ 240,2 53,57 0,223 0,166 0,155 não essencial NHR036W/ 147,58 168,33 0,354 0,213 0,212 não essencial PHR040W/ 362,0 89,60 0,248 0,154 0,102 não essencial PHR040W/ 362,4 149,17 0,225 0,163 0,226 essencial PHR							
YHR034C/ YHR035W/ 28,1 2,64 0,094 0,105 0,152 não essencial YHR035W/ 143,4 20,87 0,146 0,099 0,130 essencial YHR035W/ YHR035W/ YHR035W/ YHR035W/ YHR035W/ YHR035W/ YHR035W/ 240,2 53,57 0,223 0,166 0,155 não essencial YHR039BC/WMA10_ext 1 1905,5 395,60 0,228 0,166 0,155 não essencial YHR039BC/WMA10_ext 1 1905,5 395,60 0,228 0,198 não essencial YHR039BC/WMA10_ext 1 1905,5 395,60 0,288 0,198 não essencial YHR039BC/WMA10_ext 1 272,6 58,03 0,344 0,213 0,212 não essencial YHR04W/W 362,0 89,60 0,248 0,154 0,102 essencial YHR04UW/RDF1 662,4 149,17 0,225 0,163 0,226 essencial YHR04UW/RDF1 662,4 149,17 0,225 0,163 0,226 essencial YHR04CW/RDG2 120,6 32,61 0,270 0,234 0,149 não essencial YHR04GW/W 306,7 67,03 0,219 0,150 0,122 não essencial YHR04GW/W 306,7 16,50 0,386 0,177 0,104 não essencial YHR04GW/W 42,7 16,50 0,386 0,174 0,100 não essencial YHR04GW/W 508,4 94,94 0,187 0,167 0,381 não essencial YHR049W/W 508,4 94,94 0,187 0,167 0,381 não essencial YHR05Tw/COYE 338,1 78,16 0,231 0,200 0,109 não essencial YHR05GW/W 762,6 122,48 0,161 0,154 0,240 essencial YHR05Tw/COYE 435,2 24,76 0,057 0,069 0,135 não essencial YHR05Tw/COYE 435,2 24,76 0,057 0,069 0,135 não essencial YHR05Tw/COYE 435,2 24,76 0,057 0,069 0,135 não essencial YHR05GC/ 113,7 18,39 0,162 0,145 0,132 essencial YHR06GC/ 125,11 0,149 0,140 0,140 essencial YHR06GW/WNA22 365,5 51,71 0,141 0,148 0,149 essencial YHR06GW/WNA2 365,5 51,71 0,141 0,149 0,142 essencial YHR06GW/WNWA 115,6 40,04 0,335 0,240 0,122 não essencial YHR06GW/WNWA 117,8 16,65 0,143 0,149 0,142 essencial YHR06GW/WNWA 117,8 16,65 0,143 0,162 0,145 0,142 essencial YHR06GW/WNWA			· ·				
YHR035W/ YHR036W/ YHR036W/ YHR036W/ YHR037WPUT2 124,2 47,34 0,381 0,247 0,178 0,155 0,155 0,166 0,155 0,160 0,155 0,160 0,155 0,160 0,155 0,160 0,155 0,160 0,155 0,160 0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,166 0,155 0,160 0,165 0,166 0,155 0,160 0,165 0,165 0,160 0,165 0,165 0,160 0,165 0,165 0,166 0,155 0,160 0,166 0,155 0,160 0,166 0,155 0,160 0,166 0,155 0,160 0,166 0,155 0,160 0,166 0,165 0,160 0,160 0,162 0,160 0,162 0,160 0,162 0,160 0,162 0,160 0,162 0,162 0,163 0,162 0,163 0,162 0,163 0,162 0,163 0,162 0,163 0,164 0,163 0,164 0,163 0,163 0,163 0,163 0,163 0,163 0,163 0,163 0,163 0,163 0,164 0,163 0,163 0,163 0,163 0,163 0,163 0,163 0,163 0,163 0,164 0,163 0,163 0,163 0,164 0,164 0,164 0,165		· ·					
YHR036W/ 143,4 20,87 0,146 0,099 0,130 essencial YHR037wPUT2 124,2 47,34 0,381 0,247 0,178 não essencial YHR038W/ 240,2 53,57 0,223 0,166 0,155 não essencial YHR039Bc/VMA10_ex1 1905,5 395,60 0,208 0,198 não essencial YHR0399C/ 475,8 168,33 0,354 0,213 0,212 não essencial YHR0399C/ 475,8 168,33 0,354 0,213 0,212 não essencial YHR041c/SRB2_ex1 272,6 58,03 0,213 0,213 0,081 não essencial YHR041c/SRB2_ex1 272,6 58,03 0,213 0,213 0,081 não essencial YHR041c/SRB2_ex1 272,6 58,03 0,213 0,213 0,081 não essencial YHR042wNcP1 662,4 149,17 0,225 0,163 0,226 essencial YHR042wNcP1 37,0 30,0 32,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1					·		
YHR037wPUT2							
YHR038W/ 240,2 53,57 0,223 0,166 0,155 não essencial não essencial não essencial principal não essencial principal não essencial y HR039C/ 475,8 188,33 0,354 0,213 0,212 não essencial não essencial principal não essencial principal principal não essencial principal pri		·				· ·	
YHR039Bc/VMA10_ex1 1905,5 395,60 0,208 0,198 não essencial YHR039GC 475,8 168,33 0,354 0,213 0,212 não essencial YHR040W/ 362,0 89,60 0,248 0,154 0,102 essencial YHR041c/SRB2_ex1 272,6 58,03 0,213 0,213 0,081 não essencial YHR042w/NCP1 662,4 149,17 0,225 0,163 0,226 essencial YHR043c/DOG2 120,6 32,61 0,270 0,234 0,149 não essencial YHR044c/DOG1 37,0 13,52 0,365 0,197 0,155 não essencial YHR044C/DG1 125,4 19,83 0,150 0,122 não essencial YHR048W/ 125,4 19,83 0,150 0,142 não essencial YHR049C-a' 361,8 115,70 0,386 0,174 0,100 não essencial YHR049W/ 508,4 94,94 0,187 0,167 0,381 não essen					-		
YHR039C/ 475,8 168,33 0,354 0,213 0,212 não essencial YHR040W/ 362,0 89,60 0,248 0,154 0,102 essencial YHR041C/SRB2_ex1 272,6 58,03 0,213 0,213 0,081 não essencial YHR042w/NCP1 662,4 149,17 0,225 0,163 0,226 essencial YHR043c/DOG2 120,6 32,61 0,270 0,234 0,149 não essencial YHR044c/DOG1 37,0 13,52 0,365 0,197 0,155 não essencial YHR046C/ 125,4 19,83 0,158 0,157 0,144 não essencial YHR048W/ 42,7 16,50 0,386 0,174 0,100 não essencial YHR048W/ 42,7 16,50 0,386 0,174 0,100 não essencial YHR049W/ 508,4 94,94 0,187 0,167 0,381 não essencial YHR051w/COX6 691,5 174,25 0,252 0	1					0,155	
YHR040W/ 362,0 89,60 0,248 0,154 0,102 essencial não essencial PHR041α/SRB2_ex1 272,6 58,03 0,213 0,213 0,081 não essencial essencial não essencial PHR042w/NCP1 662,4 149,17 0,225 0,163 0,226 essencial essencial PHR042w/NCP1 662,4 149,17 0,225 0,163 0,226 essencial essencial essencial PHR044c/DOG1 37,0 13,52 0,365 0,197 0,155 não essencial PHR044c/DOG1 37,0 13,52 0,365 0,197 0,155 não essencial PHR045W/ 306,7 67,03 0,219 0,150 0,122 não essencial PHR046C/ 125,4 19,83 0,158 0,157 0,144 não essencial PHR046W/ 9,04 0,187 0,144 não essencial PHR046W/ 9,04 0,187 0,160 0,081 0,215 não essencial PHR046W/ 9,04 0,187 0,167 0,381 não essencial PHR049W/ 508,4 9,94 0,187 0,167 0,381 não essencial PHR050w/SMF2 338,1 78,16 0,231 0,200 0,109 não essenc		•				0.040	
YHR041c/SRB2_ex1 272,6 58,03 0,213 0,213 0,081 não essencial essencial essencial yHR042w/NCP1 YHR042w/NCP1 662,4 149,17 0,225 0,163 0,226 essencial essencial yHR044c/DOG1 37,0 13,52 0,365 0,197 0,155 não essencial yHR044c/DOG1 37,0 13,52 0,365 0,197 0,155 não essencial yHR046c/ 125,4 19,83 0,150 0,122 não essencial não essencial yHR046c/ 125,4 19,83 0,158 0,157 0,144 não essencial não essencial yHR046c/ 125,4 19,83 0,158 0,157 0,144 não essencial não essencial yHR046c/ 125,4 19,83 0,158 0,157 0,144 não essencial não essencial yHR049c/ 148,47 16,50 0,386 0,174 0,100 não essencial yHR049c/ 148,48 115,70 0,320 0,288 0,066 não essencial yHR049c/ 150,84 94,94 0,187 0,167 0,381 não essencial yHR050w/SMF2 338,1 78,16 0,231 0,200 0,109 não essencial yHR050w/SMF2 <							
YHR042w/NCP1 662,4 149,17 0,225 0,163 0,226 essencial YHR043c/DOG2 120,6 32,61 0,270 0,234 0,149 mão essencial YHR044c/DOG1 37,0 13,52 0,365 0,197 0,155 não essencial YHR046W/ 306,7 67,03 0,219 0,150 0,122 não essencial YHR046C/ 125,4 19,83 0,158 0,157 0,144 não essencial YHR047c/AAP1' 236,4 37,78 0,160 0,081 0,215 não essencial YHR049C-a/ 361,8 115,70 0,320 0,288 0,066 não essencial YHR049C-a/ 361,8 115,70 0,320 0,288 0,066 não essencial YHR049W/ 508,4 94,94 0,187 0,167 0,381 não essencial YHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial YHR0556C/ 93,2 25,22 0,270					-		
YHR043c/DOG2							
YHR044c/DOG1 37,0 13,52 0,365 0,197 0,155 não essencial YHR045W/ 306,7 67,03 0,219 0,150 0,122 não essencial YHR046C/ 125,4 19,83 0,158 0,157 0,144 não essencial YHR047c/AAP1' 236,4 37,78 0,160 0,081 0,215 não essencial YHR047c/AAP1' 236,4 37,78 0,160 0,081 0,215 não essencial YHR048W/ 42,7 16,50 0,386 0,174 0,100 não essencial YHR049C-a/ 361,8 115,70 0,320 0,288 0,066 não essencial YHR049W/ 508,4 94,94 0,187 0,167 0,381 não essencial YHR059W/ 508,4 94,94 0,187 0,167 0,381 não essencial YHR059W/SMF2 338,1 78,16 0,231 0,200 0,109 não essencial YHR051W/COX6 691,5 174,25 0,252 0,142 0,254 não essencial YHR055W/ 762,6 122,48 0,161 0,154 0,240 essencial YHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR056C/ 93,2 24,76 0,057 0,069 0,135 não essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR056C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR06CC/ 234,9 40,06 0,171 0,161 0,189 essencial YHR06CC/ 234,9 40,06 0,171 0,161 0,189 essencial YHR06CC/ 152,5 114,95 0,153 0,152 0,455 não essencial YHR06GC/ 165,0 35,59 0,216 0,288 0,132 essencial YHR073W/ 117,8 16,85 0,143 0,189 0,147 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR075W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR075W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077W/MD2 255,0 34,47 0,133 0,145 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,160 0,16							
YHR045W/ 306,7 67,03 0,219 0,150 0,122 não essencial YHR046C/ 125,4 19,83 0,158 0,157 0,144 não essencial YHR047C/AAP1' 236,4 37,78 0,160 0,081 0,215 não essencial YHR049W/ 42,7 16,50 0,386 0,174 0,100 não essencial YHR049C-a/ 361,8 115,70 0,320 0,288 0,066 não essencial YHR059W/ 508,4 94,94 0,187 0,167 0,381 não essencial YHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial YHR055C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR057C/CYP2 435,2 24,76 0,057 0,069 0,133 não essencial YHR058C/ 113,7 18,39 0,162 0,1			The state of the s	· ·	·		
YHR046C/ 125,4 19,83 0,158 0,157 0,144 não essencial não essencial yHR047c/AAP1' YHR048W/ 42,7 16,50 0,386 0,174 0,100 não essencial não essencial yHR049W- YHR049C-a/ 361,8 115,70 0,320 0,288 0,066 não essencial não essencial yHR049W/ YHR050w/SMF2 338,1 78,16 0,231 0,200 0,109 não essencial yHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial yHR050W/ 762,6 122,48 0,161 0,154 0,240 essencial yHR050W/ 762,6 122,48 0,161 0,154 0,240 essencial yHR050C/ 93,2 25,22 0,270 0,267 0,152 não essencial yHR050C/ 113,7 18,39 0,162 0,145 0,132 essencial yHR050SW/ 185,9 27,04 0,145 0,132 essencial yHR050SW/ 185,9 27,04 0,145 0,132 essencial yHR050SW/ 185,9 27,04 0,145 0,130 não essencial yHR050W/ 0,152 0,152							
YHR047c/AAP1' 236,4 37,78 0,160 0,081 0,215 não essencial YHR048W/ 42,7 16,50 0,386 0,174 0,100 não essencial YHR049C-a/ 361,8 115,70 0,320 0,288 0,066 não essencial YHR049W/ 508,4 94,94 0,187 0,167 0,381 não essencial YHR050W/SMF2 338,1 78,16 0,231 0,200 0,109 não essencial YHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial YHR052W/ 762,6 122,48 0,161 0,154 0,240 essencial YHR057c/CYP2 435,2 24,76 0,057 0,069 0,135 não essencial YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR069W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR060W/NMA22 365,5 51,71 0,141			The state of the s	· ·			
YHR048W/ 42,7 16,50 0,386 0,174 0,100 não essencial YHR049C-a/ 361,8 115,70 0,320 0,288 0,066 não essencial YHR049W/ 508,4 94,94 0,187 0,167 0,381 não essencial YHR050w/SMF2 338,1 78,16 0,231 0,200 0,109 não essencial YHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial YHR052W/ 762,6 122,48 0,161 0,154 0,240 essencial YHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR057C/CYP2 435,2 24,76 0,057 0,069 0,135 não essencial YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR068W/MA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>		· ·					
YHR049C-a/ 361,8 115,70 0,320 0,288 0,066 não essencial não essencial não essencial não essencial não essencial yHR050w/SMF2 338,1 78,16 0,231 0,200 0,109 não essencial não essencial não essencial yHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial não essencial não essencial yHR052W/ 762,6 122,48 0,161 0,154 0,240 essencial yHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial yHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial yHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial yHR059W/ 186,9 27,04 0,145 0,132 essencial yHR069W/ 186,9 27,04 0,145 0,180 0,154 não essencial yHR060W/ 186,9 27,04 0,144 0,159 não essencial yHR060W/ 186,9 27,04 0,141 0,148 0,159 não essencial yHR060W/ 18,19 0,366 0,310 0,139 não essencial yHR060W/ 18,19 0,366 0,310 0,139 </td <td></td> <td></td> <td></td> <td></td> <td>The second secon</td> <td></td> <td>não essencial</td>					The second secon		não essencial
YHR049W/ 508,4 94,94 0,187 0,167 0,381 não essencial YHR050w/SMF2 338,1 78,16 0,231 0,200 0,109 não essencial YHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial YHR055W/ 762,6 122,48 0,161 0,154 0,240 essencial YHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR057c/CYP2 435,2 24,76 0,057 0,069 0,135 não essencial YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR060w/WA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR064C/ 752,5 114,95 0,153 0,152 <td>YHR048W/</td> <td>42,7</td> <td>16,50</td> <td>0,386</td> <td>0,174</td> <td>0,100</td> <td>não essencial</td>	YHR048W/	42,7	16,50	0,386	0,174	0,100	não essencial
YHR050w/SMF2 338,1 78,16 0,231 0,200 0,109 não essencial YHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial YHR052W/ 762,6 122,48 0,161 0,154 0,240 essencial YHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR057C/CYP2 435,2 24,76 0,057 0,069 0,135 não essencial YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR060w/VMA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR066K/SSF1 763,1 150,24 0,197 0,1	YHR049C-a/	361,8	115,70	0,320	0,288	0,066	não essencial
YHR051w/COX6 691,5 174,25 0,252 0,142 0,254 não essencial YHR052W/ 762,6 122,48 0,161 0,154 0,240 essencial YHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR057C/CYP2 435,2 24,76 0,057 0,069 0,135 não essencial YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR069W/MA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066W/SSF1 763,1 150,24 0,197 0,173	YHR049W/	508,4	94,94	0,187	0,167	0,381	não essencial
YHR052W/ 762,6 122,48 0,161 0,154 0,240 essencial YHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR057c/CYP2 435,2 24,76 0,057 0,069 0,135 não essencial YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR060w/VMA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066W/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 <t< td=""><td>YHR050w/SMF2</td><td>338,1</td><td>78,16</td><td>0,231</td><td>0,200</td><td>0,109</td><td>não essencial</td></t<>	YHR050w/SMF2	338,1	78,16	0,231	0,200	0,109	não essencial
YHR056C/ 93,2 25,22 0,270 0,267 0,152 não essencial YHR057c/CYP2 435,2 24,76 0,057 0,069 0,135 não essencial YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR060w/VMA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR066W/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 <td>YHR051w/COX6</td> <td>691,5</td> <td>174,25</td> <td>0,252</td> <td>0,142</td> <td>0,254</td> <td>não essencial</td>	YHR051w/COX6	691,5	174,25	0,252	0,142	0,254	não essencial
YHR057c/CYP2 435,2 24,76 0,057 0,069 0,135 não essencial YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR060W/VMA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066W/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR070W/ 165,0 35,59 0,216 0,288	YHR052W/	762,6	122,48	0,161	0,154	0,240	essencial
YHR058C/ 113,7 18,39 0,162 0,145 0,132 essencial YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR060w/VMA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066W/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR070W/ 175,1 31,11 0,178 0,149	YHR056C/	93,2	25,22	0,270	0,267	0,152	não essencial
YHR059W/ 185,9 27,04 0,145 0,180 0,154 não essencial YHR060w/VMA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066W/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197	YHR057c/CYP2	435,2	24,76	0,057	0,069	0,135	não essencial
YHR060w/VMA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066w/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR073W/ 117,8 16,85 0,143 0,182	YHR058C/	113,7	18,39	0,162	0,145	0,132	essencial
YHR060w/VMA22 365,5 51,71 0,141 0,148 0,159 não essencial YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066w/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR073W/ 117,8 16,85 0,143 0,182	YHR059W/	185,9	27,04	0,145	0,180	0,154	não essencial
YHR061C/ 49,6 18,19 0,366 0,310 0,139 não essencial YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066w/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR073W/ 117,8 16,85 0,143 0,182 0,12	YHR060w/VMA22						
YHR062C/ 271,2 51,21 0,189 0,211 0,096 essencial YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066W/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072W/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR074W/ 408,0 73,89 0,181 0,181 0,1	YHR061C/		-				
YHR064C/ 752,5 114,95 0,153 0,152 0,455 não essencial YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066w/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR075C/ 22,8 8,83 0,387 0,298 0				-	-	·	
YHR065C/ 234,9 40,06 0,171 0,161 0,189 essencial YHR066w/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR076W/ 185,5 30,50 0,164 0,114 0,17			-		-	•	
YHR066w/SSF1 763,1 150,24 0,197 0,173 0,189 não essencial YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145							
YHR067W/ 119,6 40,04 0,335 0,240 0,122 não essencial YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,1							
YHR068W/DYS1 640,7 122,23 0,191 0,137 0,419 essencial YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,1				·			
YHR069C/ 165,0 35,59 0,216 0,288 0,132 essencial YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		· ·	The second secon				
YHR070W/ 175,1 31,11 0,178 0,149 0,142 essencial YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		·					
YHR071W/ 688,7 130,06 0,189 0,197 0,135 não essencial YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		·	· ·				
YHR072w/ERG7 608,1 96,43 0,159 0,087 0,147 essencial YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		·	· ·				
YHR073W/ 117,8 16,85 0,143 0,182 0,129 não essencial YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		·					
YHR074W/ 408,0 73,89 0,181 0,181 0,172 essencial YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		· ·			-		
YHR075C/ 22,8 8,83 0,387 0,298 0,126 não essencial YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		·	· ·				
YHR076W/ 185,5 30,50 0,164 0,114 0,174 não essencial YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		·			-		
YHR077c/NMD2 259,0 34,47 0,133 0,145 0,150 não essencial YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial		The state of the s		-	-		
YHR078W/ 215,2 34,76 0,162 0,163 0,110 não essencial					-		
					-		
YHR079c/IRF1 43.5 8.90 0.205 0.289 0.116 não essencial							
	YHR079c/IRE1	43,5	8,90	0,205	0,289	0,116	não essencial
YHR080C/ 109,8 26,02 0,237 0,109 0,124 não essencial	YHR080C/	109,8	26,02	0,237	0,109	0,124	não essencial

YHR081W/	550,6	87,69	0,159	0,166	0,112	não essencial
YHR082c/KSP1	238,7	58,72	0,246	0,204	0,172	não essencial
YHR083W/	100,4	20,13	0,201	0,123	0,131	essencial
YHR084w/STE12	241,9	33,90	0,140	0,145	0,142	não essencial
YHR085W/	273,9	50,26	0,183	0,162	0,114	essencial
YHR086w/NAM8	55,1	24,65	0,448	0,490	0,124	não essencial
YHR087W/	24,1	14,94	0,619	0,368	0,265	não essencial
YHR088W/	366,8	60,77	0,166	0,129	0,184	essencial
YHR089c/GAR1	1140,6	328,81	0,288	0,277	0,211	essencial
YHR091c/MSR1	154,9	27,35	0,177	0,131	0,109	não essencial
YHR092c/HXT4	184,6	67,37	0,365	0,373	0,523	não essencial
YHR094c/HXT1	327,4	120,59	0,368	0,292	0,408	não essencial
YHR096c/HXT5	20,1	6,44	0,321	0,250	0,206	não essencial
YHR097C/ ex1	42,1	13,86	0,329	0,318	0,125	não essencial
YHR097C/_ex2	141,7	34,66	0,245	0,159	0,125	não essencial
YHR099W/	177,5	43,00	0,242	0,257	0,139	essencial
YHR100C/	196,9	32,68	0,166	0,064	0,169	não essencial
YHR101C/_ex1	35,7	22,42	0,628	0,164	0,128	essencial
YHR101C/ ex2	85,9	26,16	0,305	0,161	0,128	essencial
YHR103w/SBE22	159,1	34,70	0,218	0,198	0,136	não essencial
YHR104W/	197,1	104,36	0,530	0,251	0,226	não essencial
YHR105W/	25,2	7,55	0,300	0,369	0,104	não essencial
YHR106W/	105,3	24,25	0,230	0,129	0,138	não essencial
YHR107c/CDC12	253,2	50,36	0,199	0,134	0,192	essencial
YHR108W/	337,5	41,24	0,122	0,122	0,194	não essencial
YHR109W/	17,9	8,14	0,455	0,346	0,127	não essencial
YHR110W/	328,2	133,41	0,407	0,335	0,132	não essencial
YHR111W/	152,0	24,22	0,159	0,207	0,123	não essencial
YHR112C/	185,7	49,71	0,268	0,169	0,178	não essencial
YHR113W/	82,9	25,05	0,302	0,267	0,182	não essencial
YHR114W/	194,1	31,39	0,162	0,129	0,157	não essencial
YHR115C/	125,2	15,78	0,126	0,133	0,151	não essencial
YHR116W/	111,9	24,95	0,223	0,162	0,111	não essencial
YHR117W/TOM72	162,9	28,27	0,174	0,131	0,165	não essencial
YHR118C/ORC6	78,3	17,31	0,221	0,203	0,129	essencial
YHR119w/YTX1	151,2	22,31	0,147	0,142	0,146	não essencial
YHR120w/MSH1	113,6	18,36	0,162	0,191	0,119	não essencial
YHR121W/	518,2	54,59	0,105	0,086	0,168	não essencial
YHR122W/	236,8	25,12	0,106	0,100	0,127	essencial
YHR123w/EPT1_ex1	41,8	15,10	0,361	0,230	0,122	não essencial
YHR123w/EPT1_ex2	133,6	35,05	0,262	0,201	0,122	não essencial
YHR124w/NDT80	23,3	8,43	0,362	0,298	0,121	não essencial
YHR127W/	235,7	60,44	0,256	0,200	0,120	não essencial
YHR128w/FUR1	603,5	130,54	0,216	0,153	0,365	não essencial
YHR129c/ACT5	57,6	14,46	0,251	0,259	0,098	não essencial
YHR130C/	130,8	23,19	0,177	0,173	0,114	não essencial
YHR131C/	55,4	13,36	0,241	0,253	0,129	não essencial
YHR132C/	390,9	35,10	0,090	0,103	0,157	não essencial
YHR133C/	259,4	31,30	0,121	0,128	0,153	não essencial
YHR134W/	96,1	13,78	0,143	0,146	0,124	não essencial
YHR135c/YCK1	905,5	219,62	0,243	0,214	0,176	não essencial
YHR136C/	566,3	197,23	0,348	0,330	0,099	não essencial
YHR137W/	159,8	97,96	0,613	0,310	0,173	não essencial
YHR138C/	581,5	127,25	0,219	0,171	0,170	não essencial
YHR139c/SPS100	16,7	6,21	0,372	0,394	0,180	não essencial
YHR139C-a/	21,7	8,18	0,377	0,395	0,110	não essencial

YHR140W/	18,6	13,89	0,745	0,356	0,130	não essencial
YHR142W/	175,1	33,21	0,190	0,204	0,119	não essencial
YHR143W/	386,4	223,00	0,577	0,404	0,178	não essencial
YHR143W-a/RPB12	590,7	78,23	0,132	0,158	0,309	essencial
YHR144c/DCD1	228,4	34,81	0,152	0,135	0,128	não essencial
YHR146W/	714,3	157,60	0,221	0,156	0,179	não essencial
YHR147c/MRPL6	240,6	72,24	0,300	0,241	0,122	não essencial
YHR148W/	256,9	66,66	0,259	0,215	0,170	essencial
YHR150W/	72,9	10,55	0,145	0,143	0,101	não essencial
YHR151C/	74,4	29,78	0,401	0,273	0,120	não essencial
YHR152w/SPO12	999,9	285,34	0,285	0,165	0,118	não essencial
YHR153c/SPO16	43,9	33,63	0,765	0,691	0,113	não essencial
YHR154W/	161,3	84,22	0,522	0,436	0,132	não essencial
YHR155W/	67,7	11,51	0,170	0,189	0,141	não essencial
YHR156C/	170,4	36,77	0,176	0,135	0,135	não essencial
YHR157w/REC104	38,1	12,80	0,336	0,162	0,133	não essencial
YHR158C/	171,1	38,11	0,330	0,102	0,073	não essencial
YHR159W/	34,8	12,26	0,223	0,195	0,142	não essencial
YHR160C/	34,0	12,20	0,352	0,295	0,095	não essencial
YHR161C/	211,4	35,74		0,243		não essencial
YHR162W/			0,169		0,119	
	1402,8	237,15	0,169	0,176	0,146	não essencial
YHR163w/SOL3	302,9	36,35	0,120	0,113	0,183	não essencial
YHR164c/DNA2	56,6	11,75	0,207	0,176	0,120	essencial
YHR165c/PRP8	197,4	35,57	0,180	0,178	0,148	essencial
YHR166c/CDC23	47,8	9,71	0,203	0,208	0,122	essencial
YHR167W/	208,1	33,29	0,160	0,186	0,118	não essencial
YHR168W/	74,9	13,28	0,177	0,154	0,113	não essencial
YHR169W/	198,1	44,54	0,225	0,206	0,139	essencial
YHR170w/NMD3	301,7	56,29	0,187	0,155	0,244	essencial
YHR171W/	42,8	11,13	0,260	0,220	0,148	não essencial
YHR172W/	79,1	31,24	0,395	0,243	0,134	essencial
YHR174w/ENO2	1181,2	383,77	0,325	0,255	0,892	essencial
YHR176W/	48,9	11,77	0,241	0,167	0,142	não essencial
YHR177W/	52,9	18,45	0,349	0,427	0,117	não essencial
YHR178W/STB5	99,4	25,65	0,258	0,244	0,130	não essencial
YHR179w/OYE2	565,6	54,15	0,096	0,108	0,415	não essencial
YHR180W/	64,4	25,89	0,402	0,517	0,117	não essencial
YHR181W/	293,8	60,16	0,205	0,122	0,122	não essencial
YHR182W/	142,4	35,52	0,249	0,160	0,134	não essencial
YHR183w/GND1	893,6	150,10	0,168	0,131	0,623	não essencial
YHR184W/	93,6	16,89	0,181	0,102	0,145	não essencial
YHR185C/	6,6	3,79	0,570	0,988	0,131	não essencial
YHR186C/	82,0	23,06	0,281	0,274	0,132	essencial
YHR187W/	133,7	24,85	0,186	0,230	0,122	não essencial
YHR188C/	348,1	48,75	0,140	0,121	0,140	essencial
YHR190w/ERG9	743,9	156,77	0,211	0,137	0,297	essencial
YHR191C/CTF8	120,8	28,68	0,238	0,295	0,069	não essencial
YHR193c/EGD2	2437,9	565,75	0,232	0,230	0,578	não essencial
YHR194W/	116,7	19,52	0,167	0,149	0,108	não essencial
YHR195W/	375,5	48,80	0,130	0,126	0,128	não essencial
YHR196W/	343,9	41,07	0,119	0,129	0,171	essencial
YHR197W/	280,2	48,58	0,173	0,121	0,173	essencial
YHR198C/	77,9	12,53	0,161	0,154	0,126	não essencial
YHR199C/	180,3	36,61	0,203	0,188	0,119	não essencial
YHR200w/SUN1	411,8	77,21	0,187	0,171	0,108	não essencial
YHR201c/PPX1	249,3	39,41	0,158	0,188	0,141	não essencial

YHR202W/	97,6	31,24	0,320	0,159	0,140	não essencial
YHR203c/RPS7A_ex1_f	1706,2	504,87	0,296	0,284	0,709	não essencial
YHR204W/	228,8	58,43	0,255	0,152	0,137	não essencial
YHR205w/SCH9	354,7	81,57	0,230	0,159	0,170	não essencial
YHR206w/SKN7	170,0	31,49	0,185	0,169	0,141	não essencial
YHR207C/	105,3	18,50	0,176	0,187	0,144	não essencial
YHR208W/TWT1	1385,2	300,34	0,217	0,181	0,348	não essencial
YHR209W/	147,7	37,72	0,255	0,217	0,123	não essencial
YHR210C/	51,3	15,07	0,294	0,178	0,153	não essencial
YHR216w/PUR5	181,1	30,61	0,169	0,173	0,305	não essencial
YIL001W/	133,4	15,52	0,116	0,109	0,119	não essencial
YIL002C/SJH1	58,3	12,40	0,213	0,203	0,116	não essencial
YIL003W/	106,6	29,50	0,277	0,341	0,107	essencial
YIL004C/BET1 ex1	224,3	48,71	0,217	0,286	0,084	essencial
YIL005W/	174,2	27,40	0,157	0,124	0,147	não essencial
YIL006W/	35,8	5,15	0,144	0,143	0,099	não essencial
YIL007C/	111,7	30,02	0,269	0,187	0,122	não essencial
YIL008W/	589,1	98,59	0,167	0,184	0,205	não essencial
YIL009W/FAA3	184,0	85,03	0,462	0,347	0,209	não essencial
YIL010W/	113,4	24,73	0,218	0,199	0,144	não essencial
YIL011W/	529,8	177,42	0,335	0,202	0,503	não essencial
YIL012W/	6,5	2,92	0,447	0,511	0,103	não essencial
YIL013C/PDR11	34,0	14,68	0,432	0,227	0,191	não essencial
YIL014W/	232,4	41,64	0,179	0,124	0,140	não essencial
YIL015C-a/	41,5	30,86	0,744	0,432	0,120	não essencial
YIL015W/BAR1	60,6	24,79	0,409	0,281	0,122	não essencial
YIL016W/	216,3	61,30	0,283	0,264	0,154	não essencial
YIL017W/	22,1	4,23	0,191	0,245	0,113	não essencial
YIL018W/RPL5A_ex1_f	1571,9	527,40	0,336	0,283	0,764	não essencial
YIL018W/RPL5A_ex1_i	2307,1	574,32	0,249	0,208	0,764	não essencial
YIL018W/RPL5A_ex1_r_i	2529,0	620,30	0,245	0,213	0,764	não essencial
YIL019W/	160,2	54,59	0,341	0,266	0,146	essencial
YIL020C/	159,6	30,05	0,188	0,144	0,161	não essencial
YIL021W/RPB3	451,2	85,12	0,189	0,118	0,167	essencial
YIL022W/TIM44	187,6	43,92	0,234	0,263	0,140	essencial
YIL023C/	203,2	35,06	0,173	0,125	0,081	não essencial
YIL024C/	153,3	31,85	0,208	0,118	0,135	não essencial
YIL025C/	20,4	25,56	1,256	1,039	0,129	não essencial
YIL026C/	273,9	135,88	0,496	0,363	0,169	essencial
YIL027C/	251,6	63,64	0,253	0,283	0,117	não essencial
YIL028W/	9,8	2,68	0,275	0,236	0,104	não essencial
YIL029C/	12,5	2,83	0,227	0,311	0,104	não essencial
YIL030C/SSM4	251,0	44,85	0,179	0,174	0,169	não essencial
YIL031W/SMT4	117,5	22,71	0,193	0,146	0,147	essencial
YIL032C/	80,1	21,47	0,268	0,267	0,074	não essencial
YIL033C/SRA1	430,5	56,10	0,130	0,110	0,178	não essencial
YIL034C/CAP2	247,6	51,48	0,208	0,148	0,179	não essencial
YIL035C/CKA1	434,4	57,50	0,132	0,154	0,178	não essencial
YIL036W/	163,6	23,35	0,143	0,114	0,145	não essencial
YIL037C/	7,2	2,56	0,354	0,433	0,104	não essencial
YIL038C/NOT3	391,1	52,14	0,133	0,121	0,144	não essencial
YIL039W/	596,6	57,08	0,096	0,123	0,211	não essencial
YIL040W/	394,6	62,01	0,157	0,164	0,197	não essencial
YIL041W/	350,1	72,92	0,208	0,217	0,239	não essencial
YIL042C/	31,1	7,54	0,242	0,279	0,097	não essencial
YIL043C/CBR1	748,1	104,80	0,140	0,115	0,170	não essencial

YIL044C/	226,4	28,81	0,127	0,131	0,146	não essencial
YIL045W/PIG2	61,6	10,06	0,163	0,171	0,136	não essencial
YIL046W/MET30	175,9	44,91	0,255	0,166	0,108	essencial
YIL047C/SYG1	409,4	55,42	0,135	0,108	0,147	não essencial
YIL048W/	124,6	23,97	0,192	0,125	0,164	essencial
YIL049W/	148,5	26,96	0,181	0,152	0,104	não essencial
YIL050W/	116,4	35,85	0,308	0,205	0,131	não essencial
YIL051C/	859,4	147,61	0,172	0,130	0,318	essencial
YIL052C/ ex1	1352,0	455,34	0,337	0,267	0,781	não essencial
YIL053W/RHR2	1189,5	375,25	0,315	0,215	0,604	não essencial
YIL054W/	7,9	3,24	0,411	0,488	0,111	não essencial
YIL055C/	72,9	17,20	0,236	0,191	0,111	não essencial
YIL057C/	13,6	10,60	0,777	1,527	0,208	não essencial
YIL058W/	6,7	2,17	0,324	0,263	0,145	não essencial
YIL059C/	10,1	3,10	0,306	0,472	0,095	não essencial
YIL060W/	16,4	4,11	0,250	0,280	0,092	não essencial
YIL061C/SNP1	83,4	12,35	0,148	0,168	0,052	essencial
YIL062C/	445,1	101,94	0,148	0,108	0,132	essencial
YIL063C/YRB2	620,5	91,40	0,229	0,173	0,127	essencial
YIL064W/	382,1	96,62	0,147	0,193	0,170	não essencial
YIL065C/	215,4	42,38	0,233	0,191	0,119	
YIL066C/RNR3	64,1	14,59		0,189	0,101	não essencial
YIL067C/	59,1	11,18	0,228 0,189	0,138	0,290	não essencial
						não essencial
YIL068C/SEC6	103,4	25,46	0,246	0,252	0,139	essencial
YIL069C/RPS24EB_ex1_f	1278,5	430,32	0,337	0,311	0,756	não essencial
YIL069C/RPS24EB_ex1_i	1199,9	240,23	0,200	0,265	0,756	não essencial
YIL070C/	364,8	65,17	0,179	0,120	0,204	não essencial
YIL071W/	32,1	4,73	0,147	0,142	0,109	não essencial
YIL072W/HOP1	29,2	10,29	0,353	0,303	0,129	não essencial
YIL073C/	16,9	7,22	0,426	0,596	0,117	não essencial
YIL074C/	216,3	53,42	0,247	0,191	0,237	não essencial
YIL075C/SEN3	646,4	126,72	0,196	0,105	0,176	essencial
YIL076W/	850,4	114,95	0,135	0,116	0,208	não essencial
YIL077C/	57,6	15,02	0,261	0,235	0,133	não essencial
YIL078W/THS1	916,6	125,36	0,137	0,113	0,408	essencial
YIL079C/	212,2	36,98	0,174	0,095	0,126	não essencial
YIL083C/	378,1	46,26	0,122	0,130	0,167	essencial
YIL084C/SDS3	68,0	12,38	0,182	0,182	0,175	não essencial
YIL085C/	321,4	46,95	0,146	0,136	0,169	não essencial
YIL086C/	67,1	22,48	0,335	0,306	0,143	não essencial
YIL087C/	81,2	21,99	0,271	0,186	0,108	não essencial
YIL088C/	210,0	60,22	0,287	0,137	0,119	não essencial
YIL089W/	43,4	17,18	0,396	0,279	0,116	não essencial
YIL090W/	120,1	19,78	0,165	0,150	0,125	não essencial
YIL091C/	271,5	63,01	0,232	0,211	0,168	essencial
YIL092W/	80,5	24,73	0,307	0,255	0,105	não essencial
YIL093C/	281,7	72,83	0,259	0,265	0,124	não essencial
YIL094C/	517,5	86,40	0,167	0,126	0,314	não essencial
YIL095W/PRK1	129,9	16,37	0,126	0,136	0,138	não essencial
YIL096C/	186,2	45,42	0,244	0,159	0,136	não essencial
YIL097W/	90,2	24,08	0,267	0,206	0,138	não essencial
YIL098C/	243,6	59,39	0,244	0,158	0,133	não essencial
YIL099W/SGA1	141,1	33,26	0,236	0,187	0,114	não essencial
YIL100W/	75,2	56,79	0,755	0,355	0,068	não essencial
YIL101C/	80,9	13,44	0,166	0,148	0,133	não essencial
YIL103W/	170,7	28,24	0,165	0,141	0,189	não essencial

YIL104C/	166,8	40,59	0,243	0,198	0,136	essencial
YIL105C/	59,5	15,22	0,256	0,318	0,131	não essencial
YIL106W/MOB1	152,6	67,19	0,440	0,285	0,105	essencial
YIL107C/PFK26	356,2	107,00	0,300	0,189	0,161	não essencial
YIL108W/	184,1	33,00	0,179	0,151	0,141	não essencial
YIL109C/	456,8	53,65	0,117	0,133	0,212	essencial
YIL110W/	168,8	30,20	0,179	0,221	0,153	não essencial
YIL111W/COX5B ex1	356,3	107,11	0,301	0,210	0,104	não essencial
YIL112W/	238,1	42,04	0,177	0,152	0,139	não essencial
YIL113W/	40,8	11,42	0,280	0,163	0,088	não essencial
YIL114C/	172,1	35,77	0,208	0,144	0,130	não essencial
YIL115C/NUP159	226,6	35,14	0,155	0,128	0,143	essencial
YIL116W/HIS5	323,1	71,96	0,223	0,100	0,209	não essencial
YIL117C/	201,8	49,94	0,247	0,177	0,109	não essencial
YIL118W/RHO3	535,8	107,39	0,200	0,193	0,182	essencial
YIL119C/RPI1	332,2	143,39	0,432	0,346	0,148	não essencial
YIL120W/	52,6	16,83	0,320	0,236	0,112	não essencial
YIL121W/	49,5	13,79	0,279	0,292	0,109	não essencial
YIL123W/	490,9	132,47	0,270	0,210	0,359	não essencial
YIL124W/	252,3	78,92	0,313	0,230	0,184	não essencial
YIL125W/KGD1	207,6	45,97	0,221	0,228	0,233	não essencial
YIL126W/STH1	149,9	39,97	0,267	0,201	0,186	essencial
YIL128W/	164,2	27,84	0,169	0,210	0,145	não essencial
YIL129C/	276,4	63,92	0,231	0,151	0,128	essencial
YIL130W/	139,3	24,72	0,177	0,157	0,146	não essencial
YIL132C/	45,6	17,59	0,386	0,306	0,123	não essencial
YIL133C/RPL13_ex1	1165,2	285,89	0,245	0,218	0,611	não essencial
YIL134W/FLX1	49,6	6,57	0,132	0,130	0,108	não essencial
YIL135C/	173,0	30,25	0,175	0,162	0,127	não essencial
YIL137C/	184,8	22,50	0,122	0,110	0,173	não essencial
YIL138C/TPM2	431,3	93,45	0,217	0,213	0,246	não essencial
YIL139C/REV7	94,4	23,26	0,247	0,187	0,166	não essencial
YIL140W/SRO4	175,5	106,01	0,604	0,488	0,156	não essencial
YIL141W/	25,2	20,15	0,800	1,442	0,108	não essencial
YIL142W/CCT2	655,8	60,06	0,092	0,094	0,193	essencial
YIL143C/SSL2	266,8	41,75	0,157	0,106	0,183	essencial
YIL144W/	119,7	36,47	0,305	0,312	0,142	essencial
YIL145C/	243,5	54,57	0,224	0,288	0,126	não essencial
YIL146C/	48,5	12,48	0,257	0,291	0,127	não essencial
YIL147C/SLN1	271,1	40,87	0,151	0,137	0,134	essencial
YIL148W/UBI1_ex1_f	1272,0	452,44	0,356	0,312	0,742	não essencial
YIL148W/UBI1_ex1_i	1574,8	584,64	0,371	0,339	0,742	não essencial
YIL149C/	275,3	35,10	0,127	0,109	0,155	não essencial
YIL150C/DNA43	35,3	11,54	0,327	0,311	0,117	essencial
YIL152W/	236,9	49,46	0,209	0,192	0,089	não essencial
YIL153W/	76,1	47,56	0,625	0,197	0,091	não essencial
YIL154C/IMP2'	285,8	54,84	0,192	0,123	0,109	não essencial
YIL155C/GUT2	60,8	22,14	0,364	0,311	0,185	não essencial
YIL156W/UBP7	62,9	13,25	0,210	0,234	0,125	não essencial
YIL157C/	210,5	43,97	0,209	0,176	0,193	não essencial
YIL159W/	100,1	31,76	0,317	0,220	0,143	não essencial
YIL160C/POT1	14,1	4,04	0,287	0,169	0,144	não essencial
YIL161W/	337,2	69,25	0,205	0,188	0,142	não essencial
YIL162W/SUC2	111,7	33,82	0,303	0,228	0,309	não essencial
YIL163C/	35,3	10,56	0,299	0,384	0,113	não essencial
YIL164C/	58,3	13,48	0,231	0,215	0,128	não essencial

YIL165C/	137,2	23,18	0,169	0,130	0,147	não essencial
YIL166C/	21,4	7,27	0,340	0,320	0,133	não essencial
YIL167W/	85,6	29,91	0,349	0,243	0,131	não essencial
YIL168W/SDL1	22,8	9,03	0,396	0,313	0,117	não essencial
YIL170W/HXT12 i	25,7	11,76	0,458	0,577	0,161	não essencial
YIL170W/HXT12 r	60,2	16,36	0,272	0,260	0,161	não essencial
YIL171W/HXT12 f	83,6	33,51	0,401	0,148	0,192	não essencial
YIL171W/HXT12_i	77,2	31,09	0,403	0,179	0,192	não essencial
YIL173W/_f	124,5	19,64	0,158	0,123	0,159	não essencial
YIR001C/	141,0	22,41	0,159	0,180	0,158	não essencial
YIR002C/	193,1	21,76	0,113	0,112	0,152	não essencial
YIR003W/	98,6	13,66	0,139	0,111	0,133	não essencial
YIR004W/	423,1	41,23	0,097	0,104	0,145	não essencial
YIR005W/	205,8	36,41	0,177	0,167	0,120	não essencial
YIR006C/PAN1	160,5	37,09	0,177	0,107	0,120	essencial
YIR007W/	59,9	14,88	0,231	0,241	0,130	
						não essencial
YIR008C/PRI1	186,2	32,53	0,175	0,148	0,164	essencial
YIR009W/	81,0	22,41	0,277	0,306	0,092	não essencial
YIR010W/	210,2	57,76	0,275	0,205	0,113	essencial
YIR011C/STS1	584,6	53,29	0,091	0,085	0,118	essencial
YIR012W/	519,8	53,83	0,104	0,132	0,157	essencial
YIR014W/	31,8	9,27	0,292	0,226	0,063	não essencial
YIR015W/	45,2	14,44	0,320	0,306	0,093	essencial
YIR016W/	192,2	18,12	0,094	0,098	0,090	não essencial
YIR017C/MET28	90,2	54,79	0,608	0,385	0,085	não essencial
YIR018W/	42,6	16,58	0,389	0,389	0,126	não essencial
YIR019C/STA1	16,7	7,79	0,466	0,610	0,299	não essencial
YIR020C/	21,6	7,72	0,358	0,323	0,086	não essencial
YIR021W/MRS1	100,8	22,76	0,226	0,246	0,121	não essencial
YIR022W/SEC11	331,6	40,01	0,121	0,109	0,165	essencial
YIR023W/DAL81	138,4	25,68	0,186	0,112	0,125	não essencial
YIR024C/	134,2	27,72	0,207	0,217	0,139	não essencial
YIR025W/	49,1	10,03	0,204	0,194	0,096	não essencial
YIR026C/YVH1	311,3	75,93	0,244	0,229	0,164	não essencial
YIR028W/DAL4	22,0	6,42	0,292	0,283	0,163	não essencial
YIR029W/DAL2	40,1	14,03	0,350	0,427	0,152	não essencial
YIR030C/DCG1	75,4	12,26	0,163	0,143	0,111	não essencial
YIR031C/DAL7	39,9	10,30	0,258	0,297	0,201	não essencial
YIR032C/DAL3	118,8	44,53	0,375	0,368	0,095	não essencial
YIR033W/	176,5	77,98	0,442	0,236	0,150	não essencial
YIR034C/LYS1	417,9	74,96	0,179	0,141	0,218	não essencial
YIR035C/	412,6	50,32	0,122	0,105	0,225	não essencial
YIR036C/	100,1	28,39	0,284	0,203	0,106	não essencial
YIR037W/HYR1	525,4	97,83	0,186	0,137	0,229	não essencial
YIR038C/	163,5	45,68	0,279	0,203	0,234	não essencial
YIR039C/	57,8	19,99	0,346	0,245	0,130	não essencial
YIR042C/	36,6	10,16	0,277	0,252	0,123	não essencial
YIR043C/ i	124,0	34,03	0,274	0,245	0,145	não essencial
YIR043C/ r	117,4	24,50	0,209	0,181	0,145	não essencial
YIR044C/ f	397,1	92,23	0,232	0,120	0,143	não essencial
YJL001W/PRE3 ex1	445,8	108,88	0,232	0,120	0,130	essencial
YJL001W/PRE3_ex1	357,5	99,87	0,244	0,219	0,172	essencial
YJL002C/OST1	397,8	72,54	0,279	0,243	0,172	essencial
				-		
YJL003W/	67,8	19,48	0,287	0,292	0,102	não essencial
YJL004C/	285,6	27,02	0,095	0,087	0,095	não essencial
YJL005W/CYR1	86,9	22,77	0,262	0,231	0,125	essencial

YJL006C/CTK2	262,2	39,03	0,149	0,134	0,113	não essencial
YJL007C/	4,2	2,56	0,612	0,896	0,128	não essencial
YJL008C/CCT8	395,3	81,44	0,206	0,172	0,203	essencial
YJL009W/	445,2	74,32	0,167	0,196	0,160	essencial
YJL010C/	184,4	53,31	0,289	0,334	0,170	essencial
YJL011C/	235,6	39,33	0,167	0,151	0,120	essencial
YJL013C/MAD3	78,0	22,29	0,286	0,256	0,128	não essencial
YJL014W/CCT3	365,0	63,21	0,173	0,170	0,228	essencial
YJL015C/	92,1	23,28	0,253	0,297	0,123	essencial
YJL016W/	255,5	50,73	0,199	0,196	0,140	não essencial
YJL017W/	57,2	21,67	0,379	0,247	0,110	não essencial
YJL018W/	98,5	32,48	0,330	0,299		essencial
YJL019W/	61,3	21,05	0,343	0,269	0,126	essencial
YJL020C/	81,5	22,45	0,275	0,287	0,125	não essencial
YJL022W/	36,5	12,05	0,273	0,257	0,133	não essencial
YJL023c/PET130	82,2	26,13	0,330	0,363	0,097	não essencial
	183,2					
YJL024c/APS3_ex1		22,59	0,123	0,109	0,140	não essencial
YJL025W/RRN7	87,1	25,16	0,289	0,213	0,127	essencial
YJL026W/RNR2	1004,1	152,88	0,152	0,112	0,501	essencial
YJL028W/	7,4	5,35	0,722	0,582	0,072	não essencial
YJL029C/	229,2	42,70	0,186	0,160	0,131	não essencial
YJL030W/MAD2	472,2	62,45	0,132	0,124	0,115	não essencial
YJL031C/BET4	238,4	45,01	0,189	0,199	0,161	essencial
YJL032W/	170,5	33,57	0,197	0,153	0,152	essencial
YJL033W/	315,6	85,98	0,272	0,240	0,200	essencial
YJL034W/KAR2	712,6	178,63	0,251	0,152	0,440	essencial
YJL035C/	63,5	22,94	0,361	0,271	0,122	essencial
YJL036W/	108,6	23,87	0,220	0,259	0,147	não essencial
YJL037W/	107,1	65,99	0,616	0,159	0,113	não essencial
YJL038C/	52,9	40,10	0,758	0,167	0,100	não essencial
YJL039C/	120,9	27,76	0,230	0,298	0,148	essencial
YJL041W/NSP1_ex1	273,7	54,67	0,200	0,107	0,165	essencial
YJL042W/MHP1	246,1	51,70	0,210	0,152	0,152	não essencial
YJL043W/	10,9	5,67	0,521	0,953	0,088	não essencial
YJL044C/GYP6	150,9	39,24	0,260	0,216	0,164	não essencial
YJL045W/	36,2	21,37	0,590	0,223	0,163	não essencial
YJL046W/	37,7	11,75	0,312	0,372	0,115	não essencial
YJL047C/	61,8	14,16	0,229	0,184	0,123	não essencial
YJL048C/	216,6	53,78	0,248	0,157	0,136	não essencial
YJL049W/	118,9	28,19	0,237	0,250	0,158	não essencial
YJL050W/	334,5	105,85	0,316	0,386	0,204	essencial
YJL051W/	223,0	91,71	0,411	0,279	0,121	não essencial
YJL052W/TDH1	364,0	122,12	0,335	0,146	0,856	não essencial
YJL053W/PEP8	196,8	21,57	0,110	0,128	0,136	não essencial
YJL054W/	197,7	37,40	0,189	0,189	0,150	essencial
YJL055W/	376,8	78,87	0,209	0,168	0,143	não essencial
YJL056C/	49,2	7,31	0,149	0,168	0,161	não essencial
YJL057C/	116,0	24,03	0,207	0,140	0,136	não essencial
YJL058C/	77,1	20,45	0,265	0,205	0,124	não essencial
YJL059w/YHC3	59,8	13,41	0,224	0,240	0,123	não essencial
YJL060W/	147,2	46,40	0,315	0,228	0,213	não essencial
YJL061W/NUP82	372,6	60,59	0,163	0,135	0,155	essencial
YJL062W/	78,2	18,33	0,234	0,755	0,116	não essencial
YJL063C/MRPL8	175,0	63,50	0,254	0,234	0,110	não essencial
YJL064W/	158,6	27,50	0,303	0,313	0,000	não essencial
YJL065C/	203,6	27,89	0,173	0,176	0,122	não essencial
1320030/	203,0	21,09	0,137	0,130	0,110	Hau essellulai

YJL066C/	120,1	49,52	0,412	0,239	0,157	não essencial
YJL067W/	176,1	52,90	0,300	0,157	0,124	não essencial
YJL068C/	154,1	47,50	0,308	0,215	0,199	não essencial
YJL069C/	279,5	47,77	0,171	0,202	0,165	essencial
YJL070C/	21,8	7,47	0,343	0,412	0,140	não essencial
YJL071W/ARG2	160,0	16,32	0,102	0,136	0,118	não essencial
YJL072C/	147,4	25,83	0,175	0,187	0,120	essencial
YJL073W/	121,1	38,69	0,320	0,267	0,137	não essencial
YJL074C/SMC3	96,4	53,54	0,555	0,429	0,181	essencial
YJL075C/	283,2	72,54	0,256	0,282	0,115	não essencial
YJL076W/	151,1	49,79	0,329	0,374	0,152	essencial
YJL077C/	150,2	45,52	0,303	0,351	0,075	não essencial
YJL078C/PRY3	100,5	41,71	0,415	0,248	0,147	não essencial
YJL079C/PRY1	211,9	127,54	0,602	0,458	0,297	não essencial
YJL080C/SCP160	516,8	81,80	0,158	0,105	0,330	não essencial
YJL081C/ACT3	131,9	18,78	0,142	0,198	0,132	essencial
YJL082W/	69,2	32,53	0,470	0,329	0,173	não essencial
YJL083W/	49,9	6,61	0,470	0,329	0,094	não essencial
YJL084C/	70,8	16,15	0,132	0,130	0,094	não essencial
YJL085W/	122,5	24,39	0,228	0,272	0,156	essencial
YJL087C/TRL1	95,9	24,39	0,199	0,239	0,150	essencial
YJL088W/ARG3						
	219,1	79,41	0,362	0,354	0,201	não essencial
YJL090C/	189,6	58,00	0,306	0,484	0,138	essencial
YJL091C/	217,9	77,92	0,358	0,365	0,132	essencial
YJL092W/HPR5	350,9	133,88	0,382	0,235	0,128	não essencial
YJL093C/TOK1	298,6	48,09	0,161	0,113	0,123	não essencial
YJL094C/	172,1	38,92	0,226	0,172	0,132	não essencial
YJL095W/BCK1	134,2	27,86	0,208	0,258	0,121	não essencial
YJL096W/	412,2	83,13	0,202	0,209	0,161	não essencial
YJL097W/	828,1	162,43	0,196	0,197	0,180	essencial
YJL098W/	626,4	172,61	0,276	0,243	0,146	não essencial
YJL099W/CHS6	140,0	47,53	0,340	0,313	0,118	não essencial
YJL100W/	461,4	94,63	0,205	0,182	0,109	não essencial
YJL101C/GSH1	143,4	42,20	0,294	0,295	0,136	não essencial
YJL102W/MEF2	164,6	39,71	0,241	0,261	0,128	não essencial
YJL103C/	53,9	19,11	0,355	0,486	0,119	não essencial
YJL104W/	645,9	108,59	0,168	0,176	0,092	essencial
YJL105W/	199,1	77,25	0,388	0,254	0,102	não essencial
YJL108C/	73,4	22,21	0,303	0,281	0,172	não essencial
YJL109C/	772,9	164,59	0,213	0,199	0,170	essencial
YJL110C/GZF3	279,1	46,94	0,168	0,133	0,103	não essencial
YJL111W/CCT7	1047,9	236,49	0,226	0,248	0,192	essencial
YJL112W/	124,1	26,62	0,215	0,228	0,121	não essencial
YJL115W/ASF1	197,2	146,25	0,741	0,787	0,135	não essencial
YJL116C/NCA3	74,9	61,24	0,817	0,422	0,250	não essencial
YJL117W/PHO86	759,2	149,67	0,197	0,230	0,191	não essencial
YJL118W/	213,1	64,50	0,303	0,208	0,094	não essencial
YJL119C/	230,7	47,84	0,207	0,137	0,125	não essencial
YJL120W/	120,5	19,76	0,164	0,142	0,135	não essencial
YJL121C/POS18	501,7	112,27	0,224	0,235	0,297	não essencial
YJL122W/	1265,5	340,20	0,269	0,200	0,237	não essencial
YJL123C/	893,8	128,58	0,209	0,200	0,213	não essencial
YJL124C/	760,1	138,65	0,144	0,122	0,150	não essencial
YJL124C/ YJL125C/GCD14	· ·	·	-	-	· ·	
	347,9	80,86	0,232	0,191	0,145	essencial
YJL126W/	155,8	35,33	0,227	0,201	0,115	não essencial
YJL128C/PBS2	256,8	66,94	0,261	0,432	0,142	não essencial

YJL129C/TRK1	273,5	65,24	0,239	0,295	0,140	não essencial
YJL130C/URA2	1385,5	239,28	0,173	0,155	0,286	não essencial
YJL131C/	186,2	51,92	0,279	0,170	0,118	não essencial
YJL132W/	220,5	60,92	0,276	0,256	0,119	não essencial
YJL133W/MRS3	601,9	81,77	0,136	0,127	0,083	não essencial
YJL134W/	801,4	155,18	0,194	0,164	0,113	não essencial
YJL136C/RPS25B_ex1	2859,4	932,77	0,326	0,391	0,693	não essencial
YJL137c/GLG2	164,4	47,35	0,288	0,266	0,140	não essencial
YJL138C/TIF2 f	1849,6	407,24	0,220	0,250	0,751	não essencial
YJL139C/YUR1	208,1	29,46	0,142	0,094	0,138	não essencial
YJL140W/RPB4	904,7	169,85	0,188	0,211	0,137	não essencial
YJL141C/YAK1	159,9	50,45	0,315	0,290	0,125	não essencial
YJL142C/	265,3	114,81	0,433	0,306	0,062	não essencial
YJL143W/TIM17	512,1	106,79	0,209	0,216	0,176	essencial
YJL144W/	85,2	66,81	0,784	0,340	0,066	não essencial
YJL145W/	1193,3	232,06	0,194	0,168	0,225	não essencial
YJL146W/IDS2	123,1	29,53	0,240	0,239	0,106	não essencial
YJL147C/	55,1	11,19	0,203	0,264	0,129	não essencial
YJL148W/	1539,9	302,02	0,196	0,206	0,197	não essencial
YJL149W/	275,4	39,22	0,142	0,169	0,155	não essencial
YJL150W/	10,4	5,36	0,518	0,574	0,094	não essencial
YJL151C/	2434,2	443,52	0,182	0,248	0,160	não essencial
YJL152W/	1183,0	265,00	0,224	0,271	0,072	não essencial
YJL155C/FBP26	269,8	90,76	0,336	0,358	0,138	não essencial
YJL156C/	120,1	24,16	0,201	0,177	0,128	essencial
YJL157C/FAR1	671,8	458,70	0,683	0,374	0,133	não essencial
YJL158C/	2871,1	836,96	0,292	0,347	0,589	não essencial
YJL159W/	1700,0	573,38	0,337	0,241	0,613	não essencial
YJL160C/	26,6	7,48	0,281	0,281	0,135	não essencial
YJL161W/	97,4	19,28	0,198	0,223	0,087	não essencial
YJL162C/	239,1	55,79	0,233	0,200	0,139	não essencial
YJL163C/	63,6	22,55	0,354	0,246	0,084	não essencial
YJL164C/SRA3	339,8	135,18	0,398	0,256	0,178	não essencial
YJL165C/HAL5	170,7	36,71	0,215	0,247	0,133	não essencial
YJL166W/QCR8	1029,4	266,77	0,259	0,451	0,211	não essencial
YJL167W/ERG20	1630,2	395,50	0,243	0,226	0,373	essencial
YJL168C/	251,1	68,63	0,273	0,274	0,138	não essencial
YJL169W/EZL1	156,2	41,83	0,268	0,213	0,148	não essencial
YJL171C/	351,5	89,87	0,256	0,267	0,220	não essencial
YJL172W/CPS1	189,1	70,54	0,373	0,213	0,250	não essencial
YJL173C/RFA3	1081,8	337,42	0,312	0,272	0,135	essencial
YJL174W/KRE9	816,8	101,52	0,124	0,108	0,163	essencial
YJL175W/	21,2	5,41	0,256	0,327	0,119	não essencial
YJL176C/SWI3	252,4	63,64	0,252	0,208	0,148	não essencial
YJL177W/_ex1	1972,8	555,30	0,281	0,343	0,680	não essencial
YJL177W/_ex2	4564,0	1654,18	0,362	0,478	0,680	não essencial
YJL179W/	963,2	264,43	0,275	0,529	0,154	não essencial
YJL180C/ATP12	430,2	104,69	0,243	0,217	0,118	não essencial
YJL181W/	223,4	96,55	0,432	0,386	0,109	não essencial
YJL182C/	50,4	10,91	0,217	0,214	0,079	não essencial
YJL183W/	542,2	115,45	0,213	0,169	0,176	não essencial
YJL184W/	700,2	122,23	0,175	0,206	0,083	não essencial
YJL185C/	77,1	22,19	0,288	0,191	0,112	não essencial
YJL186W/	509,2	90,25	0,177	0,157	0,160	não essencial
YJL187C/SWE1	140,5	73,54	0,523	0,417	0,134	não essencial
YJL188C/	675,5	309,64	0,458	0,390	0,152	não essencial

YJL189W/RPL46_ex1	5689,2	2244,08	0,394	0,521	0,915	não essencial
YJL190C/RPS24A	3720,6	1403,54	0,377	0,425	0,812	não essencial
YJL191W/CRY2_ex1	2047,2	490,38	0,240	0,310	0,590	não essencial
YJL192C/	976,9	181,09	0,185	0,267	0,160	não essencial
YJL193W/	183,6	51,52	0,281	0,421	0,101	não essencial
YJL194W/CDC6	150,4	55,76	0,371	0,458	0,128	essencial
YJL195C/	35,6	13,58	0,382	0,610	0,106	essencial
YJL196C/	474,2	156,61	0,330	0,219	0,134	não essencial
YJL197w/UBP12	279,9	38,34	0,137	0,141	0,142	não essencial
YJL198W/	483,2	100,42	0,208	0,155	0,176	não essencial
YJL199C/	29,8	6,75	0,227	0,297	0,094	não essencial
YJL200C/	951,1	163,39	0,172	0,148	0,219	não essencial
YJL201W/	477,3	137,31	0,288	0,326	0,150	não essencial
YJL202C/	263,8	51,13	0,194	0,254	0,115	essencial
YJL203W/PRP21	206,5	43,59	0,211	0,182	0,140	essencial
YJL206C/	171,2	48,74	0,285	0,102	0,146	não essencial
YJL207C/	484,0	79,95	0,265	0,249	0,140	
YJL208C/NUC1	378,2	79,95 46,49	0,103	0,149	0,135	não essencial não essencial
YJL208C/NOC1	198,9	29,61	0,123	0,104		
YJL210W/PAS5		-	-		0,148	não essencial não essencial
	99,2	33,63	0,339	0,322	0,092	
YJL211C/	34,1	15,72	0,461	0,575	0,097	não essencial
YJL212C/	189,5	53,22	0,281	0,361	0,181	não essencial
YJL213W/	57,5	23,73	0,413	0,368	0,142	não essencial
YJL214W/HXT8	38,6	11,37	0,295	0,348	0,202	não essencial
YJL216C/	18,6	9,13	0,491	0,574	0,228	não essencial
YJL217W/	637,7	192,31	0,302	0,247	0,119	não essencial
YJL222W/_f	223,6	37,69	0,169	0,094	0,158	não essencial
YJR001W/	423,6	86,09	0,203	0,162	0,115	não essencial
YJR002W/	638,5	127,20	0,199	0,197	0,169	essencial
YJR003C/	824,9	208,89	0,253	0,219	0,133	não essencial
YJR004C/SAG1	363,2	109,88	0,303	0,329	0,134	não essencial
YJR005W/APL1	208,2	65,28	0,313	0,325	0,140	não essencial
YJR006W/HUS2	274,9	90,40	0,329	0,403	0,157	essencial
YJR007W/SUI2	1130,9	222,46	0,197	0,270	0,371	essencial
YJR008W/	65,9	34,69	0,527	0,257	0,139	não essencial
YJR009C/TDH2	3555,2	1488,64	0,419	0,412	0,905	não essencial
YJR010C-A/SPC1	407,1	52,38	0,129	0,082	0,093	não essencial
YJR010W/MET3	231,1	200,92	0,870	0,512	0,294	não essencial
YJR011C/	124,5	29,91	0,240	0,231	0,138	não essencial
YJR012C/	373,8	67,47	0,181	0,163	0,122	essencial
YJR013W/	257,4	35,06	0,136	0,130	0,108	essencial
YJR014W/	949,1	191,15	0,201	0,190	0,217	não essencial
YJR015W/	853,6	200,60	0,235	0,241	0,132	não essencial
YJR016C/ILV3	1177,9	344,17	0,292	0,295	0,378	essencial
YJR017C/ESS1	830,5	144,22	0,174	0,197	0,124	essencial
YJR020W/	83,4	17,64	0,212	0,175	0,105	não essencial
YJR021C/REC107_ex1	48,6	11,93	0,246	0,178	0,107	não essencial
YJR021C/REC107_ex2	162,1	34,10	0,210	0,202	0,107	não essencial
YJR022W/	390,1	54,40	0,139	0,202	0,107	essencial
YJR023C/	232,3	41,15	0,139	0,121	0,130	
						essencial
YJR024C/	1017,5	185,58	0,182	0,192	0,121	não essencial
YJR025C/	959,4	324,25	0,338	0,183	0,173	não essencial
YJR026W/_f	1230,8	276,24	0,224	0,198	0.444	não essencial
YJR030C/	55,3	34,97	0,632	0,746	0,114	não essencial
YJR031C/	182,7	58,06	0,318	0,283	0,130	não essencial
YJR032W/CPR7	596,5	110,25	0,185	0,144	0,185	não essencial

YJR033C/	68,9	25,66	0,372	0,424	0,144	não essencial
YJR035W/RAD26	102,2	19,77	0,193	0,200	0,127	não essencial
YJR036C/	33,1	13,30	0,402	0,658	0,105	não essencial
YJR037W/	11,4	5,82	0,510	0,937	0,115	não essencial
YJR040W/GEF1	96,8	24,97	0,258	0,245	0,136	não essencial
YJR042W/NUP85	411,5	65,59	0,159	0,163	0,131	essencial
YJR043C/	341,9	117,02	0,342	0,313	0,143	não essencial
YJR045C/SSC1	921,8	103,64	0,112	0,105	0,521	essencial
YJR046W/	334,6	53,47	0,160	0,133	0,108	essencial
YJR047C/ANB1	553,7	298,29	0,539	0,249	0,704	não essencial
YJR048W/CYC1	969,6	431,75	0,445	0,310	0,368	não essencial
YJR049C/UTR1	467,4	66,14	0,142	0,156	0,127	não essencial
YJR050W/UTR3	496,1	77,29	0,156	0,170	0,098	não essencial
YJR051W/OSM1	351,7	57,14	0,162	0,096	0,168	não essencial
YJR052W/RAD7	109,7	14,26	0,130	0,143	0,136	não essencial
YJR053W/	46,8	10,85	0,232	0,172	0,151	não essencial
YJR056C/	286,6	51,25	0,179	0,172	0,098	não essencial
YJR057W/CDC8	638,1	111,13	0,174	0,185	0,148	essencial
YJR058C/APS2	413,4	56,14	0,136	0,137	0,084	não essencial
YJR059W/	317,3	88,57	0,130	0,137	0,004	não essencial
YJR060W/CBF1	393,6	68,21	0,279	0,176	0,136	não essencial
YJR061W/	135,8	24,45	0,173	0,140	0,136	não essencial
YJR062C/NTA1	151,6	35,52	0,180	0,104	0,125	não essencial
YJR063W/RPA12	1351,8	228,40	0,169	0,223	0,123	não essencial
YJR064W/CCT5	1054,6	190,93	0,103	0,104	0,199	essencial
YJR065C/	614,6	116,56	0,101	0,200	0,217	essencial
YJR066W/TOR1	213,5	37,05	0,190	0,138	0,201	não essencial
YJR069C/HAM1	471,1	134,63	0,174	0,212	0,138	não essencial
YJR070C/	1646,5	309,34	0,280	0,787	0,198	não essencial
YJR072C/	976,6	199,55	0,188	0,221	0,400	
YJR073C/OPI3	416,4	187,37		0,233	0,171	essencial
YJR074W/	210,9	54,96	0,450 0,261	0,102	0,173	não essencial não essencial
YJR075W/HOC1	805,0		-		0,134	
YJR076C/CDC11	· ·	157,68	0,196	0,276	•	não essencial
YJR077C/MIR1	874,8	216,15	0,247	0,209	0,174	essencial
	1090,1	207,51	0,190	0,190	0,363	não essencial
YJR078W/	110,5	40,87	0,370	0,169	0,126	não essencial
YJR079W/_ex1	675,6	230,68	0,341	0,313	0,115	não essencial
YJR080C/	773,5	123,87	0,160	0,180	0,144	não essencial
YJR082C/	703,9	279,94	0,398	0,893	0,147	não essencial
YJR083C/	322,9	69,51	0,215	0,184	0,108	não essencial
YJR084W/	252,3	53,53	0,212	0,117	0,099	não essencial
YJR086W/STE18	1342,1	310,67	0,231	0,204	0,101	não essencial
YJR087W/	322,1	74,16	0,230	0,164	0,104	não essencial
YJR088C/	418,1	76,81	0,184	0,186	0,171	não essencial
YJR089W/	184,6	30,38	0,165	0,168	0,134	essencial
YJR090C/GRR1	524,8	94,45	0,180	0,154	0,117	não essencial
YJR091C/JSN1	406,1	76,22	0,188	0,178	0,151	não essencial
YJR092W/BUD4	214,8	107,55	0,501	0,428	0,147	não essencial
YJR094C/IME1	61,2	30,99	0,507	0,268	0,184	não essencial
YJR096W/	295,9	93,14	0,315	0,143	0,222	não essencial
YJR097W/	297,1	58,61	0,197	0,154	0,131	não essencial
YJR098C/	58,9	19,49	0,331	0,222	0,154	não essencial
YJR099W/YUH1	278,6	45,57	0,164	0,192	0,109	não essencial
YJR100C/	238,9	51,73	0,216	0,252	0,100	não essencial
YJR102C/	417,4	57,05	0,137	0,128	0,131	não essencial
YJR103W/URA8	253,9	54,70	0,215	0,167	0,157	não essencial

YJR104C/SOD1	1598,8	687,49	0,430	0,331	0,377	não essencial
YJR105W/	1312,9	206,37	0,157	0,204	0,370	não essencial
YJR107W/	165,5	51,54	0,311	0,383	0,127	não essencial
YJR109C/CPA2	730,7	287,02	0,393	0,183	0,239	não essencial
YJR110W/	145,2	47,09	0,324	0,314	0,158	não essencial
YJR111C/	368,6	47,93	0,130	0,080	0,117	não essencial
YJR112W/NNF1	416,5	137,48	0,330	0,245	0,087	essencial
YJR113C/	1191,4	202,85	0,170	0,166	0,097	não essencial
YJR115W/	184,1	66,34	0,360	0,228	0,099	não essencial
YJR116W/	248,4	91,75	0,369	0,220	0,140	não essencial
YJR117W/	659,8	114,21	0,173	0,219	0,140	não essencial
YJR118C/	180,4	63,48	0,173	0,362	0,200	não essencial
YJR120W/	134,6	33,65	0,352	0,403	0,103	não essencial
YJR121W/ATP2	1028,8	225,37	0,230	0,403	0,070	não essencial
YJR122W/	1020,0	34,89	0,219	0,193	0,425	não essencial
YJR123W/RPS5		· ·				
	3302,3	1627,38	0,493	0,458	0,838	essencial
YJR124C/	261,2	45,51	0,174	0,174	0,141	não essencial
YJR125C/	598,8	113,12	0,189	0,143	0,167	não essencial
YJR126C/	195,4	42,44	0,217	0,270	0,127	não essencial
YJR127C/ZMS1	186,7	39,98	0,214	0,185	0,120	não essencial
YJR129C/	237,8	31,53	0,133	0,141	0,109	não essencial
YJR130C/	460,9	125,06	0,271	0,155	0,130	não essencial
YJR131W/MNS1	54,5	18,30	0,336	0,410	0,144	não essencial
YJR133W/	430,6	99,73	0,232	0,244	0,284	não essencial
YJR134C/	404,7	49,89	0,123	0,116	0,155	não essencial
YJR135C/	123,2	28,55	0,232	0,186	0,120	não essencial
YJR137C/	341,5	157,89	0,462	0,287	0,247	não essencial
YJR139C/HOM6	947,2	316,37	0,334	0,404	0,467	não essencial
YJR140C/	192,2	41,56	0,216	0,159	0,140	não essencial
YJR141W/	245,5	42,46	0,173	0,171	0,131	essencial
YJR142W/	453,6	53,91	0,119	0,136	0,154	não essencial
YJR143C/PMT4	976,5	211,74	0,217	0,220	0,216	não essencial
YJR144W/MGM101	509,0	109,91	0,216	0,230	0,163	não essencial
YJR145C/RPS7B_ex1_f	2313,6	924,35	0,400	0,457	0,695	não essencial
YJR146W/	50,1	20,83	0,416	0,485	0,073	não essencial
YJR147W/	277,4	41,20	0,149	0,102	0,116	não essencial
YJR148W/TWT2	959,4	321,87	0,336	0,247	0,195	não essencial
YJR149W/	68,2	22,92	0,336	0,219	0,139	não essencial
YJR150C/	282,6	211,49	0,748	0,422	0,299	não essencial
YJR152W/DAL5	91,8	21,94	0,239	0,217	0,158	não essencial
YJR153W/	69,3	11,73	0,169	0,140	0,175	não essencial
YJR154W/	30,7	14,83	0,483	1,271	0,128	não essencial
YKL001C/MET14	668,8	274,88	0,411	0,340	0,267	não essencial
YKL002W/	590,4	115,65	0,196	0,164	0,118	não essencial
YKL003C/MRP17	692,7	138,05	0,199	0,223	0,115	não essencial
YKL004W/AUR1	694,6	102,15	0,147	0,139	0,144	essencial
YKL005C/	232,5	40,91	0,176	0,134	0,147	não essencial
YKL006C-a/SFT1 ex1	642,5	98,72	0,154	0,189	0,103	essencial
YKL006W/RPL14A ex1	2376,8	847,03	0,356	0,464	0,684	não essencial
YKL006W/RPL14A ex2 f	3513,8	1580,57	0,450	0,452	0,684	não essencial
YKL007W/CAP1	384,2	64,91	0,169	0,167	0,181	não essencial
YKL008C/	449,6	125,44	0,279	0,283	0,195	não essencial
YKL009W/	2334,9	512,62	0,220	0,247	0,279	não essencial
YKL010C/	321,4	51,54	0,160	0,094	0,139	não essencial
YKL011C/CCE1	139,2	27,80	0,100	0,054	0,133	não essencial
YKL012W/	563,6	106,31	0,189	0,137	0,112	essencial
11XLU12 VV/	300,0	100,01	0,109	0,200	5,150	Coscilidai

YKL013C/	632,4	132,84	0,210	0,156	0,140	essencial
YKL014C/	486,0	105,63	0,217	0,207	0,158	essencial
YKL015W/PUT3	223,7	41,68	0,186	0,186	0,163	não essencial
YKL016C/ATP7	2185,3	531,11	0,243	0,284	0,224	não essencial
YKL017C/DIP1	138,4	19,12	0,138	0,170	0,164	não essencial
YKL018W/	118,7	28,55	0,241	0,236	0,136	essencial
YKL019W/RAM2	287,4	54,02	0,188	0,162	0,144	essencial
YKL020C/SPT23	142,4	37,46	0,263	0,422	0,156	não essencial
YKL021C/MAK11	395,1	93,44	0,237	0,422	0,193	essencial
YKL022C/CDC16	232,6	34,62	0,149	0,099	0,133	essencial
YKL023W/	280,4	48,14	0,149	0,099	0,124	não essencial
YKL024C/URA6	946,3	125,22	0,172	0,113	0,110	essencial
YKL025C/PAN3	192,7	36,11	0,132	0,101	0,211	não essencial
	· ·				· ·	
YKL026C/	105,5	39,35	0,373	0,487	0,145	não essencial
YKL027W/	258,8	51,44	0,199	0,295	0,147	não essencial
YKL028W/TFA1	883,8	87,69	0,099	0,099	0,201	essencial
YKL029C/	1245,5	346,82	0,278	0,305	0,231	não essencial
YKL030W/	1250,6	337,79	0,270	0,305	0,084	não essencial
YKL031W/	58,6	20,62	0,352	0,313	0,124	não essencial
YKL032C/IXR1	574,6	214,19	0,373	0,342	0,171	não essencial
YKL034W/	135,4	28,64	0,212	0,165	0,119	não essencial
YKL035W/	848,6	196,61	0,232	0,183	0,330	essencial
YKL036C/	41,5	16,84	0,406	0,512	0,077	essencial
YKL037W/	53,2	10,92	0,205	0,216	0,071	não essencial
YKL038W/	164,6	27,24	0,165	0,106	0,113	não essencial
YKL039W/PTM1	574,4	151,20	0,263	0,214	0,153	não essencial
YKL040C/	510,3	123,53	0,242	0,227	0,193	não essencial
YKL041W/	449,1	88,47	0,197	0,189	0,134	não essencial
YKL042W/	232,4	115,14	0,495	0,434	0,137	essencial
YKL043W/PHD1	576,6	230,66	0,400	0,337	0,137	não essencial
YKL044W/	102,2	30,64	0,300	0,293	0,096	não essencial
YKL045W/PRI2	480,8	195,29	0,406	0,301	0,140	essencial
YKL046C/	852,9	199,72	0,234	0,315	0,211	não essencial
YKL048C/ELM1	136,9	39,87	0,291	0,216	0,104	não essencial
YKL049C/CSE4	425,1	98,58	0,232	0,164	0,120	essencial
YKL050C/	43,9	12,95	0,295	0,348	0,137	não essencial
YKL051W/	237,0	44,34	0,187	0,117	0,147	não essencial
YKL052C/	340,6	103,63	0,304	0,193	0,090	essencial
YKL053W/	366,2	85,47	0,233	0,185	0,089	não essencial
YKL054C/	1175,8	175,69	0,149	0,139	0,248	não essencial
YKL055C/	39,4	11,25	0,286	0,327	0,130	não essencial
YKL056C/	3445,9	1535,32	0,446	0,410	0,731	não essencial
YKL057C/NUP120	352,3	58,43	0,166	0,198	0,157	não essencial
YKL058W/TOA2	720,8	122,41	0,170	0,169	0,101	essencial
YKL059C/	441,2	107,93	0,245	0,282	0,149	essencial
YKL060C/FBA1	3334,5	1566,25	0,470	0,452	0,869	essencial
YKL061W/	407,9	85,77	0,210	0,228	0,135	não essencial
YKL062W/MSN4	352,5	142,73	0,405	0,264	0,160	não essencial
YKL063C/	955,9	197,11	0,405	0,169	0,163	não essencial
YKL064W/MNR2	280,6	34,35	0,122	0,106	0,148	não essencial
YKL065C/	2031,4	408,32	0,122	0,183	0,140	não essencial
YKL066W/	735,4	301,69	0,410	0,183	0,134	não essencial
YKL067W/YNK1	735,4	264,91	0,410	0,349	0,071	não essencial
YKL068W/NUP100	607,0	165,37	0,330	0,344	0,229	
	·					não essencial
YKL069W/	503,3	118,60	0,236	0,197	0,182	não essencial
YKL070W/	146,0	31,38	0,215	0,172	0,123	não essencial

YKL071W/	121,9	28,02	0,230	0,244	0,137	não essencial
YKL073W/	438,9	115,87	0,264	0,274	0,147	não essencial
YKL074C/MUD2	365,5	44,72	0,122	0,136	0,134	não essencial
YKL075C/	192,0	32,02	0,167	0,173	0,170	não essencial
YKL076C/	1155,2	276,78	0,240	0,324	0,096	não essencial
YKL077W/	790,8	95,23	0,120	0,123	0,215	não essencial
YKL078W/	466,1	152,76	0,328	0,270	0,137	essencial
YKL079W/SMY1	312,8	80,13	0,256	0,160	0,122	não essencial
YKL080W/VMA5	1827,2	443,89	0,243	0,229	0,236	não essencial
YKL081W/TEF4 ex1	407,0	92,16	0,226	0,271	0,553	não essencial
YKL081W/TEF4 ex2	1366,4	283,67	0,208	0,193	0,553	não essencial
YKL082C/	777,1	111,79	0,144	0,154	0,170	essencial
YKL083W/	622,7	85,37	0,137	0,137	0,108	essencial
YKL084W/	373,7	58,31	0,156	0,119	0,168	não essencial
YKL085W/MDH1	943,6	242,84	0,150	0,115	0,100	não essencial
YKL087C/CYT2	705,6	109,53	0,257	0,243	0,313	não essencial
	· ·	·				
YKL088W/	318,2	51,31	0,161	0,153	0,124	essencial
YKL089W/MIF2	223,9	58,12	0,260	0,265	0,142	essencial
YKL090W/	204,3	66,38	0,325	0,325	0,119	não essencial
YKL091C/	186,9	97,08	0,519	0,434	0,198	não essencial
YKL092C/BUD2	244,7	62,81	0,257	0,255	0,135	não essencial
YKL093W/MBR1	115,9	32,88	0,284	0,225	0,110	não essencial
YKL094W/YJU3	682,6	123,63	0,181	0,147	0,147	não essencial
YKL095W/YJU2	72,5	21,45	0,296	0,343	0,122	essencial
YKL096W/CWP1	857,7	403,48	0,470	0,300	0,280	não essencial
YKL097C/	18,6	5,95	0,320	0,478	0,045	não essencial
YKL097W-A/CWP2	5044,0	1983,49	0,393	0,493		não essencial
YKL098W/	203,2	49,85	0,245	0,208	0,097	não essencial
YKL099C/	863,8	139,28	0,161	0,166	0,161	essencial
YKL100C/	261,0	88,14	0,338	0,328	0,178	não essencial
YKL101W/HSL1	669,2	302,31	0,452	0,401	0,129	não essencial
YKL102C/	36,8	9,96	0,271	0,456	0,090	não essencial
YKL103C/LAP4	234,3	109,44	0,467	0,338	0,190	não essencial
YKL104C/GFA1	484,8	117,88	0,243	0,159	0,272	essencial
YKL105C/	182,0	64,32	0,353	0,316	0,119	não essencial
YKL106W/AAT1	552,3	85,20	0,154	0,132	0,140	não essencial
YKL107W/	31,6	10,64	0,336	0,224	0,122	não essencial
YKL108W/	158,8	114,26	0,719	0,523	0,132	essencial
YKL109W/HAP4	726,1	249,43	0,344	0,262	0,206	não essencial
YKL110C/KTI12	511,9	63,38	0,124	0,108	0,141	não essencial
YKL111C/	292,8	68,19	0,233	0,187	0,103	essencial
YKL112W/ABF1	571,0	145,68	0,255	0,252	0,178	essencial
YKL113C/RAD27	431,4	253,93	0,589	0,462	0,160	não essencial
YKL114C/APN1	622,1	104,82	0,169	0,166	0,143	não essencial
YKL115C/	147,7	26,10	0,177	0,199	0,108	não essencial
YKL116C/	190,4	78,67	0,413	0,278	0,117	não essencial
YKL117W/	1422,5	210,50	0,148	0,145	0,280	não essencial
YKL118W/	74,1	19,00	0,256	0,318	0,136	não essencial
YKL119C/VPH2	421,2	53,99	0,230	0,318	0,134	não essencial
YKL120W/	1587,8	385,18	0,128	0,143	0,134	não essencial
YKL121W/	123,1	42,29	0,243	0,218	0,187	
YKL121W/ YKL122C/SRP21	2291,9			· · · · · · · · · · · · · · · · · · ·	0,136	não essencial
		587,19	0,256	0,251		essencial
YKL123W/	943,5	290,27	0,308	0,333	0,067	não essencial
YKL124W/SSH4	112,1	23,92	0,213	0,247	0,140	não essencial
YKL125W/RRN3	791,2	172,92	0,219	0,175	0,142	essencial
YKL126W/YPK1	572,8	119,44	0,209	0,191	0,171	não essencial

YKL127W/PGM1	432,4	131,75	0,305	0,259	0,200	não essencial
YKL128C/PMU1	441,0	101,32	0,230	0,118	0,139	não essencial
YKL129C/MYO3	205,0	58,67	0,286	0,220	0,147	não essencial
YKL130C/	497,8	138,61	0,278	0,195	0,164	não essencial
YKL133C/	65,2	20,97	0,321	0,382	0,134	não essencial
YKL134C/	47,6	19,31	0,405	0,626	0,135	não essencial
YKL135C/APL2	854,7	123,71	0,145	0,122	0,149	não essencial
YKL136W/	528,1	117,44	0,222	0,172	0,086	não essencial
YKL137W/	567,3	73,96	0,130	0,131	0,132	não essencial
YKL138C/MRPL31	952,2	157,45	0,165	0,134	0,233	não essencial
YKL139W/CTK1	149,8	37,42	0,250	0,331	0,120	não essencial
YKL140W/TGL1	787,4	114,58	0,146	0,136	0,171	não essencial
YKL141W/SDH3	1095,8	214,66	0,196	0,190	0,200	essencial
YKL142W/MRP8	644,3	200,39	0,311	0,196	0,202	não essencial
YKL143W/LTV1	383,4	103,73	0,271	0,270	0,178	não essencial
YKL144C/RPC25	765,9	206,35	0,269	0,426	0,149	essencial
YKL145W/YTA3	709,7	156,85	0,221	0,184	0,232	essencial
YKL146W/	374,1	46,47	0,124	0,178	0,101	não essencial
YKL148C/SDH1	299,6	70,62	0,124	0,170	0,101	não essencial
YKL149C/DBR1	130,2	22,66	0,230	0,170	0,243	não essencial
YKL150W/MCR1	632,4	,	0,174	0,174	0,140	não essencial
		222,12	0,388		· ·	
YKL151C/	261,7	101,67	·	0,267	0,134	não essencial
YKL152C/GPM1	3534,7	1849,38	0,523	0,434	0,811	essencial
YKL153W/	3188,8	1696,11	0,532	0,491	0,203	essencial
YKL154W/	820,6	187,70	0,229	0,219	0,141	essencial
YKL155C/	198,9	35,63	0,179	0,166	0,131	não essencial
YKL156W/RPS27A_ex1	3215,8	1056,26	0,328	0,379	0,361	não essencial
YKL157W/APE2	511,2	145,47	0,285	0,350	0,216	não essencial
YKL159C/	259,1	53,41	0,206	0,169	0,146	não essencial
YKL160W/	1588,7	371,79	0,234	0,219	0,130	não essencial
YKL161C/	187,9	99,90	0,532	0,294	0,131	não essencial
YKL162C/	29,2	7,81	0,267	0,396	0,109	não essencial
YKL163W/PIR3	610,2	240,33	0,394	0,238	0,378	não essencial
YKL164C/PIR1	1494,5	1067,73	0,714	0,566	0,519	não essencial
YKL165C/	335,6	99,47	0,296	0,191	0,159	essencial
YKL166C/TPK3	443,1	42,77	0,097	0,131	0,158	não essencial
YKL167C/MRP49	414,9	87,44	0,211	0,183	0,148	não essencial
YKL168C/	116,9	29,69	0,254	0,201	0,120	não essencial
YKL169C/	792,7	184,55	0,233	0,253	0,118	não essencial
YKL170W/MRPL38	687,4	173,43	0,252	0,290	0,132	não essencial
YKL172W/	1081,1	196,23	0,182	0,208	0,277	essencial
YKL173W/GIN10	120,4	19,30	0,160	0,210	0,118	essencial
YKL174C/	382,9	53,95	0,141	0,135	0,119	não essencial
YKL175W/	855,2	136,36	0,159	0,129	0,142	não essencial
YKL176C/	331,8	55,58	0,168	0,144	0,117	não essencial
YKL177W/	195,9	104,53	0,534	0,346	0,123	não essencial
YKL178C/STE3	223,1	168,74	0,756	0,383	0,132	não essencial
YKL179C/	288,8	49,69	0,172	0,152	0,126	não essencial
YKL180W/RPL17_ex1	3467,1	1186,92	0,342	0,386	0,809	essencial
YKL180W/RPL17_ex2_f	3226,0	1480,20	0,459	0,443	0,809	essencial
YKL180W/RPL17_ex2_i	1235,7	418,36	0,339	0,319	0,809	essencial
YKL181W/PRS1	1022,2	174,97	0,171	0,189	0,255	não essencial
YKL182W/FAS1	808,5	212,52	0,171	0,165	0,255	essencial
YKL183W/	386,9	118,79	0,203	0,200	0,304	não essencial
YKL184W/ORD1	375,6	53,84	0,307	0,218	0,119	não essencial
YKL185W/ASH1	562,5	431,65	0,767	0,450	0,118	não essencial

YKL186C/MTR2	1400,2	273,53	0,195	0,170	0,112	essencial
YKL187C/	49,1	11,42	0,232	0,309	0,122	não essencial
YKL188C/	155,4	38,14	0,245	0,167	0,121	não essencial
YKL189W/	143,4	30,76	0,215	0,201	0,154	essencial
YKL190W/CNB1 ex1	624,4	182,51	0,292	0,300	0,152	não essencial
YKL190W/CNB1 ex2	947,8	196,31	0,207	0,157	0,152	não essencial
YKL191W/DPH2	1059,5	213,46	0,201	0,213	0,127	não essencial
YKL192C/	2082,4	421,09	0,202	0,227	0,210	essencial
YKL193C/SDS22	257,9	69,74	0,270	0,166	0,182	essencial
YKL195W/	1399,0	333,90	0,239	0,205	0,183	essencial
YKL196C/	1457,5	258,87	0,178	0,190	0,181	essencial
YKL197C/PAS1	101,4	27,01	0,266	0,237	0,128	não essencial
YKL198C/	100,4	25,23	0,251	0,185	0,121	não essencial
YKL199C/	427,8	112,38	0,263	0,103	0,121	não essencial
YKL200C/	56,5	14,39	0,255	0,202		não essencial
YKL201C/	150,4	44,07	0,293	0,202	0,194	não essencial
YKL201C/	150,4	30,94	0,293	0,341	0,194	não essencial
YKL203C/TOR2	374,1	71,78	0,202	0,199	0,100	essencial
YKL204W/	420,9	98,10	0,233	0,246	0,142	não essencial
YKL205W/LOS1	305,7	64,90	0,212	0,254	0,154	não essencial
YKL206C/	491,6	105,04	0,214	0,190	0,096	não essencial
YKL207W/	1014,8	190,81	0,188	0,183	0,123	não essencial
YKL208W/	276,5	41,20	0,149	0,103	0,112	não essencial
YKL209C/STE6	91,6	13,08	0,143	0,134	0,127	não essencial
YKL210W/UBA1	857,2	188,97	0,220	0,157	0,212	essencial
YKL211C/TRP3	381,9	92,46	0,242	0,119	0,184	não essencial
YKL212W/SAC1	977,9	195,33	0,200	0,156	0,206	não essencial
YKL213C/DOA1	584,5	93,24	0,160	0,172	0,126	não essencial
YKL214C/	415,4	67,85	0,163	0,154	0,147	não essencial
YKL215C/	249,3	33,24	0,133	0,134	0,138	não essencial
YKL216W/URA1	747,2	108,88	0,146	0,139	0,225	não essencial
YKL217W/JEN1	116,6	19,39	0,166	0,176	0,173	não essencial
YKL218C/	255,6	67,45	0,264	0,180	0,097	não essencial
YKL222C/	63,4	14,30	0,226	0,232	0,132	não essencial
YKR001C/SPO15	378,0	65,81	0,174	0,142	0,249	não essencial
YKR002W/PAP1	427,2	109,07	0,255	0,281	0,158	essencial
YKR003W/	176,6	50,41	0,285	0,260	0,152	não essencial
YKR004C/	142,9	24,31	0,170	0,187	0,125	essencial
YKR005C/	41,3	18,70	0,453	0,270	0,149	não essencial
YKR006C/MRPL13	817,4	159,58	0,195	0,196	0,180	não essencial
YKR007W/	479,8	91,39	0,190	0,245	0,097	não essencial
YKR008W/	262,7	67,81	0,258	0,236	0,166	essencial
YKR009C/FOX2	80,4	21,75	0,271	0,208	0,145	não essencial
YKR010C/	259,3	100,04	0,386	0,257	0,130	não essencial
YKR011C/	490,4	135,36	0,276	0,220	0,186	não essencial
YKR012C/	488,8	142,64	0,292	0,251	0,096	não essencial
YKR013W/PRY2	1446,1	904,87	0,626	0,509	0,231	não essencial
YKR014C/YPT52	1633,9	225,01	0,138	0,142	0,213	não essencial
YKR015C/	75,9	14,11	0,186	0,195	0,142	não essencial
YKR016W/	613,6	104,75	0,171	0,142	0,159	não essencial
YKR017C/	86,5	15,31	0,177	0,137	0,162	não essencial
YKR018C/	252,9	40,80	0,161	0,146	0,167	não essencial
YKR019C/	112,9	22,35	0,198	0,149	0,112	não essencial
YKR020W/	289,8	45,95	0,159	0,114	0,157	não essencial
YKR021W/	201,8	83,21	0,412	0,356	0,129	não essencial
YKR022C/	151,6	48,46	0,320	1,077	0,127	essencial
	101,0	10,70	3,020	1,011	5,121	COSCITCIAI

YKR023W/	278,8	38,25	0,137	0,119	0,146	não essencial
YKR024C/	233,8	53,25	0,228	0,183	0,161	não essencial
YKR025W/	385,6	74,42	0,193	0,122	0,143	essencial
YKR026C/GCN3	659,2	76,00	0,115	0,115	0,140	não essencial
YKR027W/	104,0	27,08	0,260	0,215	0,120	não essencial
YKR028W/SAP190	289,2	70,52	0,244	0,231	0,145	não essencial
YKR029C/	414,2	71,20	0,172	0,180	0,120	não essencial
YKR030W/	413,2	56,81	0,137	0,157	0,116	não essencial
YKR031C/SPO14	324,4	73,29	0,226	0,268	0,154	não essencial
YKR033C/	73,3	15,45	0,211	0,145	0,086	não essencial
YKR035C/	901,1	115,99	0,129	0,131	0,126	não essencial
YKR036C/	374,4	39,95	0,107	0,120	0,118	não essencial
YKR037C/	315,5	70,73	0,224	0,187	0,155	essencial
YKR038C/	511,4	68,70	0,134	0,126	0,119	essencial
YKR039W/GAP1	919,1	556,92	0,606	0,337	0,280	não essencial
YKR040C/	33,4	12,39	0,372	0,468	0,147	não essencial
YKR042W/	1705,4	603,65	0,354	0,287	0,521	não essencial
YKR043C/	1298,8	268,79	0,207	0,187	0,193	não essencial
YKR044W/	214,1	31,69	0,148	0,151	0,099	não essencial
YKR045C/	218,9	47,62	0,217	0,194	0,080	não essencial
YKR046C/	1301,3	268,31	0,206	0,189	0,217	não essencial
YKR047W/	940,9	215,87	0,229	0,264	0,055	não essencial
YKR048C/NAP1	1024,7	138,70	0,135	0,155	0,153	não essencial
YKR049C/	937,9	339,67	0,362	0,182	0,094	não essencial
YKR050W/TRK2	260,1	32,96	0,127	0,121	0,129	não essencial
YKR051W/	156,8	42,85	0,273	0,246	0,118	não essencial
YKR052C/MRS4	110,4	27,10	0,245	0,198	0,119	não essencial
YKR053C/	87,2	26,72	0,307	0,242	0,125	não essencial
YKR054C/DYN1	115,8	39,46	0,341	0,358	0,129	não essencial
YKR055W/RHO4	184,8	27,20	0,147	0,155	0,110	não essencial
YKR056W/RNC1	473,0	94,42	0,200	0,170	0,180	não essencial
YKR057W/RPS25_ex1_f	3123,5	1384,34	0,443	0,422	0,596	não essencial
YKR057W/RPS25_ex1_i	3683,3	1827,41	0,496	0,516	0,596	não essencial
YKR058W/GLG1	93,7	16,10	0,172	0,185	0,158	não essencial
YKR059W/TIF1_f	1821,5	430,40	0,236	0,214	0,753	não essencial
YKR060W/	359,4	60,17	0,167	0,210	0,155	não essencial
YKR061W/KTR2	428,5	129,49	0,302	0,203	0,138	não essencial
YKR062W/TFA2	329,4	50,80	0,154	0,164	0,209	essencial
YKR063C/LAS1	350,8	50,59	0,144	0,116	0,118	essencial
YKR064W/	135,9	27,75	0,204	0,154	0,138	não essencial
YKR065C/	390,4	75,69	0,194	0,111	0,175	não essencial
YKR066C/CCP1	491,4	113,37	0,231	0,185	0,178	não essencial
YKR067W/	171,5	58,19	0,339	0,368	0,171	não essencial
YKR068C/	866,8	140,91	0,163	0,158	0,125	essencial
YKR069W/	326,8	132,24	0,405	0,246	0,116	não essencial
YKR070W/	259,6	40,91	0,158	0,121	0,160	não essencial
YKR071C/	1508,4	302,54	0,201	0,217	0,207	essencial
YKR072C/SIS2	575,0	120,71	0,210	0,167	0,155	não essencial
YKR074W/	1229,8	166,64	0,136	0,138	0,183	não essencial
YKR075C/	276,1	150,89	0,546	0,367	0,155	não essencial
YKR076W/	49,6	21,39	0,431	0,345	0,200	não essencial
YKR077W/	355,4	234,35	0,659	0,638	0,115	não essencial
YKR078W/	249,3	43,51	0,175	0,126	0,133	não essencial
YKR079C/	277,8	43,05	0,155	0,194	0,159	essencial
YKR080W/MTD1	659,6	126,86	0,192	0,176	0,194	não essencial
YKR081C/	780,2	128,76	0,165	0,165	0,221	essencial

YKR082W/NUP133	583,9	97,25	0,167	0,179	0,140	não essencial
YKR083C/	364,3	100,85	0,107	0,173	0,140	essencial
YKR084C/HBS1	460,3	60,29	0,131	0,122	0,149	não essencial
YKR085C/MRPL20	571,1	110,44	0,193	0,168	0,148	não essencial
YKR086W/PRP16	98,7	39,88	0,404	1,567	0,131	essencial
YKR087C/	394,6	60,99	0,155	0,128	0,113	não essencial
YKR088C/	312,9	51,25	0,164	0,190	0,116	não essencial
YKR089C/	281,9	49,97	0,177	0,122	0,140	não essencial
YKR090W/	201,3	51,16	0,177	0,122	0,122	não essencial
YKR091W/	432,6	150,47	0,240	0,321	0,093	não essencial
YKR092C/SRP40	465,4	85,94	0,185	0,146	0,033	não essencial
YKR093W/PTR2	469,2	241,43	0,185	0,140	0,218	não essencial
YKR094c/UBI2 ex1 f	2388,5	1160,77	0,313	0,204	0,203	não essencial
	4221,1	2266,52	0,480	0,426	0,742	
YKR094c/UBI2_ex1_i		· ·				não essencial
YKR095W/MLP1	777,0	196,69	0,253	0,266	0,165	não essencial
YKR096W/	546,3	113,54	0,208	0,219	0,132	não essencial
YKR097w/PCK1	165,3	47,49	0,287	0,182	0,311	não essencial
YKR098c/UBP11	79,7	29,25	0,367	0,262	0,133	não essencial
YKR099w/BAS1	305,5	47,37	0,155	0,116	0,115	não essencial
YKR100c/	411,5	46,35	0,113	0,131	0,114	não essencial
YKR101W/SIR1	159,6	19,63	0,123	0,123	0,103	não essencial
YKR102W/	77,9	13,43	0,172	0,207	0,162	não essencial
YKR104w/	48,9	8,45	0,173	0,197	0,125	não essencial
YKR105c/	29,1	14,17	0,488	0,664	0,119	não essencial
YKR106w/_f	45,0	15,44	0,343	0,216	0,114	não essencial
YLL001w/DNM1	366,9	63,52	0,173	0,178	0,171	não essencial
YLL002w/	205,5	94,50	0,460	0,398	0,111	não essencial
YLL003w/SFI1	353,5	62,76	0,178	0,198	0,114	essencial
YLL004w/ORC3	172,7	29,11	0,169	0,228	0,134	essencial
YLL005c/	83,1	20,79	0,250	0,221	0,122	não essencial
YLL006w/MMM1	66,4	27,96	0,421	0,414	0,120	não essencial
YLL007c/	84,1	21,99	0,261	0,260	0,124	não essencial
YLL008w/DRS1	850,0	134,42	0,158	0,190	0,227	essencial
YLL009c/COX17	1451,5	395,97	0,273	0,174	0,254	não essencial
YLL010c/	35,3	6,90	0,195	0,202	0,119	não essencial
YLL011w/SOF1	881,3	121,37	0,138	0,121	0,222	essencial
YLL012w/	615,6	139,20	0,226	0,167	0,144	não essencial
YLL013c/	41,7	8,45	0,203	0,214	0,178	não essencial
YLL014w/	967,2	217,08	0,224	0,218	0,122	não essencial
YLL015w/	345,8	63,62	0,184	0,168	0,142	não essencial
YLL016w/SDC25	35,9	6,78	0,189	0,182	0,146	não essencial
YLL017w/	79,9	11,85	0,148	0,108	0,109	não essencial
YLL018c/DPS1	770,8	175,98	0,228	0,272	0,350	essencial
YLL019c/KNS1	112,6	27,43	0,244	0,191	0,136	não essencial
YLL020c/ f	521,1	96,29	0,185	0,192	0,090	não essencial
YLL020c/ i	176,2	75,00	0,426	0,388	0,090	não essencial
YLL021w/SPA2	370,4	112,25	0,303	0,246	0,145	não essencial
YLL022c/	420,6	166,16	0,395	0,299	0,137	não essencial
YLL023c/	535,9	82,04	0,153	0,132	0,200	não essencial
YLL024c/SSA2	1013,2	501,85	0,495	0,288	0,802	não essencial
YLL025w/_f	193,7	42,04	0,217	0,277	0,611	não essencial
YLL025w/ i	102,1	28,81	0,282	0,405	0,611	não essencial
YLL026w/HSP104	217,4	155,75	0,716	0,403	0,305	não essencial
YLL027w/	628,8	115,78	0,184	0,230	0,113	não essencial
				-		
YLL028w/	910,9	399,99	0,439	0,278	0,196	não essencial

YLL031c/	367,3	67,20	0,183	0,152	0,165	essencial
YLL032c/	342,2	103,25	0,302	0,230	0,147	não essencial
YLL033w/	74,6	17,23	0,231	0,236	0,109	não essencial
YLL034c/	501,9	86,46	0,172	0,205	0,173	essencial
YLL035w/	348,4	47,07	0,135	0,114	0,123	essencial
YLL036c/PRP19	786,1	104,44	0,133	0,098	0,117	essencial
YLL037w/	522,4	94,98	0,182	0,135	0,132	essencial
YLL038c/	75,8	12,28	0,162	0,121	0,083	não essencial
YLL039c/UBI4	593,6	231,02	0,389	0,357	0,317	não essencial
YLL040c/	235,6	71,17	0,302	0,251	0,163	não essencial
YLL041c/SDH2	490,7	147,17	0,300	0,260	0,100	não essencial
YLL042c/	344,6	94,29	0,300	0,200	0,223	não essencial
YLL043w/FPS1	222,2	35,71	0,161	0,179	0,117	não essencial
YLL044w/	1884,6	673,04	0,101	0,179	0,143	não essencial
YLL045c/RPL4B	·	·		0,296		
YLL046c/RNP1	1239,8	423,15	0,341		0,849	não essencial
	118,4	43,94	0,371	0,243	0,117	não essencial
YLL047w/	140,3	55,02	0,392	0,202	0,180	não essencial
YLL048c/	924,9	183,56	0,198	0,201	0,187	não essencial
YLL049w/	276,5	62,86	0,227	0,170	0,133	não essencial
YLL050c/COF1_ex1	1753,2	562,78	0,321	0,241	0,543	essencial
YLL051c/	252,4	50,46	0,200	0,164	0,108	não essencial
YLL052c/	43,4	10,09	0,233	0,304	0,209	não essencial
YLL053c/	113,2	28,46	0,251	0,261	0,308	não essencial
YLL054c/	32,3	11,61	0,360	0,415	0,134	não essencial
YLL055w/	118,2	26,63	0,225	0,159	0,149	não essencial
YLL056c/	77,6	18,82	0,243	0,199	0,158	não essencial
YLL057c/	49,8	20,38	0,410	0,234	0,166	não essencial
YLL058w/	120,8	39,13	0,324	0,337	0,111	não essencial
YLL060c/	162,4	40,32	0,248	0,194	0,088	não essencial
YLL061w/	133,4	76,34	0,572	0,351	0,129	não essencial
YLL062c/	231,8	112,42	0,485	0,347	0,141	não essencial
YLL063c/	51,2	7,85	0,153	0,178	0,122	não essencial
YLR001c/	382,5	94,30	0,247	0,244	0,121	não essencial
YLR002c/	178,0	48,64	0,273	0,292	0,170	essencial
YLR003c/	940,3	145,33	0,155	0,130	0,151	não essencial
YLR005w/SSL1	482,4	43,31	0,090	0,135	0,145	essencial
YLR006c/SSK1	280,6	53,44	0,190	0,198	0,118	não essencial
YLR007w/	406,1	47,41	0,117	0,139	0,106	essencial
YLR008c/	695,2	85,53	0,123	0,107	0,160	essencial
YLR009w/	968,8	165,15	0,170	0,147	0,384	essencial
YLR010c/	141,2	39,51	0,280	0,243	0,141	essencial
YLR011w/	286,4	47,32	0,165	0,171	0,071	não essencial
YLR012c/	32,9	9,93	0,301	0,363	0,216	não essencial
YLR014c/PPR1	113,6	35,11	0,309	0,259	0,115	não essencial
YLR015w/	323,1	55,47	0,172	0,131	0,132	não essencial
YLR017w/	888,2	150,39	0,169	0,169	0,185	não essencial
YLR018c/	646,9	95,38	0,147	0,158	0,092	não essencial
YLR019w/	277,9	40,83	0,147	0,132	0,052	não essencial
YLR020c/	277,9	39,65	0,147	0,132	0,136	não essencial
YLR021w/	352,9	56,84	0,143	0,120	0,134	não essencial
YLR021W/	830,9	112,96	0,181	0,130	0,134	
	· ·					essencial
YLR023c/	172,8	32,92	0,190	0,211	0,158	não essencial
YLR024c/	49,9	12,42	0,249	0,333	0,128	não essencial
YLR025w/SNF7	892,6	144,47	0,162	0,167	0,114	não essencial
YLR026c/SED5	455,5	81,93	0,180	0,196	0,145	essencial
YLR027c/AAT2	1174,8	423,05	0,360	0,242	0,232	não essencial

YLR028c/ADE16	319,2	80,40	0,252	0,199	0,173	não essencial
YLR029c/RPL13A	4191,1	2019,70	0,482	0,553	0,783	essencial
YLR031w/	133,2	64,63	0,485	0,255	0,132	não essencial
YLR032w/RAD5	567,2	217,96	0,384	0,318	0,140	não essencial
YLR033w/	289,7	54,27	0,187	0,195	0,142	essencial
YLR034c/	520,9	137,05	0,263	0,149	0,211	não essencial
YLR035c/	94,9	27,76	0,293	0,281	0,125	não essencial
YLR036c/	303,2	67,56	0,223	0,264	0,128	não essencial
YLR037c/_f	233,8	43,62	0,187	0,185	0,648	não essencial
YLR038c/COX12	725,4	199,83	0,275	0,158	0,349	não essencial
YLR039c/RIC1	358,3	68,09	0,190	0,218	0,144	não essencial
YLR040c/	1623,5	487,43	0,300	0,260	0,154	não essencial
YLR041w/	440,8	185,44	0,421	0,319	0,080	não essencial
YLR042c/	268,5	66,00	0,246	0,168	0,139	não essencial
YLR043c/TRX1	2353,8	745,86	0,317	0,286	0,492	não essencial
YLR044c/PDC1	3374,9	1624,47	0,481	0,418	0,904	não essencial
YLR045c/STU2	271,9	103,77	0,382	0,317	0,128	essencial
YLR046c/	181,2	28,56	0,158	0,173	0,102	não essencial
YLR048w/NAB1B_ex1_f	1236,8	345,49	0,279	0,326	0,733	não essencial
YLR048w/NAB1B_ex1_i	1706,8	562,65	0,330	0,342	0,733	não essencial
YLR048w/NAB1B_ex2	1957,9	939,80	0,480	0,427	0,733	não essencial
YLR049c/	264,0	168,90	0,640	0,491	0,144	não essencial
YLR050c/	1084,2	281,66	0,260	0,218	0,180	não essencial
YLR051c/	853,7	167,20	0,196	0,252	0,184	essencial
YLR052w/	588,8	56,33	0,096	0,124	0,149	não essencial
YLR055c/SPT8	97,8	27,88	0,285	0,336	0,124	não essencial
YLR056w/ERG3	3002,9	903,98	0,301	0,323	0,249	não essencial
YLR057w/	362,0	100,94	0,279	0,175	0,138	não essencial
YLR058c/SHM2	1057,2	320,29	0,303	0,227	0,589	não essencial
YLR059c/YNT20	794,8	169,89	0,214	0,189	0,144	não essencial
YLR060w/FRS1	1035,0	273,34	0,264	0,289	0,325	essencial
YLR061w/_ex1	4001,1	1804,16	0,451	0,379	0,859	não essencial
YLR062c/	1880,1	1103,29	0,587	0,489	0,175	não essencial
YLR063w/	128,3	39,43	0,307	0,268	0,125	não essencial
YLR064w/	504,8	72,08	0,143	0,122	0,105	não essencial
YLR065c/	1124,8	195,90	0,174	0,228	0,118	não essencial
YLR066w/	876,0	123,52	0,141	0,146	0,147	essencial
YLR067c/PET309	222,9	35,49	0,159	0,142	0,118	não essencial
YLR068w/	773,8	185,23	0,239	0,280	0,196	não essencial
YLR069c/MEF1	384,1	110,65	0,288	0,146	0,200	não essencial
YLR070c/	89,2	34,94	0,392	0,160	0,105	não essencial
YLR071c/RGR1	239,4	31,07	0,130	0,134	0,135	essencial
YLR072w/	377,0	114,25	0,303	0,280	0,116	não essencial
YLR073c/	1070,2	238,07	0,222	0,184	0,104	não essencial
YLR074c/	1242,8	266,87	0,215	0,213	0,133	não essencial
YLR075w/GRC5	2827,3	1307,36	0,462	0,436	0,827	essencial
YLR076c/	4118,2	2011,29	0,488	0,500	0,255	essencial
YLR077w/	272,3	58,48	0,215	0,202	0,133	não essencial
YLR078c/BOS1_ex1	511,5	96,35	0,188	0,145	0,168	essencial
YLR079w/SIC1	478,6	259,29	0,542	0,367	0,104	não essencial
YLR080w/	98,3	63,50	0,646	0,248	0,111	não essencial
YLR081w/GAL2	32,6	6,46	0,198	0,224	0,245	não essencial
YLR082c/	153,7	31,38	0,204	0,222	0,130	não essencial
YLR083c/EMP70	288,0	47,20	0,164	0,175	0,189	não essencial
YLR084c/	238,8	58,58	0,245	0,197	0,122	não essencial
YLR085c/	322,2	55,60	0,173	0,137	0,108	não essencial

YLR086w/	167,1	27,02	0,162	0,199	0,147	essencial
YLR087c/	94,5	18,04	0,191	0,194	0,127	não essencial
YLR088w/GAA1	324,5	46,88	0,144	0,162	0,121	essencial
YLR090w/XDJ1	542,1	99,82	0,184	0,107	0,146	não essencial
YLR091w/	108,1	17,85	0,165	0,176	0,084	não essencial
YLR092w/	60,9	33,86	0,556	0,304	0,178	não essencial
YLR093c/	311,9	64,51	0,207	0,119	0,117	não essencial
YLR094c/	211,9	53,83	0,254	0,170	0,118	não essencial
YLR095c/	756,5	177,50	0,235	0,275	0,120	não essencial
YLR096w/KIN2	305,8	45,16	0,148	0,184	0,128	não essencial
YLR097c/	175,5	40,29	0,230	0,189	0,155	não essencial
YLR098c/CHA4	108,0	15,47	0,143	0,174	0,140	não essencial
YLR099c/	744,6	216,82	0,291	0,226	0,112	não essencial
YLR100w/	923,5	290,59	0,315	0,186	0,140	essencial
YLR101c/	1221,6	544,12	0,445	0,363	0,089	essencial
YLR102c/	165,0	33,04	0,200	0,168	0,083	não essencial
YLR103c/CDC45	412,9	249,13	0,603	0,471	0,129	essencial
YLR104w/	500,4	98,55	0,197	0,129	0,130	não essencial
YLR105c/SEN2	301,2	44,65	0,148	0,109	0,123	essencial
YLR106c/	1115,1	244,32	0,219	0,192	0,161	essencial
YLR107w/	340,1	54,16	0,159	0,181	0,129	não essencial
YLR108c/	53,4	23,68	0,443	0,411	0,149	não essencial
YLR109w/	1345,5	597,38	0,444	0,319	0,549	não essencial
YLR110c/	5459,0	2467,93	0,452	0,509	0,870	não essencial
YLR111w/	35,6	16,47	0,463	0,596	0,070	não essencial
YLR112w/	113,2	27,27	0,241	0,165	0,079	não essencial
YLR113w/HOG1	1080,1	204,85	0,190	0,247	0,175	não essencial
YLR114c/	272,6	54,65	0,200	0,224	0,150	não essencial
YLR115w/	278,4	49,25	0,177	0,154	0,129	essencial
YLR116w/	242,0	52,16	0,216	0,141	0,121	essencial
YLR117c/	225,2	29,54	0,131	0,174	0,133	essencial
YLR118c/	376,9	73,38	0,195	0,154	0,134	não essencial
YLR119w/SRN2	422,5	79,96	0,189	0,186	0,137	não essencial
YLR120c/YAP3	398,5	69,22	0,174	0,160	0,149	não essencial
YLR121c/	300,9	130,50	0,434	0,360	0,139	não essencial
YLR122c/	176,1	54,92	0,312	0,101	0,099	não essencial
YLR123c/	83,8	33,54	0,400	0,251	0,101	não essencial
YLR124w/	13,1	6,59	0,505	0,620	0,101	não essencial
YLR125w/	107,8	21,88	0,203	0,269	0,159	não essencial
YLR126c/	270,2	92,47	0,342	0,285	0,130	não essencial
YLR127c/	135,5	23,51	0,173	0,204	0,125	essencial
YLR128w/_ex1	83,0	22,97	0,277	0,272	0,119	não essencial
YLR129w/DIP2	587,2	103,87	0,177	0,177	0,166	essencial
YLR130c/	635,1	108,07	0,170	0,123	0,119	não essencial
YLR131c/ACE2	313,1	118,79	0,379	0,290	0,119	não essencial
YLR132c/	114,9	22,13	0,193	0,166	0,120	essencial
YLR133w/CKI1	54,7	22,92	0,419	0,451	0,154	não essencial
YLR134w/PDC5	147,5	29,91	0,203	0,231	0,720	não essencial
YLR135w/	266,4	46,88	0,176	0,164	0,127	não essencial
YLR136c/TIS11	33,2	24,23	0,730	0,384	0,145	não essencial
YLR138w/	735,2	100,07	0,136	0,157	0,121	não essencial
YLR139c/SLS1	265,9	39,66	0,149	0,142	0,142	não essencial
YLR140w/	204,6	39,04	0,191	0,182	0,076	essencial
YLR141w/RRN5	59,2	20,87	0,352	0,578	0,078	essencial
YLR142w/PUT1	153,8	68,60	0,446	0,257	0,195	não essencial
YLR143w/	232,5	23,42	0,101	0,109	0,153	não essencial

YLR144c/	148,4	24,01	0,162	0,181	0,148	não essencial
YLR145w/	376,9	118,55	0,315	0,418	0,085	essencial
YLR146c/	385,9	64,25	0,166	0,154	0,168	não essencial
YLR147c/SMD3	1331,9	191,25	0,144	0,156	0,073	essencial
YLR148w/PEP3	222,9	41,42	0,186	0,154	0,145	não essencial
YLR149c/	89,6	27,10	0,303	0,219	0,144	não essencial
YLR150w/MPT4	2976,2	994,89	0,334	0,337	0,719	não essencial
YLR151c/	160,2	69,35	0,433	0,481	0,108	não essencial
YLR152c/	109,5	41,57	0,380	0,212	0,113	não essencial
YLR153c/ACS2	1340,4	337,77	0,252	0,158	0,371	essencial
YLR154c/	1181,8	273,53	0,231	0,182	0,135	não essencial
YLR163C/MAS1	391,9	67,38	0,172	0,139	0,143	essencial
YLR164W/	23,2	12,37	0,532	0,876	0,117	não essencial
YLR165C/	224,4	45,77	0,204	0,210	0,150	não essencial
YLR166C/	375,9	87,92	0,234	0,216	0,162	essencial
YLR167W/UBI3	3329,9	1872,19	0,562	0,220	0,102	essencial
YLR168C/MSF1'	620,5	174,69	0,302	0,407	0,011	não essencial
YLR169W/	603,2	190,94	0,282	0,193	0,172	não essencial
YLR170C/APS1	615,1	179,78	0,317	0,183	0,065	não essencial
YLR171W/	186,9	65,61	0,292	0,197	0,123	não essencial
YLR172C/DPH5	627,4	81,23	0,331	0,280		não essencial
		·			0,211	
YLR173W/ YLR174W/IDP2	107,4	21,73	0,202	0,182	0,111	não essencial
	91,4	21,71	0,237	0,184	0,171	não essencial
YLR175W/CBF5	1789,4	500,82	0,280	0,318	0,375	essencial
YLR176C/	72,5	20,34	0,281	0,313	0,121	não essencial
YLR177W/	159,1	41,17	0,259	0,250	0,125	não essencial
YLR178C/TFS1	187,9	131,13	0,698	0,218	0,136	não essencial
YLR179C/	889,4	198,98	0,224	0,207	0,208	não essencial
YLR180W/SAM1	1548,6	299,15	0,193	0,170	0,494	não essencial
YLR181C/	431,9	63,38	0,147	0,141	0,117	não essencial
YLR182W/SWI6	719,2	132,67	0,184	0,143	0,135	não essencial
YLR183C/	259,5	188,23	0,725	0,702	0,148	não essencial
YLR184W/	56,2	18,52	0,330	0,430	0,090	não essencial
YLR185W/RPL35A_ex1	3275,6	1387,73	0,424	0,392	0,700	não essencial
YLR186W/	1119,5	145,45	0,130	0,149	0,206	essencial
YLR187W/	310,2	95,73	0,309	0,257	0,127	não essencial
YLR188W/MDL1	296,4	57,35	0,193	0,194	0,125	não essencial
YLR189C/	218,7	50,24	0,230	0,238	0,126	não essencial
YLR190W/	631,6	314,26	0,498	0,316	0,143	não essencial
YLR191W/PAS20	277,8	32,31	0,116	0,151	0,081	não essencial
YLR192C/	892,1	164,07	0,184	0,208	0,301	não essencial
YLR193C/	326,5	38,30	0,117	0,117	0,100	não essencial
YLR194C/	1873,2	813,27	0,434	0,421	0,119	não essencial
YLR195C/NMT1	679,4	54,05	0,080	0,096	0,189	essencial
YLR196W/PWP1	815,4	143,69	0,176	0,167	0,239	essencial
YLR197W/SIK1	1575,4	508,07	0,323	0,323	0,370	essencial
YLR198C/	1083,3	562,08	0,519	0,456	0,135	essencial
YLR199C/	366,8	70,97	0,193	0,158	0,110	não essencial
YLR200W/YKE2	1245,6	188,92	0,152	0,160	0,162	não essencial
YLR201C/	190,7	39,32	0,206	0,176	0,183	não essencial
YLR202C/_ex2	100,4	22,98	0,229	0,166	0,078	não essencial
YLR203C/MSS51	297,3	53,90	0,181	0,150	0,155	não essencial
YLR204W/QRI5	1284,8	371,06	0,289	0,236	0,085	não essencial
YLR205C/	250,3	104,44	0,417	0,333	0,121	não essencial
YLR206W/	886,4	198,14	0,224	0,197	0,183	não essencial
YLR207W/	99,6	21,31	0,214	0,228	0,142	não essencial

YLR208W/SEC13	865,9	145,17	0,168	0,168	0,263	essencial
YLR209C/	308,5	55,45	0,180	0,218	0,135	não essencial
YLR210W/CLB4	236,8	64,64	0,273	0,256	0,131	não essencial
YLR211C/	110,7	31,85	0,288	0,257	0,141	não essencial
YLR212C/TUB4	158,2	59,85	0,378	0,327	0,132	essencial
YLR213C/	39,6	6,21	0,157	0,111	0,109	não essencial
YLR214W/FRE1	174,1	44,95	0,258	0,205	0,145	não essencial
YLR215C/	265,5	52,63	0,198	0,182	0,142	essencial
YLR216C/CPR6	1084,4	593,19	0,547	0,185	0,253	não essencial
YLR217W/	326,2	287,92	0,883	0,414	0,157	não essencial
YLR218C/	236,9	99,23	0,419	0,323	0,107	não essencial
YLR219W/	370,2	109,59	0,296	0,297	0,124	não essencial
YLR220W/	196,9	47,85	0,243	0,217	0,120	não essencial
YLR221C/	1090,2	148,65	0,136	0,159	0,170	não essencial
YLR222C/	413,5	61,60	0,149	0,173	0,167	essencial
YLR223C/IFH1	569,1	136,40	0,143	0,173	0,154	essencial
YLR224W/	339,4	50,65	0,149	0,272	0,134	não essencial
YLR225C/	454,9	89,40	0,149	0,171	0,118	não essencial
YLR226W/	158,2	31,06	0,197	0,174	0,130	não essencial
YLR227C/	632,0	91,12	0,196	0,200	0,130	não essencial
YLR228C/	84,6	26,80	0,144	0,139	0,120	não essencial
YLR229C/CDC42	1393,1	231,36	0,317	0,341	0,122	
YLR230W/	1076,9	170,76	0,159		·	essencial
			•	0,156	0,081	essencial
YLR231C/	283,4	91,29	0,322	0,235	0,145	não essencial
YLR233C/EST1	187,8	59,94	0,319	0,275	0,135	não essencial
YLR234W/TOP3	81,3	29,21	0,359	0,336	0,103	não essencial
YLR235C/	21,1	16,37	0,777	1,427	0,053	não essencial
YLR236C/	85,5	39,51	0,462	0,351	0,092	não essencial
YLR237W/	348,3	110,87	0,318	0,230	0,330	não essencial
YLR238W/	183,8	35,86	0,195	0,145	0,111	não essencial
YLR239C/	288,1	66,00	0,229	0,201	0,130	não essencial
YLR240W/VPS34	322,6	67,90	0,210	0,171	0,129	não essencial
YLR241W/	267,0	58,89	0,221	0,131	0,110	não essencial
YLR242C/	83,8	24,74	0,295	0,228	0,108	não essencial
YLR243W/	940,0	122,70	0,131	0,150	0,127	essencial
YLR244C/MAP1	1152,6	186,75	0,162	0,131	0,291	não essencial
YLR245C/	84,4	20,22	0,240	0,155	0,119	não essencial
YLR246W/	278,9	35,45	0,127	0,077	0,098	não essencial
YLR247C/	150,5	25,00	0,166	0,165	0,136	não essencial
YLR248W/RCK2	522,0	96,65	0,185	0,211	0,172	não essencial
YLR249W/YEF3	2325,3	980,14	0,422	0,405	0,778	essencial
YLR250W/SSP120	474,9	119,67	0,252	0,262	0,195	não essencial
YLR251W/	171,6	60,98	0,355	0,239	0,172	não essencial
YLR252W/	229,5	107,39	0,468	0,184	0,101	não essencial
YLR253W/	129,4	36,64	0,283	0,269	0,128	não essencial
YLR254C/	828,9	309,04	0,373	0,332	0,105	não essencial
YLR257W/	1049,5	202,59	0,193	0,181	0,153	não essencial
YLR258W/GSY2	274,2	103,66	0,378	0,260	0,165	não essencial
YLR259C/HSP60	1358,1	320,85	0,236	0,216	0,382	essencial
YLR260W/	206,2	44,38	0,215	0,199	0,129	não essencial
YLR261C/YPT6_f	857,7	153,90	0,179	0,148	0,061	não essencial
YLR261C/YPT6_i	106,1	34,66	0,327	0,309	0,061	não essencial
YLR262C/	226,5	39,38	0,174	0,228	0,161	não essencial
YLR263W/RED1	438,2	83,02	0,189	0,189	0,161	não essencial
YLR264W/RPS33B	2575,9	718,83	0,279	0,297	0,561	não essencial
YLR265C/	312,5	47,43	0,152	0,161	0,129	não essencial

YLR266C/	161,0	52,39	0,325	0,247	0,130	não essencial
YLR267W/	43,6	11,25	0,258	0,297	0,163	não essencial
YLR268W/SEC22	693,8	84,23	0,121	0,123	0,189	não essencial
YLR269C/	286,6	74,03	0,258	0,196	0,093	não essencial
YLR270W/	276,2	78,93	0,286	0,191	0,254	não essencial
YLR271W/	211,1	42,55	0,202	0,105	0,120	não essencial
YLR272C/	168,8	39,31	0,233	0,167	0,133	essencial
YLR273C/PIG1	102,5	45,57	0,444	0,352	0,138	não essencial
YLR274W/CDC46	247,1	94,06	0,381	0,244	0,175	essencial
YLR275W/_ex1	279,7	54,36	0,194	0,207	0,128	essencial
YLR276C/	1420,9	232,19	0,163	0,178	0,180	essencial
YLR277C/	212,1	44,01	0,208	0,256	0,147	essencial
YLR278C/	373,5	87,58	0,235	0,212	0,137	não essencial
YLR279W/	151,1	45,93	0,304	0,237	0,054	não essencial
YLR280C/_f	178,6	55,37	0,310	0,273	0,041	não essencial
YLR281C/	161,4	63,72	0,395	1,789	0,056	não essencial
YLR283W/	249,9	45,68	0,183	0,207	0,154	não essencial
YLR284C/	119,1	16,63	0,140	0,100	0,123	não essencial
YLR285W/	574,7	83,66	0,146	0,106	0,161	não essencial
YLR286C/CTS1	701,2	435,08	0,621	0,610	0,210	não essencial
YLR287C/	292,5	47,82	0,163	0,217	0,143	não essencial
YLR287C-a/RPS30A_ex1_f	3424,9	1680,68	0,491	0,414	0,642	não essencial
YLR288C/MEC3	141,2	31,22	0,221	0,250	0,108	não essencial
YLR289W/GUF1	116,6	18,89	0,162	0,121	0,107	não essencial
YLR290C/	548,2	114,74	0,209	0,182	0,138	não essencial
YLR291C/GCD7	468,1	72,22	0,154	0,160	0,167	essencial
YLR292C/SEC72	989,2	156,83	0,159	0,158	0,144	não essencial
YLR293C/GSP1	2097,4	525,72	0,251	0,244	0,621	não essencial
YLR294C/	2717,4	884,99	0,326	0,385	0,145	não essencial
YLR295C/ATP14	1165,0	316,95	0,272	0,214	0,231	não essencial
YLR297W/	1195,1	391,42	0,328	0,243	0,108	não essencial
YLR298C/	662,4	45,06	0,068	0,072	0,127	essencial
YLR299W/	216,1	45,19	0,209	0,161	0,117	não essencial
YLR300W/EXG1	2407,1	773,22	0,321	0,325	0,345	não essencial
YLR303W/MET25	2094,9	514,07	0,245	0,221	0,460	não essencial
YLR304C/ACO1	1495,4	592,24	0,396	0,268	0,462	não essencial
YLR305C/STT4	276,4	40,50	0,147	0,167	0,144	essencial
YLR306W/UBC12_ex1	167,2	51,56	0,308	0,387	0,131	não essencial
YLR307W/	25,8	16,04	0,621	0,564	0,123	não essencial
YLR309C/IMH1	494,0	76,93	0,156	0,136	0,153	não essencial
YLR310C/CDC25	362,6	52,00	0,143	0,104	0,130	essencial
YLR312C/	33,8	13,62	0,403	0,398	0,118	não essencial
YLR313C/	105,5	80,39	0,762	0,579	0,118	não essencial
YLR314C/CDC3	614,7	112,01	0,182	0,197	0,183	essencial
YLR315W/	93,2	15,67	0,168	0,167	0,083	não essencial
YLR316C/	443,0	72,30	0,163	0,167	0,096	essencial
YLR317W/	226,6	25,73	0,114	0,137	0,096	essencial
YLR318W/	194,3	66,44	0,342	0,228	0,147	não essencial
YLR321C/SFH1	258,9	45,45	0,176	0,116	0,172	essencial
YLR322W/	42,9	15,14	0,353	0,376	0,186	não essencial
YLR323C/	278,2	36,45	0,131	0,116	0,119	essencial
YLR324W/	246,5	67,58	0,274	0,155	0,129	não essencial
YLR325C/	3921,6	1905,43	0,486	0,443	0,775	não essencial
YLR326W/	229,2	115,07	0,502	0,577	0,111	não essencial
YLR327C/	1367,1	515,20	0,377	0,420	0,233	não essencial
YLR328W/	339,2	51,09	0,151	0,117	0,209	não essencial

YLR329W/REC102	101,1	21,86	0,216	0,173	0,097	não essencial
YLR330W/	1171,8	213,20	0,182	0,185	0,152	não essencial
YLR331C/	249,2	41,01	0,165	0,211	0,111	não essencial
YLR332W/MID2	608,8	95,08	0,156	0,149	0,125	não essencial
YLR333C/RPS31 f	3170,4	1204,28	0,380	0,362	0,612	não essencial
YLR333C/RPS31 i	2195,5	796,06	0,363	0,393	0,612	não essencial
YLR334C/	59,9	33,13	0,553	0,571	0,124	não essencial
YLR335W/NUP2	779,6	108,19	0,139	0,133	0,143	não essencial
YLR336C/	392,4	81,05	0,207	0,182	0,144	essencial
YLR338W/	39,6	14,47	0,365	0,413	0,057	não essencial
YLR339C/	1369,1	517,17	0,378	0,337	0,092	essencial
YLR340W/RPL10E	2273,9	990,76	0,436	0,384	0,794	essencial
YLR341W/	55,1	13,53	0,436	0,304	0,754	não essencial
YLR342W/GLS1	1589,1	327,06	0,240	0,179	0,132	não essencial
YLR343W/	129,0	45,48	0,200	0,224	· ·	
	· ·				0,137	não essencial
YLR344W/_ex1_f	2168,5	842,13	0,388	0,452	0,631	não essencial
YLR344W/_ex1_i	829,4	238,40	0,287	0,253	0,631	não essencial
YLR345W/	218,3	64,59	0,296	0,183	0,111	não essencial
YLR346C/	140,4	62,03	0,442	0,185	0,129	não essencial
YLR347C/KAP95	549,1	60,75	0,111	0,120	0,195	essencial
YLR348C/	1142,4	298,38	0,261	0,171	0,128	não essencial
YLR349W/	778,1	275,49	0,354	0,224	0,076	não essencial
YLR350W/	1191,1	243,50	0,204	0,175	0,117	não essencial
YLR351C/	628,4	123,19	0,196	0,189	0,121	não essencial
YLR352W/	77,4	22,40	0,290	0,270	0,165	não essencial
YLR353W/BUD8	251,6	90,54	0,360	0,199	0,105	não essencial
YLR354C/TAL1	1491,1	434,39	0,291	0,230	0,580	não essencial
YLR355C/ILV5	3015,8	994,17	0,330	0,348	0,802	essencial
YLR356W/	235,8	53,38	0,226	0,223	0,155	não essencial
YLR357W/	430,8	63,25	0,147	0,120	0,146	não essencial
YLR358C/	196,4	55,64	0,283	0,206	0,098	não essencial
YLR359W/	844,2	144,43	0,171	0,153	0,312	essencial
YLR360W/	300,5	55,02	0,183	0,153	0,118	não essencial
YLR361C/	120,8	21,32	0,176	0,200	0,126	não essencial
YLR362W/STE11	155,1	28,34	0,183	0,180	0,142	não essencial
YLR363C/NMD4	87,2	19,27	0,221	0,236	0,216	não essencial
YLR364W/	230,6	63,35	0,275	0,227	0,194	não essencial
YLR366W/	21,4	6,81	0,319	0,320	0,109	não essencial
YLR367W/RPS24B_ex1	753,9	172,66	0,229	0,278	0,523	não essencial
YLR367W/RPS24B_ex2_f	3786,8	1367,04	0,361	0,371	0,523	não essencial
YLR367W/RPS24B ex2 i	2826,1	1051,99	0,372	0,405	0,523	não essencial
YLR368W/	270,6	52,05	0,192	0,103	0,120	não essencial
YLR369W/	138,4	35,68	0,258	0,316	0,148	não essencial
YLR370C/	793,7	162,16	0,204	0,158	0,158	não essencial
YLR371W/	209,3	31,05	0,148	0,177	0,153	não essencial
YLR372W/SUR4	1330,8	251,35	0,189	0,180	0,372	não essencial
YLR373C/	480,5	118,51	0,103	0,193	0,145	não essencial
YLR374C/	42,4	14,63	0,345	0,353	0,095	não essencial
YLR375W/STP3	663,8	107,77	0,343	0,333	0,093	não essencial
YLR376C/	298,3	89,08	0,102	0,130	0,120	não essencial
YLR377C/FBP1	65,7	16,48	0,299	0,240	0,113	não essencial
YLR378C/SEC61	1385,9	282,23	0,204	0,099	0,180	essencial
				0,194		
YLR379W/	317,9	61,77	0,194		0,087	essencial
YLR380W/	1039,6	313,50	0,302	0,255	0,245	não essencial
YLR381W/	127,7	48,30	0,378	0,325	0,135	não essencial
YLR382C/NAM2	135,2	45,17	0,334	0,294	0,133	não essencial

YLR383W/	312,2	151,66	0,486	0,385	0,151	essencial
YLR384C/	420,3	50,51	0,120	0,151	0,181	não essencial
YLR386W/	291,7	84,82	0,291	0,239	0,135	não essencial
YLR387C/	314,3	36,03	0,115	0,094	0,173	não essencial
YLR388W/ f	3606,6	1639,98	0,455	0,415	0,653	não essencial
YLR388W/ i	1293,1	655,04	0,507	0,551	0,653	não essencial
YLR389C/STE23	474,4	72,48	0,153	0,138	0,164	não essencial
YLR390W/	649,6	121,05	0,186	0,163	0,131	não essencial
YLR392C/	283,1	48,79	0,172	0,194	0,112	não essencial
YLR393W/ATP10	19,8	8,84	0,447	1,544	0,128	não essencial
YLR394W/	220,6	72,65	0,329	2,513	0,107	não essencial
YLR395C/COX8	967,0	324,38	0,335	0,246	0,225	não essencial
YLR396C/VPS33	194,6	32,81	0,169	0,165	0,120	não essencial
YLR397C/AFG2	266,0	34,78	0,131	0,146	0,130	essencial
YLR398C/SKI2	328,3	50,91	0,155	0,094	0,178	não essencial
YLR399C/BDF1	521,5	100,87	0,193	0,125	0,127	não essencial
YLR400W/	115,6	24,45	0,211	0,287	0,127	não essencial
YLR401C/	296,4	50,82	0,171	0,191	0,127	não essencial
YLR402W/	31,5	10,35	0,328	0,382	0,080	não essencial
YLR403W/SFP1	320,7	66,27	0,320	0,362	0,163	não essencial
YLR404W/	151,1	28,21	0,207	0,136	0,103	não essencial
YLR405W/	121,2	30,72	0,167	0,130	0,114	não essencial
YLR406C/ ex1 f	4823,8	1575,18	0,327	0,459	0,630	não essencial
YLR406C/ ex2 f	3114,5	1545,60	0,496	0,377	0,630	não essencial
YLR406C/_ex2_i	2133,4	819,54	0,384	0,377	0,630	não essencial
YLR407W/	430,1	85,92	0,200	0,157	0,121	não essencial
YLR408C/	432,4	80,97	0,187	0,177	0,125	não essencial
YLR409C/	752,2	114,46	0,152	0,147	0,176	essencial
YLR410W/	586,6	74,20	0,126	0,088	0,170	não essencial
YLR411W/	67,6	21,43	0,317	0,118	0,141	não essencial
YLR412W/	600,9	97,83	0,163	0,149	0,118	não essencial
YLR413W/	735,0	354,62	0,482	0,329	0,193	não essencial
YLR414C/	1034,7	260,37	0,252	0,289	0,105	não essencial
YLR415C/	38,8	9,02	0,232	0,195	0,163	não essencial
YLR416C/	18,4	6,21	0,339	0,371	0,109	não essencial
YLR417W/	105,7	15,78	0,149	0,125	0,114	não essencial
YLR418C/CDC73	240,5	41,32	0,172	0,167	0,136	não essencial
YLR420W/URA4	673,4	99,23	0,147	0,185	0,149	não essencial
YLR421C/	1016,9	207,90	0,204	0,211	0,162	não essencial
YLR422W/	249,0	42,12	0,169	0,143	0,119	não essencial
YLR423C/	127,5	34,07	0,267	0,161	0,153	não essencial
YLR424W/	96,5	22,92	0,237	0,218	0,130	essencial
YLR425W/	267,4	39,90	0,149	0,174	0,125	não essencial
YLR426W/_ex1	75,2	17,57	0,234	0,231	0,075	não essencial
YLR426W/_ex2	218,1	33,32	0,153	0,196	0,075	não essencial
YLR427W/	372,6	43,18	0,116	0,119	0,141	não essencial
YLR428C/	124,9	36,41	0,292	0,306	0,105	não essencial
YLR429W/	602,9	126,00	0,209	0,187	0,177	não essencial
YLR430W/SEN1	564,8	130,39	0,231	0,167	0,177	essencial
YLR431C/	215,2	53,93	0,251	0,203	0,106	não essencial
YLR432W/	346,7	61,90	0,231	0,210	0,100	não essencial
YLR433C/CNA1	130,9	24,37	0,179	0,168	0,161	não essencial
YLR434C/	111,2	22,40	0,100	0,100	0,159	não essencial
YLR435W/	587,5	96,39	0,201	0,223	0,139	não essencial
YLR436C/	254,4	45,89	0,180	0,160	0,203	não essencial
YLR437C/	951,5	242,80	0,180	0,160	0,137	não essencial
1 L1(437 0/	301,0	272,00	0,200	0,230	0,000	nau cosciludi

YLR438W/CAR2	118,3	26,46	0,224	0,238	0,292	não essencial
YLR439W/MRPL4	386,9	82,49	0,213	0,218	0,165	não essencial
YLR440C/	383,5	38,85	0,101	0,107	0,126	essencial
YLR441C/RP10B_f	2032,5	1073,85	0,528	0,424	0,696	não essencial
YLR441C/RP10B i	2556,8	1201,17	0,470	0,429	0,696	não essencial
YLR442C/SIR3	158,0	31,45	0,199	0,203	0,122	não essencial
YLR443W/	405,5	54,72	0,135	0,152	0,102	não essencial
YLR444C/	423,0	99,97	0,236	0,260	0,068	não essencial
YLR445W/	51,5	17,98	0,349	0,359	0,201	não essencial
YLR446W/	197,4	33,83	0,171	0,125	0,121	não essencial
YLR447C/VMA6	1359,4	226,19	0,166	0,119	0,248	não essencial
YLR448W/RPL16B_ex1	2342,9	728,44	0,311	0,320	0,627	não essencial
YLR449W/	1620,8	341,31	0,211	0,214	0,255	não essencial
YLR450W/HMG2	165,9	42,36	0,255	0,247	0,163	não essencial
YLR451W/LEU3	258,6	54,54	0,211	0,282	0,118	não essencial
YLR452C/SST2	194,8	63,69	0,327	0,279	0,150	não essencial
YLR453C/	119,9	27,03	0,225	0,218	0,136	não essencial
YLR454W/	445,8	163,13	0,366	0,443	0,152	não essencial
YLR455W/	295,8	85,41	0,289	0,292	0,131	não essencial
YLR456W/	264,6	46,87	0,177	0,129	0,119	não essencial
YLR457C/NBP1	186,5	66,89	0,359	0,286	0,118	essencial
YLR458W/	25,1	14,18	0,564	1,030	0,096	essencial
YLR459W/CDC91	382,1	59,41	0,155	0,136	0,115	essencial
YLR460C/	384,3	50,83	0,132	0,149	0,185	não essencial
YLR461W/PAU4_f	545,6	108,16	0,198	0,185	0,654	não essencial
YML001W/YPT7	949,5	163,45	0,172	0,139	0,177	não essencial
YML002W/	185,7	40,27	0,217	0,186	0,130	não essencial
YML004C/GLO1	498,9	110,93	0,222	0,131	0,195	não essencial
YML005W/	227,9	36,76	0,161	0,167	0,121	não essencial
YML006C/	712,4	106,29	0,149	0,121	0,143	não essencial
YML007W/YAP1	408,8	59,93	0,147	0,120	0,146	não essencial
YML008C/ERG6	2140,8	807,16	0,377	0,371	0,308	não essencial
YML009c/MRPL39	723,5	246,61	0,341	0,419	0,131	não essencial
YML010W/	386,5	75,56	0,196	0,284	0,199	essencial
YML010W-a/_r	265,6	65,39	0,246	0,264	0,028	não essencial
YML011C/	271,4	46,18	0,170	0,193	0,111	não essencial
YML012W/	1751,8	421,30	0,240	0,317	0,214	não essencial
YML013C-a/	65,1	16,22	0,249	0,249	0,073	não essencial
YML013W/	92,8	20,84	0,225	0,202	0,139	não essencial
YML014W/	198,4	35,31	0,178	0,187	0,124	não essencial
YML015C/	654,6	55,53	0,085	0,093	0,150	essencial
YML016C/PPZ1	383,6	80,23	0,209	0,215	0,164	não essencial
YML017W/PSP2	208,4	36,65	0,176	0,121	0,131	não essencial
YML018C/	705,9	171,99	0,244	0,200	0,122	não essencial
YML019W/	230,1	61,85	0,269	0,302	0,132	não essencial
YML020W/	127,6	29,18	0,229	0,161	0,125	não essencial
YML021C/UNG1	260,5	86,68	0,333	0,244	0,110	não essencial
YML022W/APT1	1315,9	333,05	0,253	0,274	0,255	não essencial
YML023C/	241,8	49,59	0,205	0,218	0,106	essencial
YML024W/_ex1_f	2320,9	1150,64	0,496	0,481	0,810	não essencial
YML025C/_ex1	394,2	73,06	0,185	0,146	0,155	essencial
YML026C/_ex2	3924,2	1560,68	0,398	0,464	0,733	não essencial
YML027W/YOX1	566,1	369,59	0,653	0,853	0,130	não essencial
YML028W/TSA1	3499,5	1274,09	0,364	0,339	0,714	não essencial
YML029W/	214,8	46,15	0,215	0,121	0,127	não essencial
YML030W/	311,2	110,41	0,355	0,220	0,144	não essencial

YML031W/NDC1	468,2	84,37	0,180	0,241	0,114	essencial
YML032C/RAD52	193,2	27,13	0,140	0,116	0,129	não essencial
YML034W/	119,4	60,20	0,504	0,443	0,130	não essencial
YML035C/AMD1	220,8	53,49	0,242	0,276	0,190	não essencial
YML035C-a/	45,6	18,65	0,409	0,307	0,103	não essencial
YML036W/	432,6	56,48	0,131	0,159	0,109	não essencial
YML037C/	85,5	21,03	0,246	0,258	0,137	não essencial
YML038C/	266,9	66,10	0,248	0,183	0,121	não essencial
YML041C/	159,8	25,42	0,159	0,169	0,106	não essencial
YML042W/CAT2	120,5	42,92	0,356	0,244	0,175	não essencial
YML043C/	300,7	51,49	0,171	0,181	0,155	essencial
YML046W/PRP39	407,4	66,67	0,164	0,206	0,123	essencial
YML047C/	12,0	7,14	0,595	0,751	0,113	não essencial
YML048W/EFF2	280,8	53,91	0,192	0,150	0,194	não essencial
YML049C/	132,4	15,00	0,113	0,121	0,132	essencial
YML050W/	102,0	19,88	0,115	0,173	0,167	não essencial
YML051W/GAL80	446,3	51,33	0,135	0,100	0,136	não essencial
YML052W/	1289,4	480,89	0,113	0,100	0,130	não essencial
YML053C/	1508,6	333,24	0,373	0,230	0,145	não essencial
YML054C/CYB2	105,5	42,06	0,221	0,248	0,155	não essencial
YML054C/CYB2	501,5	104,98	0,399	0,227		não essencial
	713,9				0,145	
YML056C/_ex1	·	133,26	0,187 0,260	0,216	0,471	não essencial
YML056C/_ex2	1873,8	487,40		0,302	0,471	não essencial
YML057W/CMP2	199,8	48,08	0,241	0,145	0,151	não essencial
YML058W/	2200,8	525,23	0,239	0,249	0,282	não essencial
YML059C/	399,0	117,77	0,295	0,289	0,162	não essencial
YML060W/OGG1	169,5	92,61	0,546	0,356	0,145	não essencial
YML061C/PIF1	726,7	248,95	0,343	0,274	0,134	não essencial
YML062C/MFT1	353,9	59,10	0,167	0,147	0,108	não essencial
YML063W/	2477,4	1423,81	0,575	0,501	0,769	não essencial
YML064C/TEM1	429,1	116,47	0,271	0,227	0,074	essencial
YML065W/ORC1	257,4	59,40	0,231	0,291	0,137	essencial
YML066C/	49,1	7,34	0,150	0,167	0,093	não essencial
YML067C/_ex1	1057,8	229,66	0,217	0,202	0,174	não essencial
YML068W/	178,4	39,16	0,219	0,216	0,127	não essencial
YML069W/POB3	835,2	168,30	0,202	0,197	0,193	essencial
YML070W/	411,3	101,71	0,247	0,180	0,217	não essencial
YML071C/	302,3	51,94	0,172	0,178	0,150	não essencial
YML072C/	496,4	98,45	0,198	0,139	0,206	não essencial
YML074C/NPI46	2026,4	519,01	0,256	0,261	0,366	não essencial
YML075C/HMG1	931,8	340,32	0,365	0,209	0,195	não essencial
YML076C/	240,9	27,33	0,113	0,126	0,138	não essencial
YML077W/	637,9	130,06	0,204	0,198	0,115	essencial
YML078W/CPR3	1010,8	246,63	0,244	0,230	0,308	não essencial
YML079W/	486,7	100,77	0,207	0,208	0,157	não essencial
YML080W/	677,5	165,44	0,244	0,220	0,168	não essencial
YML081W/	449,5	56,70	0,126	0,106	0,146	não essencial
YML082W/	189,2	50,55	0,267	0,274	0,105	não essencial
YML083C/	96,2	38,02	0,395	0,291	0,114	não essencial
YML085C/_ex1	872,9	199,81	0,229	0,219	0,277	essencial
YML086C/	648,1	126,10	0,195	0,156	0,217	não essencial
YML087C/	139,4	22,51	0,162	0,172	0,106	não essencial
YML088W/	699,6	105,67	0,151	0,126	0,121	não essencial
YML089C/	21,6	9,18	0,424	0,379	0,077	não essencial
YML090W/	43,3	21,86	0,505	0,411	0,095	não essencial
YML091C/RPM2	302,2	123,19	0,408	0,352	0,179	essencial
	,-		-,	,,,	-,	

YML092C/PRE8	1232,4	237,67	0,193	0,173	0,143	essencial
YML093W/	1284,3	240,76	0,187	0,220	0,225	essencial
YML094W/_ex1	1145,7	218,26	0,191	0,218	0,183	não essencial
YML095C/RAD10	169,6	47,73	0,281	0,300	0,116	não essencial
YML095C-a/	380,1	73,54	0,194	0,168	0,099	não essencial
YML096W/	208,3	31,07	0,149	0,196	0,114	não essencial
YML097C/VPS9	511,6	77,77	0,152	0,178	0,140	não essencial
YML098W/FUN81	519,9	57,71	0,111	0,110	0,102	essencial
YML099C/ARG81	234,6	32,14	0,137	0,135	0,136	não essencial
YML100W/TSL1	202,5	107,62	0,532	0,221	0,164	não essencial
YML100W-a/	449,5	58,90	0,131	0,134	0,064	não essencial
YML101C/	585,1	264,36	0,452	0,440	0,082	não essencial
YML102C-a/	249,5	147,03	0,589	0,467	0,091	não essencial
YML102W/	274,5	151,68	0,553	0,419	0,080	não essencial
YML103C/NUP188	391,0	74,48	0,190	0,413	0,000	não essencial
YML104C/MDM1	345,1	65,80	0,190	0,196	0,133	não essencial
YML105C/SEC65	· ·	·				
	971,3	154,21	0,159	0,208	0,173	essencial
YML106W/URA5	2153,4	697,41	0,324	0,274	0,256	não essencial
YML107C/	152,3	28,86	0,189	0,219	0,128	não essencial
YML108W/	507,9	110,36	0,217	0,200	0,184	não essencial
YML109W/ZDS2	268,0	88,48	0,330	0,251	0,144	não essencial
YML110C/	836,6	278,99	0,333	0,221	0,182	não essencial
YML111W/	239,4	49,37	0,206	0,181	0,144	não essencial
YML112W/CTK3	384,2	47,21	0,123	0,095	0,147	não essencial
YML113W/DAT1	1472,4	339,97	0,231	0,194	0,081	não essencial
YML114C/	829,9	148,52	0,179	0,193	0,118	essencial
YML115C/VAN1	388,2	43,94	0,113	0,142	0,146	não essencial
YML116W/ATR1	324,4	95,16	0,293	0,202	0,097	não essencial
YML117W/	293,3	77,14	0,263	0,284	0,130	não essencial
YML117W-a/	686,2	141,73	0,207	0,236	0,053	não essencial
YML119W/	654,2	311,55	0,476	0,336	0,100	não essencial
YML120C/NDI1	249,2	92,85	0,373	0,267	0,190	não essencial
YML121W/GTR1	371,9	44,21	0,119	0,114	0,123	não essencial
YML122C/	39,6	9,40	0,237	0,241	0,094	não essencial
YML123C/PHO84	2635,5	663,20	0,252	0,250	0,461	não essencial
YML124C/_ex1	1234,8	177,79	0,144	0,152	0,241	não essencial
YML125C/	715,9	109,95	0,154	0,171	0,205	essencial
YML126C/	1268,2	444,47	0,350	0,291	0,401	essencial
YML127W/	594,6	63,79	0,107	0,095	0,129	essencial
YML128C/	137,0	64,50	0,471	0,177	0,230	não essencial
YML129C/COX14	819,7	193,23	0,236	0,184	0,189	não essencial
YML130C/	607,7	274,14	0,451	0,150	0,217	essencial
YML131W/	147,3	42,12	0,286	0,192	0,204	não essencial
YMR001C/CDC5	315,5	167,52	0,531	0,301	0,166	essencial
YMR002W/	1524,8	346,50	0,227	0,219	0,175	não essencial
YMR003W/	956,8	477,23	0,499	0,373	0,126	não essencial
YMR004W/MVP1	240,5	39,36	0,164	0,149	0,150	não essencial
YMR005W/MPT1	922,9	160,89	0,174	0,180	0,124	essencial
YMR006C/	295,5	194,55	0,658	0,100	0,124	não essencial
YMR007W/	194,9	68,84	0,058	0,417	0,203	não essencial
YMR008C/PLB1	825,4	235,54	0,353	0,301	0,121	
		· ·		-		não essencial
YMR009W/	1255,2	316,04	0,252	0,293	0,163	não essencial
YMR010W/	572,4	129,79	0,227	0,177	0,141	não essencial
YMR011W/HXT2	1063,6	474,41	0,446	0,395	0,359	não essencial
YMR012W/	1075,1	178,46	0,166	0,163	0,227	não essencial
YMR013C/SEC59	264,5	46,01	0,174	0,179	0,104	essencial

YMR014W/	613,2	94,87	0,155	0,128	0,161	não essencial
YMR015C/ERG5	891,2	235,27	0,264	0,125	0,363	não essencial
YMR016C/	498,1	111,36	0,224	0,162	0,119	não essencial
YMR017W/	59,5	26,29	0,442	0,157	0,130	não essencial
YMR018W/	103,6	31,30	0,302	0,184	0,121	não essencial
YMR019W/STB4	303,8	43,58	0,143	0,121	0,134	não essencial
YMR020W/FMS1	233,8	47,63	0,204	0,110	0,144	não essencial
YMR021C/MAC1	356,1	62,54	0,176	0,180	0,141	não essencial
YMR022W/QRI8	967,1	150,14	0,155	0,157	0,135	não essencial
YMR023C/MSS1	132,8	36,89	0,278	0,241	0,117	não essencial
YMR024W/	368,6	112,56	0,305	0,305	0,123	não essencial
YMR025W/	139,5	36,42	0,261	0,336	0,128	não essencial
YMR026C/	331,2	48,61	0,147	0,161	0,097	não essencial
YMR027W/	427,6	69,49	0,163	0,135	0,188	não essencial
YMR028W/TAP42	316,5	43,59	0,138	0,136	0,147	essencial
YMR029C/	290,7	51,06	0,136	0,165	0,147	
		39,78				não essencial
YMR030W/	133,5	·	0,298	0,234	0,141	não essencial
YMR031C/	205,8	128,23	0,623	0,477	0,174	não essencial
YMR031W-a/	26,9	8,85	0,328	0,498	0,126	não essencial
YMR032W/	237,1	176,87	0,746	0,468	0,127	não essencial
YMR033W/_ex1	323,4	75,33	0,233	0,294	0,158	essencial
YMR034C/	63,4	25,83	0,407	0,205	0,115	não essencial
YMR035W/IMP2	220,6	65,80	0,298	0,208	0,089	não essencial
YMR036C/MIH1	275,6	61,93	0,225	0,268	0,121	não essencial
YMR037C/MSN2	259,5	49,70	0,192	0,185	0,133	não essencial
YMR038C/LYS7	1389,1	299,14	0,215	0,213	0,158	não essencial
YMR039C/	756,5	114,45	0,151	0,112	0,194	não essencial
YMR040W/	193,9	111,22	0,574	0,266	0,094	não essencial
YMR041C/	270,1	33,92	0,126	0,116	0,145	não essencial
YMR042W/ARG80	151,1	38,90	0,257	0,253	0,099	não essencial
YMR043W/MCM1	1706,6	298,66	0,175	0,191	0,123	essencial
YMR044W/	196,6	52,32	0,266	0,313	0,127	não essencial
YMR047C/NUP116	819,0	93,78	0,115	0,121	0,121	essencial
YMR048W/	102,6	67,39	0,657	0,494	0,136	não essencial
YMR049C/	844,8	130,57	0,155	0,190	0,229	essencial
YMR052C-a/	333,5	50,41	0,151	0,130	0,103	não essencial
YMR052W/FAR3	284,5	38,57	0,136	0,092	0,111	não essencial
YMR053C/STB2	72,3	17,59	0,243	0,341	0,125	não essencial
YMR054W/STV1	418,1	79,62	0,190	0,213	0,158	não essencial
YMR055C/BUB2	85,9	24,81	0,289	0,207	0,093	não essencial
YMR056C/AAC1	190,8	55,04	0,288	0,248	0,116	não essencial
YMR057C/	26,7	13,43	0,503	0,416	0,055	não essencial
YMR058W/FET3	269,8	205,44	0,762	0,300	0,217	não essencial
YMR059W/	527,2	110,53	0,210	0,288	0,081	essencial
YMR060c/TOM37	281,2	46,72	0,166	0,174	0,121	não essencial
YMR061W/RNA14	708,6	110,70	0,156	0,161	0,149	essencial
YMR062C/	870,5	265,46	0,305	0,199	0,170	não essencial
YMR063W/	17,8	7,10	0,400	0,728	0,104	não essencial
YMR064W/AEP1	370,8	68,35	0,184	0,203	0,117	não essencial
YMR065W/	127,2	25,66	0,202	0,120	0,116	não essencial
YMR066W/	108,6	18,79	0,202	0,120	0,113	não essencial
YMR067C/	243,2	40,60	0,173	0,228	0,123	não essencial
YMR068W/	245,2	51,18	0,107	0,173	0,146	não essencial
YMR069W/	94,1	40,67	0,432	0,282	0,080	não essencial
YMR070W/HMS1	584,4	157,65	0,270	0,238	0,129	não essencial
YMR071C/	1188,8	288,19	0,242	0,223	0,104	não essencial

YMR072W/ABF2	735,2	180,99	0,246	0,281	0,246	não essencial
YMR073C/	211,1	35,68	0,169	0,236	0,131	não essencial
YMR074C/	2138,6	504,84	0,236	0,311	0,243	não essencial
YMR075C-a/	179,1	54,42	0,304	0,305	0,142	não essencial
YMR075W/	384,5	76,31	0,198	0,225	0,164	não essencial
YMR076C/PDS5	697,9	369,90	0,530	0,518	0,162	essencial
YMR077C/	469,5	60,53	0,129	0,140	0,114	não essencial
YMR078C/CHL12	212,0	88,27	0,416	0,290	0,139	não essencial
YMR079W/_ex1	571,2	154,31	0,270	0,347	0,300	essencial
YMR080C/NAM7	448,7	84,52	0,188	0,232	0,204	não essencial
YMR081C/ISF1	197,0	44,24	0,225	0,268	0,139	não essencial
YMR083W/ADH3	575,0	157,14	0,273	0,252	0,300	não essencial
YMR085W/	28,5	11,80	0,414	0,363	0,142	não essencial
YMR086C-a/	442,6	135,56	0,306	0,245	0,074	não essencial
YMR086W/	277,9	80,84	0,291	0,278	0,125	não essencial
YMR087W/	216,6	40,25	0,186	0,135	0,097	não essencial
YMR088C/	180,4	31,68	0,176	0,124	0,116	não essencial
YMR089C/YTA12	641,4	101,33	0,158	0,129	0,175	não essencial
YMR090W/	164,4	67,34	0,410	0,123	0,191	não essencial
YMR091C/NPL6	377,6	89,74	0,410	0,299	0,142	não essencial
YMR092C/AIP1	624,9	130,81	0,209	0,194	0,142	não essencial
YMR093W/	531,9	89,85	0,209	0,134	0,148	essencial
YMR094W/CTF13	64,1	9,91	0,155	0,170	0,148	essencial
YMR095C/	46,2	29,53	0,639	1,357	0,110	não essencial
YMR096W/	82,1	29,53	0,039	0,323	0,142	não essencial
YMR097C/	163,2	26,54	0,200	0,323	0,102	não essencial
YMR098C/	256,5	85,24	0,103	0,210	0,104	não essencial
YMR099C/	725,4	128,95	0,332	0,343	0,137	não essencial
YMR100W/	275,1	69,96	0,176	0,173	0,293	
YMR101C/		· ·		· ·		não essencial não essencial
	20,6 290,2	11,09	0,539 0,244	0,393	0,126	
YMR102C/	· ·	70,75		0,190	0,126	não essencial
YMR103C/	238,9	77,94	0,326	0,379	0,061	não essencial
YMR104C/YPK2	97,6	23,94	0,245	0,328	0,131	não essencial
YMR105C/PGM2	107,5	52,49	0,488	0,392	0,308	não essencial
YMR106C/	63,7	16,79	0,264	0,316	0,124	não essencial
YMR108W/ILV2	1507,3	300,91	0,200	0,231	0,264	não essencial
YMR109W/	161,3	52,52	0,326	0,399	0,185	não essencial
YMR110C/	381,6	101,01	0,265	0,214	0,156	não essencial
YMR111C/	331,4	86,18	0,260	0,272	0,119	não essencial
YMR112C/	880,2	214,38	0,244	0,238	0,112	essencial
YMR113W/	510,6	74,42	0,146	0,135	0,119	essencial
YMR114C/	133,8	20,69	0,155	0,082	0,131	não essencial
YMR115W/	217,6	19,48	0,089	0,087	0,130	não essencial
YMR116C/_ex1	1826,2	1002,87	0,549	0,480	0,777	não essencial
YMR116C/_ex2	3092,6	2021,20	0,654	0,547	0,777	não essencial
YMR117C/	81,6	41,61	0,510	0,433	0,153	essencial
YMR118C/	177,8	33,89	0,191	0,161	0,108	não essencial
YMR119W/	191,2	31,88	0,167	0,198	0,139	não essencial
YMR119W-a/	288,5	71,56	0,248	0,237	0,082	não essencial
YMR120C/	282,4	68,54	0,243	0,197	0,322	não essencial
YMR121C/	548,5	150,86	0,275	0,293	0,436	não essencial
YMR122C/	47,4	17,49	0,369	0,341	0,076	não essencial
YMR123W/PKR1	2504,0	536,18	0,214	0,278	0,147	não essencial
YMR124W/	319,8	66,98	0,209	0,191	0,135	não essencial
YMR125W/	731,5	140,84	0,193	0,195	0,194	não essencial
YMR126C/	182,4	38,18	0,209	0,133	0,137	não essencial

YMR127C/SAS2	216,2	57,17	0,264	0,198	0,100	não essencial
YMR128W/	407,4	114,95	0,282	0,282	0,166	essencial
YMR129W/POM152	360,6	85,36	0,237	0,261	0,157	não essencial
YMR130W/	343,1	72,74	0,212	0,278	0,129	não essencial
YMR131C/	911,9	183,19	0,201	0,282	0,209	essencial
YMR132C/	421,4	86,67	0,206	0,225	0,135	não essencial
YMR133W/REC114	46,5	16,60	0,357	0,253	0,128	não essencial
YMR134W/	372,6	136,27	0,366	0,257	0,126	essencial
YMR135C/	322,4	49,75	0,154	0,136	0,091	não essencial
YMR136W/	326,1	87,25	0,268	0,259	0,172	não essencial
YMR137C/SNM1	102,8	11,32	0,110	0,109	0,124	não essencial
YMR138W/CIN4	251,2	53,13	0,211	0,202	0,090	não essencial
YMR139W/MDS1	139,8	45,08	0,323	0,238	0,155	não essencial
YMR140W/	82,7	12,23	0,148	0,123	0,155	não essencial
YMR141C/	496,8	113,33	0,228	0,244	0,099	não essencial
YMR142C/ ex1	1926,4	737,14	0,383	0,332	0,742	não essencial
YMR143W/_ex1_f	3119,7	1432,47	0,459	0,420	0,677	não essencial
YMR143W/_ex1_i	3812,3	1125,84	0,295	0,374	0,677	não essencial
YMR144W/	165,8	63,16	0,381	0,385	0,102	não essencial
YMR145C/	879,1	333,51	0,379	0,245	0,261	não essencial
YMR146C/TIF34	1967,8	365,56	0,186	0,227	0,295	essencial
YMR147W/	53,1	19,47	0,367	0,592	0,136	não essencial
YMR148W/	361,5	83,96	0,232	0,252	0,137	não essencial
YMR149W/SWP1	681,8	152,33	0,223	0,154	0,192	essencial
YMR150C/IMP1	481,6	110,97	0,230	0,114	0,091	não essencial
YMR151W/	44,9	11,01	0,245	0,278	0,115	não essencial
YMR152W/	164,2	53,38	0,325	0,260	0,221	não essencial
YMR153C-a/	404,1	117,38	0,290	0,347	0,141	não essencial
YMR153W/	391,2	51,39	0,131	0,139	0,109	não essencial
YMR154C/	78,5	21,55	0,275	0,468	0,115	não essencial
YMR155W/	87,6	25,35	0,289	0,375	0,097	não essencial
YMR156C/	132,9	49,45	0,372	0,262	0,151	não essencial
YMR157C/	265,4	71,46	0,269	0,161	0,167	não essencial
YMR158W/	594,8	130,56	0,219	0,231	0,128	não essencial
YMR158W-a/	35,1	10,18	0,290	0,323	0,157	não essencial
YMR160W/	94,2	18,74	0,199	0,205	0,127	não essencial
YMR161W/HLJ1	336,4	43,06	0,128	0,164	0,133	não essencial
YMR162C/	146,2	31,33	0,214	0,243	0,134	não essencial
YMR163C/	92,8	22,16	0,239	0,253	0,117	não essencial
YMR164C/	134,9	27,19	0,201	0,204	0,133	não essencial
YMR165C/SMP2	118,9	24,55	0,206	0,181	0,126	não essencial
YMR166C/	98,9	32,22	0,326	0,349	0,109	não essencial
YMR167W/MLH1	149,4	38,55	0,258	0,231	0,127	não essencial
YMR168C/CEP3	151,0	30,75	0,204	0,198	0,131	essencial
YMR169c/ALD4	75,0	29,19	0,389	0,171	0,178	não essencial
YMR170C/ALD5	122,1	38,48	0,315	0,151	0,167	não essencial
YMR171C/	169,9	22,24	0,131	0,159	0,122	não essencial
YMR172C-a/	191,6	54,51	0,284	0,319	0,154	não essencial
YMR172W/	54,0	24,04	0,445	0,575	0,109	não essencial
YMR173W/	349,3	152,94	0,438	0,213	0,354	não essencial
YMR173W-a/	1344,5	468,55	0,348	0,239	0,089	não essencial
YMR174c/PAI3	412,2	209,10	0,507	0,250	0,154	não essencial
YMR175w/SIP18	97,5	32,51	0,333	0,188	0,263	não essencial
YMR176W/	245,8	37,43	0,152	0,197	0,131	não essencial
YMR177W/	253,8	51,25	0,202	0,217	0,139	não essencial
YMR178W/	443,5	77,27	0,174	0,236	0,138	não essencial

YMR179W/SPT21	400.6	240.25	0.630	0.622	0.112	não coconcial
	498,6 344,5	318,35	0,638	0,622	0,112	não essencial
YMR180C/		65,98	0,192	0,130 0,190	0,141	não essencial não essencial
YMR181C/	565,4 237,1	185,97	0,329		0,179	
YMR182C/RGM1 YMR183C/SSO2		38,88	0,164	0,176	0,141	não essencial
	1211,7	314,44	0,260	0,269	0,250	não essencial não essencial
YMR184W/ YMR185W/	1014,4 260,1	195,96 64,01	0,193 0,246	0,263 0,231	0,149 0,147	
YMR186W/HSC82	1147,9	283,31	0,240	0,231	0,147	essencial não essencial
YMR187C/	174,9	30,43	0,247	0,211	0,361	não essencial
YMR188C/	785,9	248,29	0,174	0,132	0,109	não essencial
YMR189W/	322,8	161,08	0,310	0,207	0,189	não essencial
YMR190C/SGS1	75,6	39,79	0,499	0,191	0,139	não essencial
YMR191W/	463,9	73,41	0,320	0,388	0,139	não essencial
YMR192W/	220,9	42,10	0,138	0,109	0,123	
YMR193C-a/	96,5	21,45	0,191	0,132	0,134	não essencial não essencial
YMR193W/	606,1	178,90	0,222	0,332	0,103	não essencial
YMR194W/ ex1	3861,9	1363,52	0,293	0,187	0,175	não essencial
YMR195W/	773,2	399,51	0,553	0,476	0,020	
YMR196W/	124,8	33,49	0,517	0,350	0,156	não essencial não essencial
YMR197C/	533,5	102,04	0,266	0,199	0,177	
YMR198W/CIK1	129,6	45,71	0,191	0,146	0,110	essencial
YMR199W/CLN1	936,6	424,97	0,353	0,390	0,155	não essencial não essencial
YMR200W/	1337,8	175,73	0,434	0,740	0,155	essencial
YMR201C/_ex1	211,2	48,77	0,131	0,170	0,103	não essencial
YMR202W/ERG2	3986,1	1526,52	0,383	0,242	0,139	não essencial
YMR203W/TOM40	590,0	110,23	0,383	0,402	0,237	essencial
YMR204C/	97,6	24,08	0,187	0,132	0,274	não essencial
YMR205C/PFK2	2097,2	691,39	0,330	0,212	0,100	não essencial
YMR207C/HFA1	166,4	32,23	0,330	0,239	0,312	não essencial
YMR208W/ERG12	592,4	168,88	0,194	0,220	0,122	essencial
YMR209C/	443,7	100,00	0,247	0,204	0,101	não essencial
YMR210W/	276,9	47,85	0,173	0,140	0,114	não essencial
YMR211W/	374,7	65,07	0,173	0,147	0,138	essencial
YMR212C/	501,5	97,43	0,174	0,193	0,154	não essencial
YMR213W/	231,6	56,95	0,246	0,755	0,134	essencial
YMR214W/SCJ1	320,1	76,60	0,239	0,162	0,114	não essencial
YMR215W/	885,6	372,58	0,421	0,102	0,100	não essencial
YMR216C/	200,5	39,65	0,198	0,199	0,157	não essencial
YMR217W/GUA1	1730,2	379,79	0,220	0,133	0,462	não essencial
YMR218C/	219,0	34,43	0,157	0,199	0,130	essencial
YMR219W/	416,6	49,82	0,120	0,144	0,143	não essencial
YMR220W/ERG8	819,7	205,57	0,251	0,199	0,144	essencial
YMR221C/	357,8	76,23	0,213	0,133	0,144	não essencial
YMR222C/	295,9	86,97	0,294	0,309	0,098	não essencial
YMR223W/	142,1	30,78	0,217	0,257	0,163	não essencial
YMR224C/MRE11	179,8	35,82	0,199	0,168	0,135	não essencial
YMR225C/ ex1	373,6	101,73	0,272	0,307	0,135	não essencial
YMR225C/_ex2	1018,9	216,99	0,213	0,261	0,135	não essencial
YMR226C/	1570,6	396,33	0,252	0,285	0,100	não essencial
YMR227C/	374,1	45,50	0,122	0,203	0,200	essencial
YMR228W/MTF1	398,4	80,14	0,122	0,144	0,133	não essencial
YMR229C/FMI1	1069,2	228,34	0,214	0,211	0,133	essencial
YMR230W/ ex1	3352,8	1412,33	0,421	0,254	0,802	não essencial
YMR230W/_ex2_f	2406,7	1124,09	0,421	0,407	0,802	não essencial
YMR230W/_ex2_i	3131,4	1213,27	0,467	0,441	0,802	não essencial

YMR232W/FUS2	36,1	10,96	0,304	0,393	0,132	não essencial
YMR233W/	342,5	95,73	0,304	0,333	0,132	não essencial
YMR234W/RNH1	60,1	13,87	0,231	0,301	0,133	não essencial
YMR235C/RNA1	332,6	46,30	0,139	0,200	0,100	essencial
YMR236W/	762,5	115,16	0,151	0,178	0,082	essencial
YMR237W/	273,2	55,13	0,101	0,170	0,002	não essencial
YMR238W/	717,1	119,37	0,262	0,100	0,160	não essencial
YMR239C/RNT1	347,5	74,58	0,100	0,133	0,143	essencial
YMR240C/CUS1	194,6	33,33	0,213	0,202	0,145	essencial
YMR241W/	721,1	176,00	0,171	0,182	0,123	não essencial
YMR242C/	1275,9	478,12	0,244	0,102	0,328	não essencial
YMR243C/ZRC1	850,2	126,53	0,373	0,344	0,716	não essencial
YMR244C-a/	379,9	120,53	0,149	0,149	0,210	não essencial
YMR245W/	· ·	· ·			· ·	
	274,5	89,12	0,325	0,096	0,097	não essencial
YMR246W/FAA4	672,2	271,04	0,403	0,222	0,236	não essencial
YMR247C/	351,5	53,29	0,152	0,149	0,146	não essencial
YMR250W/	115,5	77,96	0,675	0,253	0,171	não essencial
YMR251W/	28,2	8,77	0,311	0,294	0,099	não essencial
YMR251W-a/	3106,6	1682,10	0,541	0,425	0,365	não essencial
YMR252C/	418,2	93,44	0,223	0,244	0,122	não essencial
YMR253C/	85,9	26,36	0,307	0,267	0,120	não essencial
YMR254C/	59,9	27,25	0,455	0,346	0,064	não essencial
YMR255W/	758,6	178,07	0,235	0,233	0,138	não essencial
YMR256c/COX7	907,4	243,42	0,268	0,176	0,205	não essencial
YMR257C/PET111	80,0	17,96	0,224	0,194	0,130	não essencial
YMR258C/	186,6	34,08	0,183	0,153	0,134	não essencial
YMR259C/	190,2	39,93	0,210	0,208	0,144	não essencial
YMR260C/TIF11	1093,1	388,43	0,355	0,249	0,404	essencial
YMR261C/TPS3	329,1	82,72	0,251	0,203	0,202	não essencial
YMR262W/	161,2	54,24	0,337	0,206	0,104	não essencial
YMR263W/	858,2	188,90	0,220	0,216	0,109	não essencial
YMR264W/	646,0	84,00	0,130	0,135	0,125	não essencial
YMR265C/	108,2	24,68	0,228	0,205	0,107	não essencial
YMR266W/	317,2	77,28	0,244	0,189	0,192	não essencial
YMR267W/PPA2	473,5	76,44	0,161	0,159	0,136	não essencial
YMR268C/PRP24	260,3	72,89	0,280	0,260	0,119	essencial
YMR269W/	430,4	97,54	0,227	0,239	0,124	não essencial
YMR270C/RRN9	304,2	88,06	0,289	0,336	0,135	essencial
YMR271C/URA10	58,4	26,06	0,446	0,309	0,138	não essencial
YMR272C/	332,2	96,48	0,290	0,227	0,244	não essencial
YMR273c/ZDS1	188,1	72,42	0,385	0,273	0,131	não essencial
YMR274C/	84,9	23,93	0,282	0,364	0,094	não essencial
YMR275C/BUL1	213,2	41,95	0,197	0,141	0,138	não essencial
YMR276W/	781,2	124,77	0,160	0,150	0,149	não essencial
YMR277W/	452,3	70,46	0,156	0,116	0,149	essencial
YMR278W/	189,4	49,84	0,263	0,334	0,152	não essencial
YMR279C/	35,2	10,76	0,305	0,725	0,115	não essencial
YMR281W/	255,7	45,98	0,180	0,151	0,148	essencial
YMR282C/AEP2	140,7	38,10	0,271	0,260	0,116	não essencial
YMR283C/RIT1	137,4	31,46	0,229	0,224	0,126	não essencial
YMR284W/HDF1	137,8	40,02	0,290	0,335	0,143	não essencial
YMR285C/	248,1	41,80	0,169	0,125	0,166	não essencial
YMR286w/MRPL33	923,2	272,22	0,295	0,253	0,100	não essencial
YMR287C/MSU1	87,2	11,69	0,134	0,137	0,113	não essencial
YMR288W/	93,3	9,14	0,098	0,092	0,132	essencial
YMR289W/	404,0	45,30	0,112	0,094	0,123	não essencial

YMR290C/	728,9	142,51	0,196	0,261	0,225	essencial
YMR290W-a/	47,2	18,70	0,396	0,802	0,093	essencial
YMR291W/	157,4	52,36	0,333	0,232	0,183	não essencial
YMR292W/ ex1	751,6	137,59	0,183	0,166	0,114	não essencial
YMR293C/	100,9	27,45	0,272	0,247	0,107	não essencial
YMR294W/JNM1	350,9	82,18	0,234	0,234	0,145	não essencial
YMR294W-a/	1475,4	338,65	0,230	0,221	0,118	não essencial
YMR295C/	1583,9	323,44	0,204	0,240	0,234	não essencial
YMR296C/LCB1	454,7	71,57	0,157	0,117	0,173	essencial
YMR297W/PRC1	761,5	189,20	0,248	0,145	0,257	não essencial
YMR298W/	488,2	67,40	0,138	0,106	0,209	essencial
YMR299C/	162,8	60,48	0,372	0,322	0,119	não essencial
YMR300C/ADE4	463,6	72,63	0,157	0,109	0,235	não essencial
YMR301C/ATM1	311,4	29,51	0,095	0,090	0,120	essencial
YMR302C/PRP12	305,6	53,82	0,176	0,119	0,160	não essencial
YMR303C/	51,1	19,09	0,374	0,999	0,505	não essencial
YMR304C-a/	663,7	139,40	0,210	0,235	0,090	não essencial
YMR304W/	162,9	33,20	0,204	0,220	0,156	não essencial
YMR305C/	1013,6	290,93	0,287	0,229	0,255	não essencial
YMR306C-a/	38,8	9,82	0,253	0,306	0,057	não essencial
YMR306W/	49,4	11,77	0,238	0,256	0,126	não essencial
YMR308C/PSE1	982,2	91,57	0,093	0,109	0,180	essencial
YMR309C/NIP1	600,3	112,34	0,187	0,149	0,310	essencial
YMR310C/	518,7	79,54	0,153	0,121	0,113	não essencial
YMR311C/GLC8	690,9	129,74	0,188	0,179	0,122	não essencial
YMR312W/	294,3	53,21	0,181	0,211	0,158	não essencial
YMR313C/	144,1	32,21	0,223	0,199	0,119	não essencial
YMR314W/PRE5	551,2	146,41	0,266	0,161	0,159	essencial
YMR315W/	265,8	58,85	0,221	0,148	0,253	não essencial
YMR316C-a/	257,0	64,52	0,251	0,326	0,106	não essencial
YMR316C-b/	63,9	29,07	0,455	0,454	0,065	não essencial
YMR316W/	353,8	122,79	0,347	0,307	0,116	não essencial
YMR317W/	178,0	128,26	0,721	0,488	0,118	não essencial
YMR318C/	714,3	149,93	0,210	0,184	0,294	não essencial
YMR319C/FET4	342,9	39,43	0,115	0,105	0,198	não essencial
YMR320W/	58,2	27,76	0,477	0,175	0,111	não essencial
YMR322C/_f	24,6	11,86	0,481	0,288	0,152	não essencial
YNL001W/DOM34	425,8	82,43	0,194	0,194	0,151	não essencial
YNL002C/RLP7	1127,9	207,64	0,184	0,199	0,224	essencial
YNL003C/PET8	211,9	38,66	0,182	0,148	0,115	não essencial
YNL004W/HRB1	517,1	119,55	0,231	0,241	0,153	não essencial
YNL005C/MRP7	421,9	85,92	0,204	0,128	0,139	não essencial
YNL006W/	352,2	62,00	0,176	0,145	0,128	essencial
YNL007C/SIS1	539,4	304,77	0,565	0,212	0,161	essencial
YNL008C/	207,8	33,53	0,161	0,152	0,121	não essencial
YNL009W/	53,4	14,30	0,268	0,335	0,135	não essencial
YNL010W/	1217,2	269,97	0,222	0,222	0,367	não essencial
YNL011C/	103,5	31,59	0,305	0,476	0,131	não essencial
YNL012W/SPO1	61,0	18,26	0,299	0,343	0,121	não essencial
YNL013C/	199,7	79,99	0,401	0,399	0,142	não essencial
YNL014W/	61,8	13,62	0,220	0,235	0,169	não essencial
YNL015W/PBI2	1090,5	476,67	0,437	0,225	0,371	não essencial
YNL016W/PUB1	1067,2	234,64	0,220	0,197	0,291	não essencial
YNL020C/	253,3	31,28	0,123	0,107	0,120	não essencial
YNL021W/	81,9	22,66	0,277	0,315	0,151	não essencial
YNL022C/	337,5	52,83	0,157	0,163	0,143	não essencial

YNL023C/	428,4	86,77	0,203	0,141	0,137	não essencial
YNL024C/	256,4	65,44	0,255	0,247	0,147	não essencial
YNL025C/SSN8	105,1	22,73	0,216	0,178	0,139	não essencial
YNL026W/	384,7	61,53	0,160	0,206	0,124	essencial
YNL027W/	170,2	35,06	0,206	0,169	0,146	não essencial
YNL028W/	21,2	5,96	0,281	0,313	0,158	não essencial
YNL029C/	148,8	32,92	0,221	0,232	0,104	não essencial
YNL030W/HHF2 f	2178,9	663,34	0,304	0,360	0,627	não essencial
YNL031C/HHT2	2191,8	533,09	0,243	0,293	0,563	não essencial
YNL032W/	526,5	65,33	0,124	0,125	0,114	não essencial
YNL034W/ f	32,2	8,49	0,264	0,225	0,128	não essencial
YNL035C/	95,9	33,37	0,204	1,019	0,120	não essencial
YNL037C/IDH1	514,9	160,79	0,340	0,248	0,199	não essencial
YNL038W/	227,6	52,60	0,312	0,240	0,200	
		·	-			essencial
YNL039W/TFC5	356,5	38,75	0,109	0,113	0,145	essencial
YNL040W/	331,9	58,22	0,175	0,156	0,168	não essencial
YNL041C/	343,2	59,77	0,174	0,139	0,144	não essencial
YNL042W/	265,6	66,74	0,251	0,311	0,118	não essencial
YNL043C/	1650,4	495,31	0,300	0,367	0,095	não essencial
YNL044W/	719,3	118,00	0,164	0,192	0,222	não essencial
YNL045W/	318,2	44,77	0,141	0,151	0,239	não essencial
YNL046W/	633,1	342,83	0,542	0,320	0,077	não essencial
YNL049C/	195,7	40,35	0,206	0,233	0,155	não essencial
YNL050C/_ex1	631,2	98,22	0,156	0,160	0,129	não essencial
YNL051W/	189,2	41,42	0,219	0,279	0,137	não essencial
YNL052W/COX5A	1260,8	361,14	0,286	0,167	0,163	não essencial
YNL053W/MSG5	236,7	78,99	0,334	0,218	0,103	não essencial
YNL054W/	80,2	15,28	0,191	0,162	0,124	não essencial
YNL055C/OMP2	1539,1	291,00	0,189	0,157	0,361	não essencial
YNL056W/	592,1	212,98	0,360	0,272	0,096	não essencial
YNL057W/	249,6	121,19	0,486	0,218	0,078	não essencial
YNL058C/	760,1	379,82	0,500	0,282	0,156	não essencial
YNL061W/NOP2	381,8	80,30	0,210	0,202	0,254	essencial
YNL062C/GCD10	528,8	94,67	0,179	0,164	0,154	essencial
YNL063W/	71,6	25,83	0,361	0,238	0,097	não essencial
YNL064C/YDJ1	1213,4	185,57	0,153	0,134	0,373	não essencial
YNL065W/	376,2	154,75	0,411	0,187	0,157	não essencial
YNL066W/	787,6	209,28	0,266	0,154	0,296	não essencial
YNL067W/RPL9B_f	2306,8	825,71	0,358	0,307	0,778	não essencial
YNL067W/RPL9B_i	657,3	248,97	0,379	0,351	0,778	não essencial
YNL068C/FKH2	245,9	59,88	0,244	0,202	0,118	não essencial
YNL069C/RP23_ex1	1515,8	623,74	0,412	0,330	0,723	não essencial
YNL070W/TOM7	906,4	153,82	0,412	0,330	0,723	não essencial
YNL070W/LAT1	1097,8	222,83	0,170	0,206	0,223	não essencial
YNL072W/	98,5		0,203	0,200	0,244	
		41,59	· ·	· ·	· ·	não essencial
YNL073W/MSK1	173,1	62,89	0,363	0,236	0,112	não essencial
YNL074C/	294,4	55,60	0,189	0,147	0,130	não essencial
YNL075W/	473,2	64,39	0,136	0,146	0,163	essencial
YNL076W/MKS1	189,6	31,40	0,166	0,173	0,117	não essencial
YNL077W/	57,8	11,73	0,203	0,171	0,143	não essencial
YNL078W/	307,4	167,20	0,544	0,321	0,089	não essencial
YNL079C/TPM1	1988,5	503,00	0,253	0,283	0,315	não essencial
YNL080C/	193,6	25,33	0,131	0,140	0,109	não essencial
YNL081C/	1049,1	170,42	0,162	0,122	0,118	não essencial
YNL082W/PMS1	112,9	61,40	0,544	0,435	0,133	não essencial
YNL083W/	53,9	19,07	0,354	0,348	0,126	não essencial

YNL084C/END3	976,4	192,28	0,197	0,182	0,185	não essencial
YNL085W/MKT1	270,3	48,53	0,180	0,159	0,203	não essencial
YNL087W/	297,6	63,80	0,214	0,208	0,153	não essencial
YNL088W/TOP2	353,8	99,22	0,280	0,216	0,175	essencial
YNL089C/	329,9	40,02	0,121	0,140	0,109	não essencial
YNL090W/RHO2	279,2	51,67	0,185	0,180	0,124	não essencial
YNL091W/	315,4	38,96	0,124	0,080	0,133	não essencial
YNL092W/	50,3	15,76	0,313	0,238	0,107	não essencial
YNL093W/YPT53	23,6	9,05	0,383	0,338	0,133	não essencial
YNL094W/	150,6	32,98	0,219	0,244	0,165	não essencial
YNL095C/	86,1	25,33	0,294	0,267	0,129	não essencial
YNL097C/	214,6	47,11	0,219	0,232	0,133	não essencial
YNL098C/RAS2	590,5	83,10	0,141	0,129	0,167	não essencial
YNL099C/	363,9	91,26	0,251	0,129	0,147	não essencial
YNL100W/	521,8	105,11	0,201	0,109	0,106	não essencial
YNL101W/	211,7	50,48	0,238	0,103	0,100	não essencial
YNL102W/CDC17	168,2	102,40	0,609	0,532	0,121	essencial
YNL103W/MET4	586,9	67,04	0,009	0,513	0,137	essencial
YNL104C/LEU4	1336,1	404,06	0,114	0,112	0,125	não essencial
YNL104C/LEU4 YNL105W/	10,8	6,98	0,302	0,210	0,292	não essencial
YNL106C/PIE3	95,0			0,835		
	235,4	23,40	0,246		0,130	não essencial
YNL107W/		32,54	0,138	0,140	0,125	não essencial
YNL108C/	344,2	59,97	0,174	0,173	0,159	não essencial
YNL110C/	1389,1	216,94	0,156	0,254	0,185	essencial
YNL111C/CYB5	1120,9	436,64	0,390	0,291	0,333	não essencial
YNL112W/DBP2_ex1	1053,9	378,44	0,359	0,377	0,422	essencial
YNL112W/DBP2_ex2	894,4	221,18	0,247	0,267	0,422	essencial
YNL113W/RPC19	1301,3	193,60	0,149	0,181	0,186	essencial
YNL114C/	594,9	106,46	0,179	0,225	0,164	essencial
YNL115C/	143,4	43,05	0,300	0,195	0,147	não essencial
YNL116W/	145,8	33,87	0,232	0,175	0,130	não essencial
YNL117W/MLS1	21,9	5,97	0,273	0,347	0,222	não essencial
YNL118C/PSU1	681,0	117,89	0,173	0,150	0,133	essencial
YNL119W/	335,6	58,41	0,174	0,167	0,151	não essencial
YNL120C/	67,4	23,62	0,351	0,567	0,105	não essencial
YNL121C/TOM70	432,5	91,13	0,211	0,195	0,274	não essencial
YNL122C/	492,0	57,65	0,117	0,082	0,111	não essencial
YNL123W/	515,9	71,31	0,138	0,130	0,178	não essencial
YNL124W/	853,4	314,80	0,369	0,191	0,151	essencial
YNL125C/	182,0	42,74	0,235	0,195	0,152	não essencial
YNL126W/	163,6	64,10	0,392	0,305	0,115	essencial
YNL127W/	60,4	10,98	0,182	0,124	0,124	não essencial
YNL129W/	634,9	134,30	0,212	0,121	0,129	não essencial
YNL130C/CPT1_ex1	473,5	85,47	0,180	0,129	0,161	não essencial
YNL131W/TOM22	1326,5	174,75	0,132	0,107	0,285	essencial
YNL132W/	563,9	97,04	0,172	0,196	0,239	essencial
YNL133C/	213,5	59,42	0,278	0,262	0,110	não essencial
YNL134C/	321,8	117,26	0,364	0,210	0,239	não essencial
YNL135C/FPR1	1891,0	598,88	0,317	0,267	0,508	não essencial
YNL136W/	437,3	70,77	0,162	0,171	0,134	não essencial
YNL137C/NAM9	439,6	91,92	0,209	0,101	0,153	essencial
YNL138W/SRV2	374,9	110,82	0,296	0,152	0,219	não essencial
YNL139C/RLR1	149,3	29,01	0,194	0,167	0,151	não essencial
YNL140C/_i	147,7	68,59	0,464	0,468	0,074	não essencial
YNL140C/_r	396,4	67,95	0,171	0,141	0,074	não essencial
YNL141W/	351,6	76,46	0,217	0,219	0,248	não essencial

YNL142W/MEP2	450,2	307,80	0,684	0,243	0,213	não essencial
YNL143C/	173,1	30,25	0,175	0,163	0,128	não essencial
YNL144C/	50,4	14,13	0,281	0,417	0,130	não essencial
YNL145W/MFA2	37,6	7,39	0,196	0,174	0,272	não essencial
YNL146W/	49,1	16,60	0,338	0,336	0,127	não essencial
YNL147W/ ex1	877,7	124,70	0,142	0,202	0,199	não essencial
YNL148C/	86,8	27,73	0,319	0,358	0,084	não essencial
YNL149C/	1540,0	369,00	0,240	0,303	0,216	essencial
YNL150W/	911,0	209,76	0,230	0,253	0,107	essencial
YNL151C/RPC31	714,8	98,46	0,138	0,132	0,150	essencial
YNL152W/	169,7	44,28	0,261	0,249	0,121	essencial
YNL153C/	1020,9	153,70	0,151	0,191	0,136	não essencial
YNL154C/YCK2	1332,1	301,27	0,226	0,243	0,173	não essencial
YNL155W/	294,6	84,22	0,286	0,148	0,164	não essencial
YNL156C/	437,8	136,51	0,312	0,263	0,146	não essencial
YNL157W/	1308,0	154,95	0,118	0,114	0,107	não essencial
YNL158W/	165,1	30,20	0,183	0,218	0,115	essencial
YNL159C/	137,8	27,65	0,201	0,228	0,099	não essencial
YNL160W/YGP1	1010,5	582,28	0,576	0,502	0,448	não essencial
YNL161W/	218,3	36,02	0,165	0,181	0,155	essencial
YNL162W/RPL41A_ex1_f	3513,1	1535,54	0,437	0,474	0,769	essencial
YNL163C/	408,4	76,66	0,188	0,212	0,151	essencial
YNL164C/	405,9	75,08	0,185	0,198	0,125	não essencial
YNL165W/	218,8	58,41	0,267	0,131	0,099	não essencial
YNL166C/	549,4	142,03	0,259	0,200	0,129	não essencial
YNL167C/SKO1	383,6	38,79	0,101	0,080	0,113	não essencial
YNL168C/	446,7	61,58	0,138	0,135	0,172	não essencial
YNL169C/PSD1	74,6	15,96	0,214	0,177	0,138	não essencial
YNL170W/	400,2	51,43	0,129	0,154	0,108	não essencial
YNL171C/	283,7	90,65	0,320	0,206	0,128	não essencial
YNL172W/	104,2	38,98	0,374	0,226	0,120	essencial
YNL173C/	106,2	55,91	0,526	0,414	0,136	não essencial
YNL175C/	1437,1	240,11	0,167	0,219	0,214	não essencial
YNL176C/	150,0	49,18	0,328	0,317	0,092	não essencial
YNL177C/	393,5	92,21	0,234	0,167	0,108	não essencial
YNL178W/RPS3	3070,2	1270,84	0,414	0,390	0,800	essencial
YNL179C/	106,7	38,53	0,361	0,275	0,084	não essencial
YNL180C/	431,2	110,61	0,256	0,180	0,128	não essencial
YNL181W/	207,1	41,08	0,198	0,142	0,164	essencial
YNL182C/	502,7	89,01	0,177	0,116	0,148	essencial
YNL183C/NPR1	461,4	112,29	0,243	0,092	0,140	não essencial
YNL184C/	344,9	95,47	0,277	0,247	0,099	não essencial
YNL185C/	360,9	88,45	0,245	0,160	0,079	não essencial
YNL186W/	1228,8	281,47	0,229	0,200	0,171	não essencial
YNL187W/	59,6	16,65	0,279	0,250	0,094	não essencial
YNL188W/KAR1	521,9	89,31	0,171	0,150	0,097	essencial
YNL189W/SRP1	518,1	55,89	0,108	0,111	0,271	essencial
YNL190W/	1278,0	323,99	0,254	0,212	0,596	não essencial
YNL191W/	179,9	58,80	0,327	0,216	0,156	não essencial
YNL192W/CHS1	371,9	135,75	0,365	0,419	0,150	não essencial
YNL193W/	112,8	36,56	0,324	0,229	0,175	não essencial
YNL194C/	31,7	9,62	0,303	0,274	0,115	não essencial
YNL195C/	205,6	95,11	0,463	0,154	0,169	não essencial
YNL196C/	89,5	22,79	0,255	0,224	0,147	não essencial
YNL197C/WHI3	175,5	62,29	0,355	0,340	0,143	não essencial
YNL198C/	41,9	9,55	0,228	0,310	0,092	não essencial

YNL199C/GCR2	268,1	33,12	0,124	0,133	0,090	não essencial
YNL200C/	141,8	69,36	0,489	0,233	0,131	não essencial
YNL201C/	106,4	19,22	0,181	0,256	0,143	não essencial
YNL203C/	41,2	29,89	0,725	0,233	0,104	não essencial
YNL205C/	25,0	13,79	0,552	0,354	0,088	não essencial
YNL206C/	369,4	79,69	0,216	0,147	0,156	não essencial
YNL207W/	434,9	51,58	0,119	0,120	0,184	essencial
YNL208W/	1094,4	250,09	0,229	0,199	0,206	não essencial
YNL209W/SSB2	2621,8	787,68	0,300	0,296	0,772	não essencial
YNL210W/MER1	59,3	26,64	0,449	0,317	0,121	não essencial
YNL211C/	301,4	65,19	0,216	0,235	0,136	não essencial
YNL212W/	251,7	57,18	0,217	0,179	0,167	não essencial
YNL213C/	187,9	42,27	0,225	0,193	0,132	não essencial
YNL214W/	111,0	22,40	0,202	0,183	0,102	não essencial
YNL215W/	462,8	65,26	0,202	0,105	0,117	não essencial
YNL216W/RAP1	255,6	72,92	0,141	0,173	0,136	essencial
YNL217W/	354,2	71,28	0,201	0,263	0,140	não essencial
	· ·					
YNL218W/ YNL219C/	51,0	15,23	0,299	0,327	0,128	não essencial
	513,5	77,99	0,152	0,148	0,156	não essencial
YNL221C/POP1	358,5	52,91	0,148	0,111	0,124	essencial
YNL222W/SSU72	269,9	40,27	0,149	0,118	0,155	essencial
YNL223W/	75,8	13,72	0,181	0,219	0,103	não essencial
YNL224C/	165,6	42,42	0,256	0,107	0,145	não essencial
YNL225C/	193,1	52,79	0,273	0,235	0,145	não essencial
YNL226W/	44,3	10,64	0,240	0,244	0,078	não essencial
YNL227C/	321,4	52,75	0,164	0,184	0,149	não essencial
YNL228W/	233,5	37,63	0,161	0,170	0,151	não essencial
YNL229C/URE2	600,6	132,72	0,221	0,127	0,125	não essencial
YNL230C/	104,0	40,69	0,391	0,245	0,131	não essencial
YNL231C/	543,5	161,11	0,296	0,270	0,201	não essencial
YNL232W/	648,7	75,87	0,117	0,119	0,119	essencial
YNL233W/	255,1	106,96	0,419	0,289	0,138	não essencial
YNL234W/	64,8	26,70	0,412	0,353	0,130	não essencial
YNL235C/	513,4	66,29	0,129	0,116	0,103	não essencial
YNL236W/SIN4	456,5	80,83	0,177	0,175	0,126	não essencial
YNL237W/YTP1	39,0	15,19	0,390	0,354	0,116	não essencial
YNL238W/KEX2	324,9	42,54	0,131	0,094	0,150	não essencial
YNL239W/LAP3	349,6	30,42	0,087	0,086	0,269	não essencial
YNL240C/	178,8	35,37	0,198	0,171	0,082	essencial
YNL241C/ZWF1	470,6	115,41	0,245	0,275	0,172	não essencial
YNL242W/	44,3	13,40	0,302	0,262	0,119	não essencial
YNL243W/SLA2	898,4	169,00	0,188	0,173	0,137	não essencial
YNL244C/SUI1	2316,5	768,43	0,332	0,313	0,239	essencial
YNL245C/	443,1	88,84	0,201	0,207	0,115	essencial
YNL246W/ ex1	466,5	77,86	0,167	0,166	0,138	não essencial
 YNL247W/	523,6	46,60	0,089	0,074	0,265	essencial
YNL248C/RPA49	636,3	84,43	0,133	0,126	0,222	não essencial
YNL249C/MPA43	74,6	17,98	0,241	0,250	0,130	não essencial
YNL250W/RAD50	89,4	15,82	0,177	0,196	0,171	não essencial
YNL251C/NRD1	378,1	154,63	0,409	0,265	0,158	essencial
YNL252C/	385,1	125,64	0,326	0,195	0,121	não essencial
YNL253W/	121,6	23,62	0,194	0,191	0,121	não essencial
YNL254C/	99,5	22,45	0,134	0,131	0,145	não essencial
YNL255C/	1530,4	348,40	0,228	0,216	0,421	não essencial
YNL256W/	332,9	80,39	0,228	0,200	0,421	essencial
YNL257C/SIP3	· · · · · · · · · · · · · · · · · · ·					
TINLZO/U/SIP3	193,7	33,07	0,171	0,188	0,126	não essencial

YNL258C/	109,8	31,96	0,291	0,458	0,139	essencial
YNL259C/ATX1	840,0	160,05	0,291	0,436	0,139	não essencial
YNL260C/	97,5	22,84	0,234	0,168	0,130	essencial
YNL261W/ORC5	341,6	58,99	0,234	0,100	0,150	essencial
YNL262W/POL2	350,5	111,30	0,173	0,170	0,131	essencial
YNL263C/SIF1	563,7	166,06	0,316	0,220	0,140	essencial
YNL264C/	254,6	35,22	0,293	0,202	0,136	não essencial
	234,0	47,69	0,136	0,123	0,195	
YNL265C/_ex1 YNL266W/	170,2	· ·				não essencial
	· ·	45,61	0,268	0,370 0,132	0,121	não essencial
YNL267W/PIK1	122,6	17,20	0,140		0,149	essencial
YNL268W/LYP1	800,2	154,07	0,193	0,222	0,222	não essencial
YNL269W/	36,9	19,52	0,529	0,221	0,085	não essencial
YNL270C/ALP1	57,4	36,65	0,638	0,448	0,115	não essencial
YNL271C/BNI1	395,8	62,00	0,157	0,173	0,142	não essencial
YNL272C/SEC2	258,8	61,74	0,239	0,215	0,148	essencial
YNL273W/	221,2	108,69	0,491	0,365	0,147	não essencial
YNL274C/	77,9	47,50	0,609	0,345	0,164	não essencial
YNL275W/	143,7	27,89	0,194	0,185	0,103	não essencial
YNL276C/	191,8	87,54	0,456	0,325	0,100	não essencial
YNL277W/MET2	95,0	32,67	0,344	0,240	0,136	não essencial
YNL278W/	170,2	57,59	0,338	0,386	0,135	não essencial
YNL279W/	36,1	10,61	0,294	0,239	0,103	não essencial
YNL280C/ERG24	662,5	128,17	0,193	0,184	0,155	não essencial
YNL281W/	601,4	159,82	0,266	0,218	0,178	não essencial
YNL282W/	186,3	31,46	0,169	0,172	0,086	essencial
YNL283C/	614,4	172,45	0,281	0,194	0,145	não essencial
YNL285W/	56,3	27,83	0,494	0,560	0,099	não essencial
YNL286W/CUS2	269,9	50,34	0,187	0,191	0,114	não essencial
YNL287W/SEC21	619,2	110,17	0,178	0,168	0,238	essencial
YNL288W/	594,4	67,15	0,113	0,104	0,129	não essencial
YNL289W/PCL1	371,1	278,30	0,750	1,106	0,123	não essencial
YNL290W/RFC3	248,6	65,41	0,263	0,248	0,120	essencial
YNL291C/MID1	317,5	37,05	0,117	0,137	0,133	não essencial
YNL292W/EXM1	361,6	58,57	0,162	0,173	0,133	não essencial
YNL293W/	316,1	59,47	0,188	0,145	0,115	não essencial
YNL294C/	636,1	75,64	0,119	0,136	0,123	não essencial
YNL295W/	135,5	24,05	0,177	0,159	0,107	não essencial
YNL297C/	97,5	19,86	0,204	0,201	0,133	não essencial
YNL298W/CLA4	248,9	51,81	0,208	0,194	0,131	não essencial
YNL299W/TRF5	311,8	57,01	0,183	0,197	0,139	não essencial
YNL300W/	592,3	445,91	0,753	0,687	0,335	não essencial
YNL301C/RP28B_ex1_f	2357,9	723,17	0,307	0,330	0,680	não essencial
YNL301C/RP28B_ex1_i	1239,5	313,88	0,253	0,270	0,680	não essencial
YNL301C/RP28B ex2 f	2220,8	971,24	0,437	0,345	0,680	não essencial
YNL302C/RPS16A ex1 f	2560,5	1199,31	0,468	0,397	0,757	não essencial
YNL303W/	328,4	103,63	0,316	0,231	0,122	não essencial
YNL304W/	174,8	46,63	0,267	0,299	0,099	não essencial
YNL305C/	298,1	85,37	0,286	0,169	0,100	não essencial
YNL306W/	449,7	126,74	0,282	0,109	0,100	essencial
YNL307C/MCK1	598,5	105,50	0,282	0,207	0,159	não essencial
YNL308C/	910,4	159,33	0,176	0,173	0,139	essencial
YNL309W/STB1	89,9	52,24	0,173	0,197	0,195	não essencial
YNL310C/	606,4	-		-	·	
YNL311C/		169,87	0,280	0,215	0,128	essencial
	303,5	56,12	0,185	0,103	0,141	não essencial
YNL312W/RFA2_ex1	776,9	353,61	0,455	0,335	0,194	essencial
YNL313C/	367,6	80,07	0,218	0,197	0,158	essencial

YNL314W/DAL82	135,2	30,02	0,222	0,222	0,096	não essencial
YNL315C/ATP11	907,5	196,80	0,217	0,164	0,147	não essencial
YNL316C/PHA2	189,2	34,82	0,184	0,105	0,148	não essencial
YNL317W/	151,5	18,29	0,121	0,145	0,117	essencial
YNL319W/	24,2	10,13	0,419	0,388	0,122	não essencial
YNL320W/	256,9	43,94	0,171	0,145	0,133	não essencial
YNL321W/	123,9	34,78	0,281	0,177	0,145	não essencial
YNL322C/KRE1	801,1	195,75	0,244	0,213	0,139	não essencial
YNL324W/	11,2	5,08	0,452	1,200	0,110	não essencial
YNL325C/	138,9	19,99	0,144	0,188	0,155	não essencial
YNL326C/	188,2	44,87	0,238	0,221	0,112	não essencial
YNL327W/	1635,6	1055,37	0,645	0,462	0,153	não essencial
YNL328C/	61,2	17,06	0,279	0,245	0,108	não essencial
YNL329C/PAS8	371,2	92,83	0,250	0,212	0,119	não essencial
YNL330C/RPD3	173,4	42,63	0,246	0,232	0,143	não essencial
YNL331C/	185,2	45,12	0,244	0,099	0,125	não essencial
YNL332W/ f	125,3	33,98	0,271	0,126	0,539	não essencial
YNL333W/ f	166,1	122,28	0,736	0,120	0,200	não essencial
YNL334C/ f	105,5	21,54	0,730	0,265	0,200	não essencial
YNL334C/_1 YNL335W/ f	36,4	•	0,204	0,158	0,145	não essencial
_		11,41				não essencial
YNL336W/_f YNL336W/_i	512,9	86,72	0,169	0,125	0,136	
	395,8	79,75	0,201	0,190	0,136	não essencial
YNL336W/_r_i	457,9	135,43	0,296	0,325	0,136	não essencial
YNL339C/_ex1_f	1575,8	592,68	0,376	0,286	0,106	não essencial
YNR001C/CIT1	463,5	194,00	0,419	0,256	0,254	não essencial
YNR002C/FUN34	116,1	31,87	0,275	0,134	0,157	não essencial
YNR003C/RPC34	484,1	78,66	0,163	0,206	0,141	essencial
YNR004W/	53,6	20,91	0,390	4,565	0,163	não essencial
YNR006W/VPS27	276,9	63,97	0,231	0,221	0,136	não essencial
YNR007C/	103,2	23,91	0,232	0,193	0,136	não essencial
YNR008W/	238,9	36,52	0,153	0,139	0,134	não essencial
YNR009W/	582,4	255,28	0,438	0,395	0,135	não essencial
YNR010W/CSE2	478,4	72,98	0,153	0,175	0,132	não essencial
YNR011C/PRP2	72,0	14,20	0,197	0,162	0,129	essencial
YNR012W/URK1	355,4	64,08	0,180	0,146	0,168	não essencial
YNR013C/	162,4	34,34	0,212	0,222	0,187	não essencial
YNR014W/	250,8	99,83	0,398	0,182	0,127	não essencial
YNR015W/	353,5	86,55	0,245	0,151	0,140	não essencial
YNR016C/ACC1	1317,1	321,10	0,244	0,219	0,328	essencial
YNR017W/MAS6	610,8	128,74	0,211	0,160	0,117	essencial
YNR018W/	1349,6	249,79	0,185	0,185	0,166	não essencial
YNR019W/ARE2	103,5	56,29	0,544	0,272	0,192	não essencial
YNR020C/	380,0	61,19	0,161	0,137	0,111	não essencial
YNR021W/	658,2	56,96	0,087	0,083	0,253	não essencial
YNR022C/	911,4	180,43	0,198	0,187	0,158	não essencial
YNR023W/	157,4	29,40	0,187	0,200	0,124	não essencial
YNR024W/	712,1	192,29	0,270	0,199	0,139	não essencial
YNR025C/	514,4	102,55	0,199	0,197	0,084	não essencial
YNR026C/SEC12	139,5	28,77	0,206	0,143	0,137	essencial
YNR027W/	366,1	51,36	0,140	0,143	0,101	não essencial
YNR028W/	296,1	59,21	0,200	0,142	0,137	não essencial
YNR029C/	313,7	33,40	0,106	0,125	0,145	não essencial
YNR030W/	197,9	35,40	0,182	0,123	0,203	não essencial
YNR031C/SSK2	165,7	42,64	0,162	0,166	0,203	não essencial
YNR032W/PPG1	122,8	27,74	0,237	0,166	0,145	não essencial
YNR033W/ABZ1	300,2	47,45	0,158	0,114	0,136	não essencial

YNR034W/SOL1	68,7	17,55	0,255	0,252	0,121	não essencial
YNR035C/	1266,1	271,59	0,215	0,155	0,223	essencial
YNR036C/	587,4	202,13	0,344	0,201	0,093	não essencial
YNR037C/	724,2	159,42	0,220	0,150	0,088	não essencial
YNR038W/	225,9	32,79	0,145	0,141	0,187	essencial
YNR039C/	349,5	75,96	0,217	0,207	0,116	não essencial
YNR040W/	302,7	72,19	0,238	0,106	0,113	não essencial
YNR041C/COQ2	339,8	58,72	0,173	0,145	0,107	não essencial
YNR042W/	164,9	28,40	0,172	0,214	0,064	não essencial
YNR043W/MVD1	729,9	174,98	0,240	0,124	0,200	essencial
YNR044W/AGA1	158,6	46,26	0,292	0,262	0,135	não essencial
YNR045W/PET494	178,8	41,23	0,231	0,159	0,104	não essencial
YNR046W/	956,8	176,22	0,184	0,208	0,173	essencial
YNR047W/	110,6	25,36	0,229	0,167	0,144	não essencial
YNR048W/	196,6	38,42	0,195	0,143	0,119	não essencial
YNR049C/MSO1	399,8	66,36	0,166	0,173	0,096	não essencial
YNR050C/LYS9	842,8	179,47	0,213	0,178	0,332	não essencial
YNR051C/	617,1	88,91	0,213	0,138	0,332	não essencial
YNR052C/POP2	478,6	84,58	0,144	0,160	0,179	não essencial
	476,6		0,177			
YNR053C/_ex1 YNR053C/_ex2		59,25 153,23		0,186	0,219	essencial
	1031,1 830,9		0,149	0,152	0,219	essencial
YNR054C/		130,77	0,157	0,171	0,179	essencial
YNR055C/HOL1	222,2	44,10	0,198	0,255	0,191	não essencial
YNR056C/	17,7	7,62	0,430	0,683	0,152	não essencial
YNR057C/BIO4	199,6	34,10	0,171	0,193	0,110	não essencial
YNR058W/BIO3	110,4	29,23	0,265	0,260	0,158	não essencial
YNR059W/	231,2	38,33	0,166	0,150	0,115	não essencial
YNR060W/	56,1	19,71	0,352	0,337	0,144	não essencial
YNR061C/	396,9	54,14	0,136	0,114	0,151	não essencial
YNR062C/	31,8	10,58	0,332	0,319	0,098	não essencial
YNR063W/	35,9	10,48	0,292	0,288	0,119	não essencial
YNR064C/	91,2	19,43	0,213	0,159	0,158	não essencial
YNR065C/	1193,4	399,25	0,335	0,294	0,161	não essencial
YNR067C/	309,6	270,35	0,873	0,614	0,155	não essencial
YNR068C/	45,7	11,43	0,250	0,290	0,125	não essencial
YNR070W/	27,7	9,00	0,325	0,305	0,168	não essencial
YNR071C/	78,6	34,64	0,441	0,154	0,227	não essencial
YNR072W/HXT17	9,1	5,07	0,556	0,753	0,201	não essencial
YNR073C/_f	50,1	16,00	0,319	0,393	0,256	não essencial
YNR074C/	183,8	50,75	0,276	0,144	0,137	não essencial
YOL001W/PHO80	254,5	39,23	0,154	0,155	0,104	não essencial
YOL002C/	210,7	81,15	0,385	0,292	0,125	não essencial
YOL003C/	141,4	29,28	0,207	0,177	0,123	não essencial
YOL004W/SIN3	354,4	54,58	0,154	0,129	0,150	não essencial
YOL005C/RPB11	902,2	133,63	0,148	0,130	0,150	essencial
YOL006C/TOP1	363,9	69,52	0,191	0,186	0,192	não essencial
YOL007C/	549,3	368,84	0,671	0,486	0,142	não essencial
YOL008W/	281,1	62,59	0,223	0,170	0,111	não essencial
YOL009C/	183,6	53,88	0,223	0,170	0,109	não essencial
YOL010W/	215,2	28,44	0,293	0,197	0,169	essencial
YOL010W/	218,5		0,132	0,145		
		62,43			0,162	não essencial
YOL012C/	539,5	189,21	0,351	0,223	0,170	não essencial
YOL013C/	157,5	38,78	0,246	0,339	0,114	não essencial
YOL014W/	375,0	165,71	0,442	0,422	0,117	não essencial
YOL015W/	80,6	23,80	0,295	0,130	0,146	não essencial
YOL016C/CMK2	284,5	76,46	0,269	0,186	0,164	não essencial

YOL017W/	80,1	40,29	0,503	0,466	0,129	não essencial
YOL018C/	170,8	25,47	0,149	0,144	0,123	não essencial
YOL019W/	554,0	164,35	0,297	0,235	0,136	não essencial
YOL020W/SCM2	316,5	36,67	0,116	0,127	0,141	não essencial
YOL021C/	472,2	84,11	0,178	0,157	0,178	essencial
YOL022C/	622,6	101,24	0,163	0,204	0,164	essencial
YOL023W/IFM1	60,4	26,81	0,444	0,420	0,146	não essencial
YOL024W/	26,1	7,55	0,290	0,312	0,111	não essencial
YOL025W/	90,8	21,15	0,233	0,173	0,127	não essencial
YOL026C/	729,4	179,69	0,246	0,313	0,072	essencial
YOL027C/	622,1	156,09	0,251	0,309	0,189	não essencial
YOL028C/	180,1	44,56	0,247	0,319	0,116	não essencial
YOL029C/	467,3	68,32	0,146	0,151	0,128	não essencial
YOL030W/	824,4	112,75	0,137	0,121	0,271	não essencial
YOL031C/	540,8	175,59	0,325	0,164	0,153	não essencial
YOL032W/	187,1	76,95	0,411	0,156	0,091	não essencial
YOL033W/MSE1	270,8	56,08	0,207	0,122	0,134	não essencial
YOL034W/	114,9	27,13	0,236	0,189	0,164	essencial
YOL035C/	234,5	23,28	0,099	0,103	0,105	não essencial
YOL036W/	312,1	49,61	0,159	0,170	0,105	não essencial
YOL037C/	29,9	8,37	0,133	0,170	0,084	não essencial
YOL038W/PRE6	921,0	336,46	0,365	0,311	0,004	essencial
YOL039W/RPLA2	2755,2	1103,22	0,400	0,373	0,804	não essencial
YOL040C/RPS21	3065,2	1434,74	0,468	0,373	0,769	essencial
YOL040C/RF321	562,3	116,61	0,400	0,410	0,709	não essencial
YOL0410/	180,8	37,50	0,207	0,246	0,128	não essencial
YOL042V/	147,1	35,34	0,240	0,240	0,120	não essencial
YOL043C/	104,9	36,48	0,240	0,142	0,118	não essencial
YOL044W/	205,5	39,09	0,348	0,473	0,100	não essencial
YOL045W/	30,8	8,83	0,190	0,123	0,131	não essencial
YOL047C/ ex1	54,2	17,14	0,287	0,347	0,124	não essencial
YOL047C/_ex1	241,7	75,43	0,310	0,237	0,093	não essencial
YOL049W/	723,1	183,47	0,312	0,227	0,127	não essencial
YOL050C/	385,8	80,37	0,208	0,218	0,133	não essencial
YOL051W/GAL11	408,7	59,73	0,208	0,241	0,143	não essencial
YOL051W/GALTT	410,9	74,73	0,140	0,073	0,181	não essencial
		122,96		0,167	0,162	
YOL053C-a/	196,0 152,0		0,627	0,346		não essencial
YOL053W/	231,2	23,58 44,04	0,155		0,104	não essencial
YOL054W/			0,190	0,228	0,137	não essencial
YOL055C/ YOL056W/GPM3	116,4 228,9	41,28 43,77	0,355 0,191	0,215 0,123	0,256 0,162	não essencial
						não essencial
YOL057W/ YOL058W/ARG1	424,6 778,2	68,70	0,162	0,144 0,168	0,173	não essencial não essencial
		255,62 230,16	0,328		0,403 0,212	
YOL059W/GPD2	631,2	·	0,365	0,223		não essencial
YOL060C/ YOL061W/	153,0	34,16	0,223	0,168	0,153	não essencial
	869,8	173,53	0,199	0,191	0,192	não essencial
YOL062C/APM4	364,6	42,25	0,116	0,082	0,136	não essencial
YOL064C/MET22	299,9	57,53	0,192	0,190	0,131	não essencial
YOL064C/MET22	709,1	225,16	0,318	0,220	0,200	não essencial
YOL065C/	81,4	27,72	0,341	0,410	0,114	não essencial
YOL066C/RIB2	161,6	16,45	0,102	0,086	0,135	essencial
YOL067C/RTG1	70,2	18,14	0,258	0,219	0,116	não essencial
YOL068C/HST1	574,8	70,21	0,122	0,152	0,133	não essencial
YOL069W/NUF2	51,2	29,58	0,578	0,734	0,139	essencial
YOL070C/	699,5	253,00	0,362	0,200	0,115	não essencial
YOL071W/	327,1	101,99	0,312	0,147	0,149	não essencial

YOL072W/	108,3	23,50	0,217	0,229	0,110	não essencial
YOL075C/	128,6	23,36	0,182	0,156	0,126	não essencial
YOL076W/DEC1	130,5	32,66	0,250	0,152	0,159	não essencial
YOL077C/	878,2	117,74	0,134	0,155	0,232	essencial
YOL078W/	90,1	14,19	0,157	0,158	0,122	essencial
YOL079W/	136,2	36,17	0,266	0,368	0,075	não essencial
YOL080C/	484,5	92,53	0,191	0,182	0,159	não essencial
YOL081W/IRA2	316,6	58,22	0,184	0,226	0,139	não essencial
YOL082W/	195,1	47,54	0,244	0,181	0,181	não essencial
YOL083W/	141,5	69,52	0,491	0,176	0,130	não essencial
YOL085C/	26,9	10,78	0,401	0,315	0,107	não essencial
YOL086C/ADH1	1846,8	1049,25	0,568	0,409	0,811	não essencial
YOL087C/	132,0	28,28	0,214	0,400	0,132	não essencial
YOL088C/	240,6	37,31	0,155	0,161	0,132	não essencial
YOL089C/	68,9	12,84	0,133	0,101	0,174	não essencial
YOL090W/MSH2	200,4	93,00	0,180	0,212	0,139	não essencial
		·	-			
YOL091W/ YOL092W/	32,6	9,66	0,297	0,325	0,160	não essencial não essencial
YOL092W/	549,4	132,90	0,242	0,218	0,155	
	396,6	65,17	0,164	0,194	0,122	não essencial
YOL094C/RFC4	203,6	32,76	0,161	0,115	0,152	essencial
YOL095C/	209,1	34,05	0,163	0,156	0,129	não essencial
YOL096C/COQ3	77,6	25,96	0,334	0,312	0,139	não essencial
YOL097C/	1085,4	137,85	0,127	0,132	0,286	essencial
YOL098C/	358,3	34,38	0,096	0,116	0,191	não essencial
YOL099C/	160,4	40,73	0,254	0,228	0,123	não essencial
YOL100W/	311,4	75,18	0,241	0,259	0,135	não essencial
YOL101C/	216,3	323,38	1,495	0,525	0,121	não essencial
YOL102C/	398,1	79,14	0,199	0,163	0,112	essencial
YOL103W/ITR2	544,0	80,23	0,147	0,139	0,172	não essencial
YOL104C/	48,2	33,09	0,686	0,212	0,134	não essencial
YOL105C/	221,5	60,83	0,275	0,276	0,133	não essencial
YOL106W/	43,4	13,94	0,322	0,399	0,096	não essencial
YOL107W/	38,2	13,13	0,344	0,379	0,156	não essencial
YOL108C/INO4	467,8	93,07	0,199	0,210	0,083	não essencial
YOL109W/	3313,6	1444,30	0,436	0,404	0,583	não essencial
YOL110W/SHR5	97,4	23,84	0,245	0,263	0,057	não essencial
YOL111C/	586,5	99,41	0,169	0,184	0,171	não essencial
YOL112W/	317,8	76,79	0,242	0,198	0,104	não essencial
YOL113W/	331,9	111,59	0,336	0,220	0,112	não essencial
YOL114C/	45,2	17,21	0,381	0,296	0,130	não essencial
YOL115W/TRF4	152,9	26,69	0,175	0,218	0,148	não essencial
YOL116W/MSN1	169,1	19,16	0,113	0,129	0,104	não essencial
YOL117W/	68,2	19,34	0,283	0,355	0,131	não essencial
YOL118C/	194,8	78,30	0,402	0,322	0,122	não essencial
YOL119C/	122,1	64,38	0,527	0,332	0,113	não essencial
YOL120C/RP28A_ex1	1955,5	690,93	0,353	0,320	0,812	essencial
YOL120C/RP28A_ex2_f	2909,8	1312,32	0,451	0,385	0,812	essencial
YOL121C/RPS16B_ex1_f	2675,5	1096,31	0,410	0,357	0,794	não essencial
YOL122C/SMF1	553,6	145,65	0,263	0,176	0,175	não essencial
YOL123W/HRP1	1622,3	468,97	0,289	0,279	0,243	essencial
YOL124C/	952,2	207,56	0,218	0,222	0,142	não essencial
YOL125W/	114,1	26,33	0,231	0,179	0,113	não essencial
YOL126C/MDH2	48,6	19,37	0,399	0,173	0,116	não essencial
YOL127W/RPL25_ex1	3463,8	1250,52	0,399	0,303	0,748	essencial
YOL128C/	240,9	40,17	0,361	0,403	0,748	não essencial
YOL129W/	439,6	119,64	0,167	0,141	0,107	
I OL IZBVV/	+35,0	118,04	0,212	0,212	0,119	não essencial

YOL130W/	263,6	55,40	0,210	0,250	0,145	essencial
YOL133W/	385,0	56,81	0,148	0,122	0,206	essencial
YOL134C/	135,4	30,88	0,228	0,242	0,147	essencial
YOL135C/	332,8	36,65	0,110	0,121	0,089	essencial
YOL136C/PFK27	422,2	60,92	0,144	0,111	0,173	não essencial
YOL137W/	166,8	42,21	0,253	0,190	0,137	não essencial
YOL138C/	93,3	26,23	0,281	0,234	0,128	não essencial
YOL139C/CDC33	2696,6	763,87	0,283	0,295	0,387	essencial
YOL141W/	35,5	9,67	0,272	0,247	0,136	não essencial
YOL142W/	286,1	36,18	0,126	0,123	0,141	essencial
YOL143C/RIB4	812,5	192,80	0,237	0,231	0,211	não essencial
YOL144W/	459,9	68,53	0,149	0,186	0,138	essencial
YOL145C/	235,1	64,26	0,273	0,228	0,187	não essencial
YOL146W/	324,5	94,13	0,290	0,224	0,109	essencial
YOL147C/PMP27	590,6	67,77	0,115	0,144	0,149	não essencial
YOL148C/SPT20	330,1	58,24	0,176	0,154	0,111	não essencial
YOL149W/	456,9	70,44	0,154	0,144	0,127	essencial
YOL150C/	260,4	110,86	0,134	0,144	0,127	não essencial
YOL151W/	373,5	116,03	0,420	0,209	0,071	não essencial
YOL151W/	43,4	16,70	0,311	0,209	0,244	não essencial
YOL155C/	364,9	151,41	0,305	0,240	0,142	não essencial
YOL156W/HXT11	150,2	65,18	0,413	0,341	0,270	não essencial
YOL158C/	117,0	37,21	0,434	0,289	0,100	não essencial
YOL159C/	233,5	52,42	0,316	0,190	0,103	não essencial
YOL160W/	75,1	42,03	0,223	0,270	0,138	não essencial
YOL162W/	93,2	37,42	0,300	0,200	0,119	não essencial
YOL163W/	43,5	11,85	0,402	0,247	0,123	não essencial
YOR001W/	330,5	67,36	0,272	0,242	0,110	não essencial
YOR002W/ALG6	404,1	· ·	0,204	0,210	0,127	
YOR003W/YSP3		40,68			· ·	não essencial
YOR004W/	120,9	28,09	0,232	0,252	0,113	não essencial
	1023,9	127,47	0,124	0,133	0,143	essencial não essencial
YOR005C/	96,4	27,95	0,290	0,186	0,109	
YOR006C/ YOR007C/	304,1	53,69	0,177	0,169	0,139	não essencial não essencial
YOR008C/SLG1	1076,1	238,77	0,222	0,178	0,192	não essencial
	545,5	131,12	0,240	0,213	0,102 0,358	
YOR009W/	232,4	59,54	0,256	0,249	,	não essencial
YOR010C/TIR2	168,4	33,19	0,197	0,247	0,544	não essencial
YOR011W/	55,5	12,77	0,230	0,246	0,196	não essencial
YOR012W/	169,8	32,68	0,193	0,254	0,123	não essencial
YOR013W/	417,3	92,82	0,222	0,117	0,108	não essencial
YOR014W/RTS1	258,3	45,17	0,175	0,135	0,159	não essencial
YOR015W/	786,4	153,10	0,195	0,188	0,166	não essencial
YOR016C/	445,6	83,26	0,187	0,138	0,179	não essencial
YOR017W/PET127	279,2	59,51	0,213	0,205	0,128	não essencial
YOR018W/ROD1	207,1	47,18	0,228	0,204	0,123	não essencial
YOR019W/	75,2	16,22	0,216	0,159	0,142	não essencial
YOR020C/HSP10	924,6	263,87	0,285	0,218	0,317	essencial
YOR021C/	951,0	163,90	0,172	0,157	0,193	não essencial
YOR022C/	119,0	23,41	0,197	0,135	0,144	não essencial
YOR023C/	304,7	44,94	0,147	0,125	0,145	não essencial
YOR025W/HST3	119,7	67,18	0,561	0,346	0,125	não essencial
YOR026W/BUB3	395,0	130,83	0,331	0,278	0,133	não essencial
YOR027W/STI1	746,8	344,26	0,461	0,234	0,248	não essencial
YOR028C/CIN5	271,0	58,85	0,217	0,199	0,123	não essencial
YOR029W/	10,5	4,98	0,475	0,711	0,071	não essencial
YOR030W/	124,9	38,20	0,306	0,217	0,137	não essencial

YOR031W/	612,8	161,74	0,264	0,195	0,228	não essencial
YOR032C/	214,9	67,28	0,313	0,208	0,132	não essencial
YOR033C/DHS1	417,6	97,99	0,235	0,187	0,140	não essencial
YOR034C/	295,0	76,71	0,260	0,209	0,129	não essencial
YOR035C/DSK2	85,3	23,95	0,281	0,187	0,128	não essencial
YOR036W/PEP12	311,6	91,07	0,292	0,185	0,103	não essencial
YOR037W/CYC2	121,4	21,45	0,177	0,236	0,110	não essencial
YOR038C/HIR2	117,6	27,18	0,231	0,190	0,130	não essencial
YOR039W/CKB2	640,1	158,54	0,248	0,185	0,150	não essencial
YOR040W/	68,5	29,06	0,424	0,207	0,140	não essencial
YOR041C/	38,3	8,38	0,219	0,267	0,166	não essencial
YOR042W/	364,1	79,27	0,218	0,222	0,146	não essencial
YOR043W/WHI2	392,3	81,72	0,208	0,160	0,154	não essencial
YOR044W/	229,7	28,73	0,125	0,123	0,082	não essencial
YOR045W/TOM6	1264,9	276,46	0,219	0,243	0,301	não essencial
YOR046C/DBP5	593,2	79,10	0,133	0,150	0,211	essencial
YOR047C/STD1	408,4	80,23	0,196	0,155	0,116	não essencial
YOR048C/RAT1	301,5	43,68	0,145	0,137	0,164	essencial
YOR049C/	68,8	19,84	0,288	0,266	0,137	não essencial
YOR050C/	58,4	14,41	0,247	0,259	0,076	não essencial
YOR051C/	1025,2	173,81	0,170	0,119	0,212	não essencial
YOR052C/	1257,0	351,76	0,280	0,237	0,190	não essencial
YOR053W/	195,9	31,23	0,159	0,175	0,102	não essencial
YOR054C/	172,0	38,11	0,222	0,187	0,134	não essencial
YOR055W/	14,8	6,79	0,460	0,695	0,117	não essencial
YOR056C/	765,9	133,18	0,174	0,229	0,146	essencial
YOR057W/	325,2	48,89	0,150	0,117	0,161	essencial
YOR058C/ASE1	127,1	48,28	0,380	0,346	0,129	não essencial
YOR059C/	332,2	60,10	0,181	0,183	0,109	não essencial
YOR060C/	133,4	38,81	0,291	0,266	0,093	essencial
YOR061W/CKA2	549,0	66,73	0,122	0,136	0,164	não essencial
YOR062C/	194,5	49,87	0,256	0,162	0,111	não essencial
YOR063W/TCM1	1767,1	802,63	0,454	0,303	0,830	essencial
YOR064C/	214,2	49,81	0,233	0,166	0,112	não essencial
YOR065W/CYT1	574,9	245,60	0,427	0,305	0,304	não essencial
YOR066W/	169,2	64,68	0,382	0,308	0,125	não essencial
YOR067C/ALG8	276,3	43,28	0,157	0,114	0,137	não essencial
YOR069W/	270,7	36,78	0,136	0,097	0,137	não essencial
YOR070C/	209,8	39,14	0,187	0,149	0,121	não essencial
YOR071C/	53,2	20,43	0,384	1,036	0,292	não essencial
YOR072W/	58,2	18,20	0,312	0,276	0,112	não essencial
YOR073W/	252,8	100,97	0,399	0,327	0,133	não essencial
YOR074C/CDC21_ex1_f	55,2	37,95	0,688	0,556	0,194	essencial
YOR074C/CDC21_ex1_i	46,8	33,22	0,710	0,556	0,194	essencial
YOR074C/CDC21_ex2	361,5	181,92	0,503	0,409	0,194	essencial
YOR075W/UFE1	223,1	47,57	0,213	0,313	0,152	essencial
YOR076C/	153,2	17,74	0,116	0,103	0,132	não essencial
YOR077W/RTS2	43,3	9,64	0,223	0,273	0,118	essencial
YOR078W/	810,5	175,40	0,216	0,307	0,128	não essencial
YOR079C/ATX2	343,5	91,69	0,267	0,225	0,120	não essencial
YOR080W/	152,3	30,56	0,201	0,170	0,113	não essencial
YOR081C/	188,9	31,37	0,166	0,131	0,143	não essencial
YOR082C/	20,9	7,44	0,355	0,344	0,163	não essencial
YOR084W/	124,9	51,66	0,414	0,489	0,085	não essencial
YOR085W/OST3	311,9	55,17	0,177	0,101	0,186	não essencial
YOR086C/	323,2	60,85	0,188	0,137	0,220	não essencial

YOR087W/	33,1	15,29	0,462	0,577	0,149	não essencial
YOR088W/	211,8	55,63	0,263	0,176		não essencial
YOR089C/VPS21	703,2	145,87	0,207	0,206	0,148	não essencial
YOR090C/	254,2	41,84	0,165	0,135	0,136	não essencial
YOR091W/	826,2	172,50	0,209	0,180	0,221	não essencial
YOR092W/	105,5	21,04	0,199	0,153	0,181	não essencial
YOR093C/	78,8	14,44	0,183	0,164	0,136	não essencial
YOR094W/ARF3	322,4	54,28	0,168	0,195	0,125	não essencial
YOR095C/	549,9	98,05	0,178	0,179	0,248	essencial
YOR096W/RPS30_ex1	1792,4	771,80	0,431	0,337	0,747	não essencial
YOR096W/RPS30_ex2	1993,9	753,52	0,378	0,320	0,747	não essencial
YOR097C/	446,2	85,32	0,191	0,171	0,086	não essencial
YOR098C/NUP1	509,5	83,89	0,165	0,196	0,121	essencial
YOR099W/KTR1	1146,3	263,42	0,230	0,227	0,246	não essencial
YOR100C/	20,7	11,88	0,574	0,588	0,131	não essencial
YOR101W/RAS1	392,5	84,88	0,216	0,224	0,159	não essencial
YOR102W/OST2	1574,9	250,26	0,159	0,185	0,080	essencial
YOR103C/	418,7	104,73	0,250	0,265	0,156	essencial
YOR104W/	287,8	94,26	0,328	0,174	0,124	não essencial
YOR105W/_f	425,0	129,33	0,304	0,167	0,060	não essencial
YOR106W/VAM3	289,3	48,19	0,167	0,153	0,136	não essencial
YOR107W/	71,8	20,71	0,288	0,303	0,118	não essencial
YOR108W/	823,5	200,13	0,243	0,185	0,248	não essencial
YOR109W/	472,1	73,48	0,156	0,205	0,152	não essencial
YOR110W/	289,0	52,28	0,181	0,116	0,125	essencial
YOR111W/	110,6	21,18	0,192	0,179	0,146	não essencial
YOR112W/	274,4	44,71	0,163	0,169	0,122	não essencial
YOR113W/AZF1	54,8	11,07	0,202	0,216	0,128	não essencial
YOR115C/	496,0	72,20	0,146	0,129	0,119	não essencial
YOR116C/RPO31	459,5	97,68	0,213	0,174	0,208	essencial
YOR117W/YTA1	348,1	68,60	0,197	0,132	0,195	essencial
YOR118W/	211,8	33,71	0,159	0,175	0,134	não essencial
YOR119C/RIO1	359,9	50,33	0,140	0,134	0,181	essencial
YOR120W/GCY1	185,7	120,83	0,651	0,192	0,209	não essencial
YOR121C/	281,6	150,80	0,535	0,177	0,176	não essencial
YOR122C/PFY1_ex1	1628,8	559,46	0,343	0,261	0,448	essencial
YOR123C/LEO1	554,8	112,79	0,203	0,224	0,165	não essencial
YOR124C/UBP2	325,5	74,66	0,229	0,138	0,152	não essencial
YOR125C/CAT5	420,7	60,70	0,144	0,141	0,168	não essencial
YOR126C/IAH1	190,8	47,49	0,249	0,181	0,136	não essencial
YOR127W/RGA1	128,6	41,31	0,321	0,346	0,127	não essencial
YOR128C/ADE2	156,5	20,17	0,129	0,125	0,179	não essencial
YOR129C/	126,3	34,07	0,270	0,194	0,129	não essencial
YOR130C/ARG11	375,9	106,23	0,283	0,133	0,096	não essencial
YOR131C/	654,3	112,84	0,172	0,168	0,093	não essencial
YOR132W/VPS17	324,8	64,70	0,199	0,187	0,140	não essencial
YOR133W/EFT1_f	2237,7	739,34	0,330	0,271	0,804	não essencial
YOR135C/IDH2	181,2	77,42	0,427	0,245	0,097	não essencial
YOR136W/	1103,6	399,21	0,362	0,212	0,245	não essencial
YOR137C/	124,4	29,90	0,240	0,218	0,125	não essencial
YOR138C/VAM3	337,2	87,21	0,259	0,100	0,110	não essencial
YOR139C/SFL1	26,8	5,20	0,194	0,265	0,123	não essencial
YOR140W/	116,2	30,70	0,264	0,368	0,127	não essencial
YOR141C/	144,4	21,54	0,149	0,185	0,151	não essencial
YOR142W/	206,5	55,00	0,266	0,301	0,239	não essencial
YOR143C/THI80	592,9	102,26	0,172	0,144	0,163	essencial

YOR144C/	155,4	47,41	0,305	0,229	0,134	não essencial
YOR145C/	915,4	165,27	0,181	0,191	0,165	essencial
YOR146W/	477,6	77,30	0,162	0,173	0,091	essencial
YOR147W/	287,3	46,84	0,163	0,097	0,133	não essencial
YOR148C/SPP2	233,9	31,80	0,136	0,152	0,126	essencial
YOR149C/SMP3	104,6	15,60	0,149	0,175	0,121	essencial
YOR150W/	643,4	98,00	0,152	0,132	0,145	não essencial
YOR151C/RPB2	662,8	79,16	0,119	0,142	0,228	essencial
YOR152C/	239,1	63,93	0,267	0,218	0,141	não essencial
YOR153W/PDR5	1177,0	506,44	0,430	0,363	0,246	não essencial
YOR154W/	264,1	41,54	0,157	0,163	0,131	não essencial
YOR155C/	202,1	56,17	0,278	0,159	0,136	não essencial
YOR156C/NFI1	113,2	27,22	0,241	0,181	0,113	não essencial
YOR157C/PUP1	605,1	181,20	0,299	0,190	0,179	essencial
YOR158W/PET123	545,9	119,51	0,219	0,132	0,155	não essencial
YOR159C/	821,3	173,98	0,212	0,190	0,116	essencial
YOR160W/MTR10	122,4	17,86	0,146	0,172	0,148	essencial
YOR161C/	85,4	15,92	0,186	0,128	0,134	não essencial
YOR162C/	77,9	10,95	0,141	0,100	0,145	não essencial
YOR163W/	550,6	99,94	0,182	0,199	0,181	não essencial
YOR164C/	311,9	39,44	0,126	0,147	0,194	não essencial
YOR165W/	599,3	84,00	0,140	0,125	0,182	não essencial
YOR166C/	215,4	32,62	0,151	0,161	0,158	não essencial
YOR167C/RPS33A f	1780,3	996,59	0,560	0,467	0,528	não essencial
YOR167C/RPS33A_i	3283,1	1718,80	0,524	0,481	0,528	não essencial
YOR168W/GLN4	492,6	93,37	0,190	0,161	0,269	essencial
YOR169C/	798,4	219,14	0,274	0,276	0,172	essencial
YOR170W/	349,1	72,06	0,206	0,219	0,131	não essencial
YOR171C/	205,7	37,95	0,184	0,156	0,155	não essencial
YOR172W/	221,5	17,90	0,081	0,101	0,120	não essencial
YOR173W/	55,2	25,65	0,464	0,212	0,157	não essencial
YOR174W/	254,2	41,88	0,165	0,115	0,147	essencial
YOR175C/	322,9	68,45	0,212	0,213	0,212	não essencial
YOR176W/HEM15	374,9	101,52	0,271	0,183	0,169	essencial
YOR177C/	99,9	40,16	0,402	0,322	0,147	não essencial
YOR178C/	72,4	18,06	0,249	0,277	0,149	não essencial
YOR179C/	315,4	57,16	0,181	0,127	0,121	não essencial
YOR180C/	76,2	17,59	0,231	0,260	0,112	não essencial
YOR181W/LAS17	99,8	33,63	0,337	0,338	0,105	essencial
YOR182C/_ex1_f	2918,5	1377,25	0,472	0,392	0,748	não essencial
YOR183W/	22,7	6,29	0,277	0,278	0,075	não essencial
YOR184W/SER1	571,0	131,70	0,231	0,118	0,258	não essencial
YOR185C/GSP2	232,2	97,85	0,421	0,180	0,257	não essencial
YOR187W/	595,1	122,56	0,206	0,112	0,291	não essencial
YOR188W/MSB1	153,3	54,75	0,357	0,191	0,127	não essencial
YOR189W/	588,5	108,60	0,185	0,218	0,101	não essencial
YOR190W/SPR1	42,8	13,09	0,306	0,166	0,147	não essencial
YOR191W/	92,6	21,48	0,232	0,258	0,136	não essencial
YOR192C/	27,9	6,05	0,217	0,268	0,264	não essencial
YOR193W/	309,6	92,23	0,298	0,173	0,131	não essencial
YOR194C/TOA1	908,9	153,53	0,169	0,188	0,118	essencial
YOR195W/	369,9	108,94	0,295	0,248	0,160	não essencial
YOR196C/LIP5	574,4	67,74	0,118	0,102	0,141	não essencial
YOR197W/	289,3	66,52	0,230	0,147	0,174	não essencial
YOR198C/BFR1	942,1	127,71	0,136	0,146	0,406	não essencial
YOR199W/PET56	39,9	12,61	0,316	0,285	0,089	não essencial

YOR200W/	486,5	57,39	0,118	0,114	0,087	não essencial
YOR201C/	300,7	31,78	0,106	0,125	0,119	não essencial
YOR202W/HIS3	281,6	86,35	0,307	0,181	0,092	não essencial
YOR203W/	347,9	131,41	0,378	0,237	0,094	essencial
YOR204W/DED1	367,7	42,75	0,116	0,131	0,376	essencial
YOR205C/	175,2	34,59	0,197	0,227	0,109	não essencial
YOR206W/	350,9	76,24	0,217	0,264	0,224	essencial
YOR207C/RET1	496,3	62,54	0,126	0,108	0,229	essencial
YOR208W/PTP2	364,6	61,22	0,168	0,112	0,138	não essencial
YOR209C/NPT1	656,2	103,18	0,157	0,119	0,207	não essencial
YOR210W/RPB10	1177,9	263,37	0,137	0,218	0,436	essencial
YOR211C/MGM1	52,9	17,54	0,332	0,365	0,430	não essencial
YOR212W/STE4	416,8	64,31	0,352	0,303	0,147	não essencial
YOR213C/	228,5	32,41	0,134	0,179	0,128	não essencial
	·				·	
YOR215C/	830,2	189,87	0,229	0,161	0,223	não essencial
YOR216C/	399,8	63,82	0,160	0,144	0,166	não essencial
YOR217W/RFC1	463,9	73,79	0,159	0,164	0,158	essencial
YOR218C/	267,6	82,17	0,307	0,355	0,193	essencial
YOR219C/STE13	99,8	22,85	0,229	0,290	0,144	não essencial
YOR220W/	358,0	107,21	0,299	0,228	0,120	não essencial
YOR221C/_ex2	145,5	22,31	0,153	0,146	0,142	não essencial
YOR222W/	661,2	159,55	0,241	0,154	0,181	não essencial
YOR223W/	170,6	35,42	0,208	0,193	0,095	não essencial
YOR224C/RPB8	1379,1	349,86	0,254	0,285	0,246	essencial
YOR225W/	630,2	148,23	0,235	0,243	0,114	não essencial
YOR226C/	631,3	143,41	0,227	0,216	0,139	não essencial
YOR227W/	227,8	49,52	0,217	0,198	0,149	não essencial
YOR228C/	85,4	19,12	0,224	0,188	0,112	não essencial
YOR229W/	216,1	88,28	0,409	0,265	0,163	não essencial
YOR230W/	1158,0	338,53	0,292	0,202	0,276	não essencial
YOR231W/MKK1	139,8	35,55	0,254	0,170	0,105	não essencial
YOR232W/MGE1	810,2	122,08	0,151	0,127	0,246	essencial
YOR233W/KIN4	287,9	61,84	0,215	0,185	0,124	não essencial
YOR234C/RPL37B_ex1_f	2794,9	1118,19	0,400	0,366	0,730	não essencial
YOR234C/RPL37B_ex1_i	2853,6	1117,66	0,392	0,385	0,730	não essencial
YOR235W/	9,6	4,81	0,498	0,672	0,094	não essencial
YOR236W/DFR1	353,1	78,41	0,222	0,245	0,102	essencial
YOR237W/HES1	201,6	146,82	0,728	0,331	0,150	não essencial
YOR238W/	319,7	83,62	0,262	0,147	0,160	não essencial
YOR239W/	340,6	73,41	0,215	0,218	0,221	não essencial
YOR241W/	523,8	40,41	0,077	0,065	0,146	não essencial
YOR242C/	105,8	44,12	0,417	0,289	0,118	não essencial
YOR243C/	373,5	70,12	0,188	0,203	0,192	não essencial
YOR244W/	483,3	53,90	0,112	0,102	0,149	essencial
YOR245C/	162,5	24,76	0,152	0,162	0,131	não essencial
YOR246C/	408,4	71,21	0,174	0,157	0,120	não essencial
YOR247W/	1783,5	513,16	0,288	0,282	0,227	não essencial
YOR248W/ f	1802,0	580,01	0,322	0,320	0,054	não essencial
YOR248W/ i	570,2	289,33	0,522	0,520	0,054	não essencial
YOR249C/	119,6	13,80	0,307	0,105	0,034	essencial
YOR250C/	85,9	13,17	0,113	0,103	0,123	essencial
YOR251C/	426,8	48,39	0,133	0,107	0,115	não essencial
YOR252W/	713,4	145,85	0,204	0,245	0,156	não essencial
YOR253W/	1105,5	129,24	0,117	0,128	0,178	não essencial
YOR254C/SEC63	796,5	139,18	0,175	0,203	0,191	essencial
YOR256C/	237,8	59,92	0,252	0,169	0,129	essencial

YOR257W/CDC31	445,3	58,00	0,130	0,101	0,108	essencial
YOR258W/	181,9	42,50	0,234	0,174	0,133	não essencial
YOR259C/CRL13	877,2	165,08	0,188	0,099	0,208	essencial
YOR260W/GCD1	576,5	62,58	0,109	0,105	0,178	essencial
YOR261C/	819,4	204,84	0,250	0,147	0,194	essencial
YOR262W/	213,7	30,38	0,142	0,154	0,139	essencial
YOR263C/	34,9	29,04	0,832	1,818	0,134	não essencial
YOR264W/	176,4	151,74	0,860	0,611	0,132	não essencial
YOR265W/RBL2	910,6	109,78	0,121	0,160	0,165	não essencial
YOR266W/PNT1	238,9	31,80	0,133	0,107	0,105	não essencial
YOR267C/	351,4	74,98	0,213	0,241	0,221	não essencial
YOR268C/	17,8	7,02	0,395	0,353	0,131	não essencial
YOR269W/PAC1	49,2	10,27	0,209	0,221	0,150	não essencial
YOR270C/VPH1	872,5	227,67	0,261	0,186	0,303	não essencial
YOR271C/	936,9	157,35	0,168	0,137	0,197	não essencial
YOR272W/	681,6	133,84	0,196	0,199	0,202	essencial
YOR273C/	345,3	180,28	0,522	0,316	0,175	não essencial
YOR274W/MOD5	401,1	102,01	0,254	0,163	0,140	não essencial
YOR275C/	258,2	44,09	0,171	0,162	0,133	não essencial
YOR276W/CAP20	1507,5	404,71	0,268	0,221	0,356	não essencial
YOR277C/	1314,1	312,58	0,238	0,223	0,132	não essencial
YOR278W/HEM4	217,9	27,19	0,125	0,096	0,144	essencial
YOR279C/	186,5	32,13	0,172	0,159	0,127	não essencial
YOR280C/	421,8	55,03	0,130	0,114	0,164	não essencial
YOR281C/	741,2	92,00	0,124	0,146	0,165	essencial
YOR282W/	69,5	18,09	0,260	0,322	0,087	essencial
YOR283W/	458,1	87,60	0,191	0,216	0,233	não essencial
YOR284W/	167,6	83,29	0,497	0,287	0,131	não essencial
YOR285W/	1899,6	418,45	0,220	0,207	0,155	não essencial
YOR286W/	887,5	182,08	0,205	0,154	0,144	não essencial
YOR287C/	366,5	75,61	0,206	0,210	0,166	essencial
YOR288C/MPD1	262,5	74,90	0,285	0,214	0,139	não essencial
YOR289W/	101,4	68,88	0,679	0,175	0,115	não essencial
YOR290C/SNF2	441,7	101,14	0,229	0,261	0,155	não essencial
YOR291W/	210,1	25,70	0,122	0,125	0,135	não essencial
YOR292C/	72,1	15,50	0,215	0,240	0,095	não essencial
YOR293W/_ex1_f	2985,9	1251,15	0,419	0,477	0,840	não essencial
YOR293W/_ex1_i	2105,5	1024,61	0,487	0,492	0,840	não essencial
YOR293W/_ex2_f	2548,2	1070,43	0,420	0,436	0,840	não essencial
YOR293W/_ex2_i	845,8	469,88	0,556	0,615	0,840	não essencial
YOR294W/	524,3	90,99	0,174	0,205	0,207	essencial
YOR295W/	200,6	30,49	0,152	0,143	0,107	não essencial
YOR296W/	54,3	11,41	0,210	0,204	0,115	não essencial
YOR297C/	139,4	30,03	0,215	0,324	0,107	não essencial
YOR298W/	121,6	36,35	0,299	0,194	0,134	não essencial
YOR299W/	186,1	33,34	0,179	0,098	0,110	não essencial
YOR300W/	69,8	23,45	0,336	0,327	0,120	não essencial
YOR301W/	114,7	31,91	0,278	0,137	0,094	não essencial
YOR302W/	1515,5	426,00	0,281	0,265	0,304	não essencial
YOR303W/CPA1	974,1	179,12	0,184	0,125	0,227	não essencial
YOR304C-a/BAT2	291,5	40,44	0,139	0,119	0,098	não essencial
YOR304W/	451,5	82,76	0,183	0,223	0,169	não essencial
YOR305W/	635,8	77,50	0,122	0,129	0,109	não essencial
YOR306C/	391,3	97,74	0,250	0,259	0,159	não essencial
YOR307C/SLY41	255,4	61,33	0,240	0,195	0,117	não essencial
YOR308C/	193,3	27,48	0,142	0,108	0,132	não essencial

YOR309C/_i	1075,6	314,35	0,292	0,401	0,124	não essencial
YOR309C/ r	1325,7	427,80	0,323	0,282	0,124	não essencial
YOR310C/	1580,5	435,50	0,276	0,221	0,389	essencial
YOR311C/	268,4	74,52	0,278	0,175	0,141	não essencial
YOR312C/RPL18A1 ex1 f	2732,5	1067,98	0,391	0,407	0,697	não essencial
YOR312C/RPL18A1 ex1 i	5007,1	1693,44	0,338	0,374	0,697	não essencial
YOR313C/SPS4	69,2	53,06	0,766	0,490	0,128	não essencial
YOR314W/	42,5	27,14	0,638	0,469	0,108	não essencial
YOR315W/	542,8	331,83	0,611	0,330	0,110	não essencial
YOR316C/COT1	322,6	76,54	0,237	0,148	0,138	não essencial
YOR317W/FAA1	331,3	119,00	0,359	0,168	0,243	não essencial
YOR318C/_ex1	99,0	14,40	0,145	0,168	0,091	não essencial
YOR319W/HSH49	349,2	47,99	0,137	0,102	0,148	essencial
YOR320C/	559,1	82,77	0,148	0,101	0,149	não essencial
YOR321W/PMT3	208,4	52,51	0,140	0,101	0,145	não essencial
YOR322C/	114,8	29,23	0,255	0,208	0,143	não essencial
YOR323C/PRO2		·		0,208		não essencial
YOR324C/	374,6 67.3	46,71	0,125		0,249	
	67,3	10,74	0,160	0,181	0,121	não essencial
YOR325W/	35,0	9,42	0,269	0,254	0,137	não essencial
YOR326W/MYO2	789,1	156,32	0,198	0,183	0,193	essencial
YOR327C/SNC2	1111,2	225,82	0,203	0,224	0,219	não essencial
YOR328W/PDR10	78,3	19,55	0,250	0,140	0,128	não essencial
YOR329C/SCD5	302,6	36,54	0,121	0,101	0,130	essencial
YOR330C/MIP1	220,0	56,98	0,259	0,270	0,118	não essencial
YOR331C/VMA4	481,0	127,38	0,265	0,211	0,152	não essencial
YOR332W/	1397,8	356,87	0,255	0,227	0,263	não essencial
YOR333C/MRS2	60,3	14,62	0,242	0,260	0,098	não essencial
YOR334W/	139,2	29,93	0,215	0,191	0,158	não essencial
YOR335C/ALA1	1105,9	141,72	0,128	0,109	0,378	essencial
YOR336W/KRE5	141,1	36,72	0,260	0,169	0,146	essencial
YOR337W/TEA1	330,2	68,40	0,207	0,178	0,136	não essencial
YOR338W/	94,1	64,74	0,688	0,250	0,131	não essencial
YOR339C/	63,9	26,17	0,410	0,173	0,104	não essencial
YOR340C/RPA43	503,1	80,60	0,160	0,138	0,169	essencial
YOR341W/RPA190	844,9	143,47	0,170	0,198	0,279	essencial
YOR342C/	1043,7	309,75	0,297	0,201	0,145	não essencial
YOR343C/	52,6	10,29	0,196	0,235	0,054	não essencial
YOR344C/TYE7	474,3	76,73	0,162	0,130	0,191	não essencial
YOR345C/REV1	45,4	16,04	0,354	0,601	0,084	não essencial
YOR346W/	680,2	163,88	0,241	0,198	0,133	não essencial
YOR347C/	76,4	35,12	0,460	0,240	0,130	não essencial
YOR348C/PUT4	27,5	17,95	0,652	1,349	0,110	não essencial
YOR349W/CIN1	127,6	36,90	0,289	0,423	0,130	não essencial
YOR350C/MNE1	91,0	14,61	0,161	0,137	0,129	não essencial
YOR351C/MEK1	15,9	5,36	0,338	0,466	0,150	não essencial
YOR352W/	102,4	25,61	0,250	0,343	0,161	não essencial
YOR353C/	206,8	30,85	0,149	0,085	0,100	essencial
YOR354C/	319,2	57,37	0,180	0,143	0,164	não essencial
YOR355W/GDS1	474,5	82,52	0,174	0,191	0,143	não essencial
YOR356W/	308,5	66,67	0,216	0,236	0,152	não essencial
YOR357C/	299,4	83,28	0,278	0,291	0,121	não essencial
YOR358W/HAP5	109,1	31,10	0,285	0,148	0,113	não essencial
YOR359W/	306,2	66,11	0,216	0,180	0,147	não essencial
YOR360C/PDE2	334,2	58,39	0,175	0,153	0,147	não essencial
YOR361C/PRT1	1593,6	235,27	0,173	0,185	0,103	essencial
YOR362C/PRE10	1043,6	336,51	0,322	0,103	0,304	essencial
1010020/1 INL 10	1040,0	000,01	0,022	0,213	0,132	COSCIICIAI

YOR363C/PIP2	102,3	17,44	0,170	0,138	0,134	não essencial
YOR364W/	68,5	11,83	0,173	0,194	0,099	não essencial
YOR365C/	61,6	14,08	0,228	0,196	0,117	não essencial
YOR366W/	90,4	21,21	0,235	0,160	0,092	não essencial
YOR367W/	305,2	47,77	0,157	0,157	0,158	não essencial
YOR368W/RAD17	224,8	56,30	0,250	0,259	0,102	não essencial
YOR369C/RPS12	1775,5	1083,01	0,610	0,485	0,844	não essencial
YOR370C/MSI4	672,5	96,89	0,144	0,148	0,154	essencial
YOR371C/	114,9	24,17	0,210	0,254	0,133	não essencial
YOR372C/	288,2	78,80	0,273	0,222	0,114	essencial
YOR373W/NUD1	152,8	59,40	0,389	0,367	0,127	essencial
YOR374W/	170,3	79,13	0,465	0,285	0,284	não essencial
YOR375C/GDH1	1821,1	678,39	0,373	0,259	0,586	não essencial
YOR377W/ATF1	246,7	81,22	0,329	0,182	0,148	não essencial
YOR378W/	56,8	21,32	0,376	0,165	0,099	não essencial
YOR379C/	156,9	57,70	0,368	0,220	0,140	não essencial
YOR380W/	141,4	16,07	0,114	0,158	0,108	não essencial
YOR381W/	42,6	11,17	0,262	0,198	0,125	não essencial
YOR382W/	186,5	30,01	0,161	0,136	0,285	não essencial
YOR383C/	267,9	34,94	0,130	0,179	0,546	não essencial
YOR384W/	37,7	10,04	0,266	0,286	0,091	não essencial
YOR385W/	355,1	143,61	0,404	0,414	0,153	não essencial
YOR386W/PHR1	34,7	15,11	0,435	0,539	0,133	não essencial
YPL001W/HAT1	211,4	29,35	0,139	0,155	0,155	não essencial
YPL002C/SNF8	239,5	29,26	0,122	0,143	0,123	não essencial
YPL003W/	152,0	41,01	0,270	0,240	0,097	não essencial
YPL004C/	453,7	198,59	0,438	0,269	0,255	não essencial
YPL005W/	61,2	20,73	0,339	0,228	0,105	não essencial
YPL006W/	113,5	23,99	0,211	0,247	0,133	não essencial
YPL007C/	148,1	35,81	0,242	0,234	0,114	essencial
YPL008W/CHL1	457,4	124,85	0,273	0,249	0,111	não essencial
YPL009C/	389,2	42,63	0,110	0,148	0,186	não essencial
YPL010W/	1173,0	182,03	0,155	0,185	0,187	essencial
YPL011C/	275,4	30,57	0,111	0,115	0,119	essencial
YPL012W/	738,8	145,63	0,197	0,177	0,178	essencial
YPL013C/	1551,1	418,34	0,270	0,288	0,087	não essencial
YPL014W/	77,7	33,03	0,425	0,440	0,133	não essencial
YPL015C/HST2	133,7	29,15	0,218	0,228	0,142	não essencial
YPL016W/SWI1	149,0	56,39	0,378	0,336	0,152	essencial
YPL017C/	78,5	18,16	0,231	0,235	0,087	não essencial
YPL018W/	145,4	23,93	0,165	0,126	0,108	não essencial
YPL019C/	1374,1	291,51	0,212	0,202	0,188	não essencial
YPL020C/	519,8	106,28	0,204	0,235	0,153	essencial
YPL021W/SRD2	12,6	6,63	0,524	1,109	0,105	não essencial
YPL022W/RAD1	228,8	35,04	0,153	0,140	0,124	não essencial
YPL023C/	293,4	51,18	0,174	0,128	0,144	não essencial
YPL024W/	449,8	132,06	0,294	0,125	0,134	não essencial
YPL025C/	28,6	9,21	0,322	0,340	0,093	não essencial
YPL026C/	144,5	41,23	0,322	0,340	0,093	não essencial
YPL027W/	21,3	8,49	0,283	0,310	0,131	não essencial
YPL028W/ERG10	1071,4	319,57	0,399	0,479	0,136	essencial
YPL029W/SUV3	207,9	37,19	0,290	0,200	0,300	não essencial
YPL030W/	359,8	48,29	0,173	0,200	0,114	não essencial
YPL031C/PHO85 ex1	456,9	128,28	0,134	0,133	0,144	não essencial
YPL032C/	782,9	177,16	0,226	0,174	0,140	não essencial
YPL034W/	373,6	60,54	0,162	0,174	0,129	não essencial
II LOOTVV/	373,0	50,54	0,102	0,120	0,123	nao coociiciai

YPL035C/	149,1	34,36	0,231	0,269	0,126	não essencial
YPL037C/EGD1	2805,5	1004,02	0,358	0,328	0,615	não essencial
YPL038W/	255,0	34,07	0,134	0,082	0,095	não essencial
YPL039W/	134,9	25,79	0,191	0,192	0,116	não essencial
YPL040C/ISM1	90,5	11,80	0,130	0,147	0,131	não essencial
YPL041C/	115,5	27,72	0,240	0,283	0,086	não essencial
YPL042C/SSN3	150,5	35,25	0,234	0,204	0,119	não essencial
YPL043W/NOP4	810,8	144,27	0,178	0,166	0,202	essencial
YPL044C/	220,8	64,16	0,291	0,338	0,098	essencial
YPL045W/VPS16	148,2	26,73	0,180	0,158	0,124	não essencial
YPL046C/	414,4	54,85	0,132	0,090	0,071	não essencial
YPL047W/	405,1	99,23	0,245	0,259	0,122	não essencial
YPL048W/CAM1	710,5	131,99	0,186	0,151	0,396	não essencial
YPL049C/	419,2	85,20	0,203	0,114	0,094	não essencial
YPL050C/MNN9	605,2	86,72	0,143	0,137	0,216	não essencial
YPL051W/	352,2	50,32	0,143	0,143	0,128	não essencial
YPL052W/	235,3	57,00	0,242	0,272	0,162	não essencial
YPL053C/KTR6	555,9	109,29	0,197	0,272	0,160	não essencial
YPL054W/LEE1	61,5	31,41	0,197	0,520	0,160	não essencial
YPL055C/	282,8	40,88	0,310	0,320	0,100	não essencial
YPL056C/	74,2	21,14	0,143	0,171	0,109	não essencial
YPL057C/SUR1	230,1	65,82	0,286	0,240	0,100	não essencial
YPL058C/PDR12	253,2	155,82	0,280	0,234	0,137	não essencial
YPL059W/	778,4	191,81	0,013	0,433	0,237	não essencial
YPL060W/	86,2	16,20	0,240	0,144	0,134	não essencial
YPL061W/ALD6	1036,2	708,07	0,188	0,181	0,120	não essencial
YPL063W/	529,4	77,21	0,083	0,493	0,320	essencial
YPL064C/	441,0	46,57	0,146	0,080	0,210	não essencial
YPL065W/	286,2	· ·	0,108	0,080	i i	
YPL066W/VPS28		56,54			0,156	não essencial
	164,9	51,99	0,315	0,239	0,128	não essencial
YPL067C/ YPL068C/	371,4	85,81	0,231	0,349	0,109	não essencial
YPL069C/BTS1	197,4	51,23	0,259	0,242	0,104	não essencial
YPL070W/	170,3	27,88	0,164	0,189	0,139	não essencial
YPL071C/	204,1 520,2	32,25	0,158	0,130 0,136	0,138 0,132	
YPL071C/		62,11	0,119			não essencial
	294,1	65,00	0,221	0,185	0,123	não essencial
YPL074W/	64,1	15,61	0,243	0,233	0,110	não essencial
YPL075W/GCR1	307,7	63,47	0,206	0,146	0,107	essencial
YPL076W/	59,8	16,12	0,269	0,302	0,136	essencial
YPL077C/	136,4	25,60	0,188	0,208	0,096	não essencial
YPL078C/ATP4	1144,0	236,81	0,207	0,167	0,267	não essencial
YPL079W/_ex1	3221,6	1264,71	0,393	0,391	0,733	não essencial
YPL080C/	20,8	9,30	0,447	0,911	0,103	não essencial
YPL081W/_ex1	1549,1	699,22	0,451	0,398	0,507	não essencial
YPL082C/MOT1	201,6	39,51	0,196	0,187	0,140	essencial
YPL083C/	203,5	23,03	0,113	0,089	0,123	essencial
YPL084W/BRO1	320,6	59,06	0,184	0,172	0,145	não essencial
YPL085W/SEC16	572,0	75,57	0,132	0,167	0,141	essencial
YPL086C/	511,2	71,14	0,139	0,177	0,218	não essencial
YPL087W/	290,3	102,19	0,352	0,217	0,146	não essencial
YPL088W/	356,1	47,12	0,132	0,136	0,148	não essencial
YPL089C/RLM1	731,4	148,13	0,203	0,184	0,122	não essencial
YPL090C/_ex1_f	2158,1	1052,89	0,488	0,423	0,837	não essencial
YPL091W/GLR1	701,5	153,43	0,219	0,171	0,218	não essencial
YPL092W/SSU1	135,2	49,25	0,364	0,424	0,110	não essencial
YPL093W/	662,4	107,01	0,162	0,184	0,360	essencial

YPL094C/SEC62	446,2	94,78	0,212	0,262	0,174	essencial
YPL095C/	121,5	31,05	0,256	0,188	0,143	não essencial
YPL096W/	259,1	39,17	0,151	0,133	0,115	não essencial
YPL097W/MSY1	276,1	67,26	0,244	0,156	0,105	não essencial
YPL098C/	578,2	109,03	0,189	0,247	0,124	não essencial
YPL099C/	143,5	22,12	0,154	0,128	0,115	não essencial
YPL100W/	134,1	19,14	0,143	0,180	0,109	não essencial
YPL101W/	234,4	47,22	0,201	0,203	0,123	não essencial
YPL102C/	10,9	5,61	0,516	1,012	0,099	não essencial
YPL103C/	94,9	18,33	0,193	0,202	0,117	não essencial
YPL104W/MSD1	122,5	26,23	0,214	0,137	0,141	não essencial
YPL105C/	408,7	86,66	0,212	0,229	0,162	não essencial
YPL106C/SSE1	1208,8	294,91	0,244	0,259	0,521	não essencial
YPL107W/	87,1	19,95	0,229	0,180	0,146	não essencial
YPL108W/	168,8	27,65	0,164	0,120	0,115	não essencial
YPL109C/	17,9	6,31	0,353	0,421	0,138	não essencial
YPL110C/	208,7	31,37	0,150	0,168	0,127	não essencial
YPL111W/CAR1	786,9	204,66	0,260	0,170	0,213	não essencial
YPL112C/	263,7	34,34	0,130	0,096	0,129	não essencial
YPL113C/	95,2	25,37	0,266	0,335	0,143	não essencial
YPL114W/	52,0	12,61	0,243	0,279	0,075	não essencial
YPL115C/BEM3	103,7	24,60	0,237	0,288	0,136	não essencial
YPL116W/	363,7	101,48	0,279	0,239	0,157	não essencial
YPL117C/IDI1	777,8	123,26	0,158	0,137	0,275	essencial
YPL118W/	621,4	87,70	0,141	0,116	0,164	não essencial
YPL119C/DBP1	21,3	3,95	0,185	0,212	0,120	não essencial
YPL120W/	290,8	51,92	0,179	0,180	0,134	não essencial
YPL122C/	349,8	60,53	0,173	0,156	0,172	essencial
YPL123C/	62,6	34,81	0,556	0,340	0,151	não essencial
YPL124W/NIP29	243,8	109,11	0,448	0,488	0,110	essencial
YPL125W/	360,6	47,61	0,132	0,104	0,165	não essencial
YPL126W/	311,8	58,63	0,188	0,190	0,169	essencial
YPL127C/HHO1	671,1	302,20	0,450	0,450	0,170	não essencial
YPL128C/TBF1	181,4	48,58	0,268	0,164	0,130	essencial
YPL129W/_ex1	752,6	152,79	0,203	0,205	0,144	não essencial
YPL131W/RPL1	3102,0	1220,89	0,394	0,331	0,830	essencial
YPL132W/COX11	221,4	47,78	0,216	0,258	0,151	não essencial
YPL133C/	80,5	22,99	0,285	0,318	0,107	não essencial
YPL134C/	82,1	24,82	0,302	0,408	0,123	não essencial
YPL135W/	932,0	222,64	0,239	0,132	0,154	não essencial
YPL137C/	276,9	56,01	0,202	0,161	0,164	não essencial
YPL138C/	292,3	58,11	0,199	0,218	0,134	não essencial
YPL139C/	258,8	55,01	0,213	0,175	0,133	não essencial
YPL140C/MKK2	200,7	28,26	0,141	0,175	0,122	não essencial
YPL141C/	331,9	163,33	0,492	0,353	0,126	não essencial
YPL142C/	1548,7	1060,04	0,684	0,513	0,157	essencial
YPL143W/RPL37A_ex1	2072,2	1100,48	0,531	0,471	0,747	essencial
YPL144W/	424,6	81,53	0,192	0,160	0,081	não essencial
YPL145C/KES1	510,6	101,18	0,198	0,224	0,255	não essencial
YPL146C/	521,6	138,00	0,265	0,371	0,205	essencial
YPL147W/PXA1	68,9	14,24	0,207	0,152	0,131	não essencial
YPL148C/	167,0	62,67	0,375	0,193	0,115	não essencial
YPL149W/APG5	620,9	142,39	0,229	0,135	0,120	não essencial
YPL150W/	94,5	10,17	0,108	0,145	0,109	não essencial
YPL151C/	75,7	18,88	0,249	0,228	0,105	essencial
YPL152W/	98,6	28,05	0,284	0,224	0,140	não essencial

YPL153C/SPK1	117,1	88,74	0,758	0,613	0,121	essencial
YPL154C/PEP4	1001,7	201,91	0,202	0,197	0,355	não essencial
YPL155C/KIP2	147,2	50,08	0,340	0,216	0,119	não essencial
YPL156C/	407,8	51,85	0,127	0,115	0,147	não essencial
YPL157W/	157,8	18,82	0,119	0,107	0,102	não essencial
YPL159C/	170,5	39,35	0,231	0,335	0,112	não essencial
YPL160W/CDC60	829,2	158,27	0,191	0,190	0,300	essencial
YPL161C/BEM4	162,3	17,59	0,108	0,112	0,117	não essencial
YPL162C/	128,9	44,09	0,342	0,283	0,119	não essencial
YPL163C/SVS1	1575,8	792,90	0,503	0,460	0,185	não essencial
YPL164C/	59,4	19,70	0,332	0,307	0,121	não essencial
YPL165C/	61,9	24,04	0,388	0,467	0,121	não essencial
YPL166W/	88,6	31,09	0,351	0,332	0,133	não essencial
YPL167C/REV3	87,1	9,99	0,331	0,332	0,117	não essencial
YPL168W/	197,6	34,54	0,115	0,114	0,128	
				-		não essencial
YPL169C/	897,5	103,69	0,116	0,086	0,120	essencial
YPL170W/	939,8	246,18	0,262	0,248	0,105	não essencial
YPL172C/COX10	132,5	39,02	0,294	0,334	0,114	não essencial
YPL173W/	221,0	54,51	0,247	0,297	0,141	não essencial
YPL174C/NIP80	95,9	26,89	0,280	0,335	0,122	não essencial
YPL175W/_ex1	163,4	28,52	0,175	0,103	0,121	essencial
YPL176C/	381,8	48,90	0,128	0,100	0,107	não essencial
YPL177C/CUP9	752,0	109,91	0,146	0,095	0,115	não essencial
YPL178W/	547,9	110,80	0,202	0,161	0,173	não essencial
YPL179W/PPQ1	454,5	108,76	0,239	0,138	0,161	não essencial
YPL180W/	102,1	21,66	0,212	0,260	0,125	não essencial
YPL181W/	501,4	98,59	0,197	0,157	0,117	não essencial
YPL182C/	79,2	20,28	0,256	0,312	0,097	não essencial
YPL183C/	260,2	52,95	0,203	0,206	0,140	não essencial
YPL184C/	247,6	35,90	0,145	0,177	0,163	não essencial
YPL186C/	77,2	53,98	0,699	0,370	0,146	não essencial
YPL187W/MF(alpha)1	1607,9	983,79	0,612	0,465	0,263	não essencial
YPL188W/POS5	238,4	42,77	0,179	0,235	0,132	não essencial
YPL189W/	67,5	15,41	0,228	0,137	0,121	não essencial
YPL190C/	329,6	29,18	0,089	0,087	0,205	essencial
YPL191C/	33,1	10,12	0,306	0,850	0,141	não essencial
YPL192C/	304,9	97,10	0,318	0,180	0,143	não essencial
YPL193W/	280,9	69,83	0,249	0,215	0,120	não essencial
YPL194W/	34,1	10,43	0,306	0,409	0,123	não essencial
YPL195W/YKS4	941,6	185,59	0,197	0,188	0,168	não essencial
YPL196W/	195,8	31,55	0,161	0,169	0,122	não essencial
YPL197C/	1961,5	1034,32	0,527	0,436	0,201	não essencial
YPL198W/RPL6B_ex1	1210,1	361,70	0,299	0,300	0,716	não essencial
YPL198W/RPL6B ex2 f	2192,8	1037,56	0,473	0,423	0,716	não essencial
YPL199C/	836,9	155,80	0,186	0,185	0,131	não essencial
YPL202C/	268,9	42,99	0,160	0,116	0,133	não essencial
YPL203W/	319,8	85,09	0,266	0,234	0,154	não essencial
YPL204W/HRR25	1101,1	247,28	0,225	0,232	0,161	essencial
YPL205C/	180,5	42,29	0,234	0,220	0,175	não essencial
YPL206C/	332,2	49,18	0,148	0,125	0,148	não essencial
YPL207W/	450,7	69,73	0,155	0,128	0,146	não essencial
YPL208W/	345,3	129,83	0,133	0,120	0,140	não essencial
YPL209C/IPL1	67,6	30,10	0,370	0,294	0,142	essencial
YPL210C/SRP72	575,7	122,17	0,443	0,294	0,097	essencial
YPL211W/	674,8	159,95	0,212	0,221	0,171	essencial
	· ·		-	-		
YPL212C/PUS1	968,1	236,64	0,244	0,269	0,183	não essencial

YPL213W/	184,8	26,97	0,146	0,094	0,109	não essencial
YPL214C/THI6	142,5	28,73	0,202	0,154	0,173	não essencial
YPL215W/CBP3	227,6	54,22	0,238	0,144	0,139	não essencial
YPL216W/	129,1	35,07	0,272	0,194	0,118	não essencial
YPL217C/	763,2	124,79	0,164	0,176	0,193	essencial
YPL218W/SAR1 ex1	1495,9	315,41	0,211	0,210	0,350	essencial
YPL219W/	90,5	15,54	0,172	0,146	0,137	não essencial
YPL220W/SSM1_f	2009,8	1025,63	0,510	0,401	0,821	não essencial
YPL221W/	766,9	229,54	0,299	0,216	0,150	não essencial
YPL223C/	60,5	26,27	0,434	0,426	0,216	não essencial
YPL224C/	63,8	16,62	0,260	0,378	0,105	não essencial
YPL225W/	1678,8	393,44	0,234	0,222	0,267	não essencial
YPL226W/	753,6	113,65	0,151	0,169	0,304	não essencial
YPL227C/ALG5	588,1	86,64	0,147	0,101	0,199	não essencial
YPL228W/	130,5	33,77	0,259	0,288	0,156	essencial
YPL229W/	550,6	170,00	0,309	0,300	0,136	não essencial
YPL230W/	79,5	20,01	0,252	0,239	0,115	não essencial
YPL231W/FAS2	1120,1	282,22	0,252	0,226	0,411	essencial
YPL232W/SSO1	888,0	172,57	0,194	0,199	0,193	não essencial
YPL233W/	298,4	49,08	0,164	0,100	0,171	essencial
YPL234C/TFP3	972,3	326,91	0,336	0,228	0,214	não essencial
YPL235W/	757,2	140,43	0,185	0,208	0,195	essencial
YPL236C/	92,6	16,68	0,180	0,196	0,118	não essencial
YPL237W/SUI3	1481,4	497,02	0,336	0,265	0,285	essencial
YPL238C/	1522,6	567,94	0,373	0,290	0,096	essencial
YPL239W/YAR1	674,5	96,72	0,143	0,101	0,152	não essencial
YPL240C/HSP82	407,8	476,55	1,169	0,302	0,518	não essencial
YPL241C/CIN2_ex1	140,4	62,48	0,445	0,477	0,127	não essencial
YPL242C/	334,9	103,68	0,310	0,173	0,132	essencial
YPL243W/SRP68	941,7	152,14	0,162	0,192	0,176	essencial
YPL244C/	304,3	44,14	0,145	0,168	0,114	não essencial
YPL245W/	572,8	136,41	0,238	0,136	0,176	não essencial
YPL246C/	392,2	76,42	0,195	0,232	0,126	não essencial
YPL247C/	141,2	57,00	0,404	0,206	0,099	não essencial
YPL248C/GAL4	98,1	23,15	0,236	0,206	0,116	não essencial
YPL249C/	119,5	30,73	0,257	0,207	0,133	não essencial
YPL250C/	482,1	289,82	0,601	0,363	0,143	não essencial
YPL251W/	240,8	55,49	0,230	0,206	0,109	essencial
YPL252C/	609,2	137,38	0,225	0,169	0,132	essencial
YPL253C/	192,0	51,00	0,266	0,231	0,154	não essencial
YPL254W/HFI1	227,8	35,22	0,155	0,151	0,115	não essencial
YPL255W/BBP1	136,8	55,88	0,409	0,612	0,109	essencial
YPL256C/CLN2	989,4	541,90	0,548	0,551	0,174	não essencial
YPL257W/	54,6	18,85	0,345	0,396	0,115	não essencial
YPL258C/	78,6	39,05	0,497	0,218	0,193	não essencial
YPL259C/APM1	192,8	23,24	0,121	0,095	0,138	não essencial
YPL260W/	685,6	99,94	0,146	0,136	0,189	não essencial
YPL261C/	11,6	6,59	0,568	0,883	0,066	não essencial
YPL262W/FUM1	684,7	146,29	0,214	0,212	0,253	não essencial
YPL263C/	725,5	136,03	0,188	0,193	0,197	não essencial
YPL264C/	70,8	21,25	0,300	0,242	0,124	não essencial
YPL265W/DIP5	160,0	115,02	0,719	0,416	0,227	não essencial
YPL266W/DIM1	756,2	117,91	0,156	0,136	0,177	essencial
YPL267W/	398,4	314,27	0,789	0,822	0,114	não essencial
YPL268W/PLC1	318,8	54,48	0,171	0,217	0,132	não essencial
YPL269W/	39,3	20,24	0,515	0,587	0,130	não essencial

YPL270W/	163,8	39,57	0,242	0,178	0,115	não essencial
YPL271W/ATP15	1298,9	262,19	0,202	0,170	0,168	não essencial
YPL272C/	142,1	65,28	0,460	0,434	0,129	não essencial
YPL273W/	1142,5	236,56	0,207	0,169	0,214	não essencial
YPL274W/	281,4	100,48	0,357	0,380	0,164	não essencial
YPR001W/CIT3	33,3	12,31	0,370	0,393	0,110	não essencial
YPR002W/	74,3	36,75	0,495	0,312	0,114	não essencial
YPR003C/	115,9	20,13	0,174	0,209	0,098	não essencial
YPR004C/	426,3	73,28	0,172	0,179	0,146	não essencial
YPR005C/HAL1	144,5	41,00	0,284	0,214	0,116	não essencial
YPR006C/	215,2	49,64	0,231	0,303	0,144	não essencial
YPR007C/	43,2	20,40	0,472	0,320	0,131	não essencial
YPR008W/	460,7	91,15	0,198	0,138	0,127	não essencial
YPR009W/	363,8	48,29	0,133	0,085	0,127	não essencial
YPR010C/	1299,5	186,01	0,143	0,120	0,223	essencial
YPR012W/	144,3	33,82	0,234	0,256	0,125	não essencial
YPR013C/	109,1	30,74	0,282	0,246	0,124	não essencial
YPR014C/	42,8	17,35	0,405	0,234	0,076	não essencial
YPR015C/	56,7	24,88	0,439	0,205	0,099	não essencial
YPR016C/	951,2	210,05	0,221	0,207	0,294	essencial
YPR017C/DSS4	185,7	33,23	0,179	0,197	0,164	não essencial
YPR018W/RLF2	166,7	128,91	0,773	0,530	0,148	não essencial
YPR019W/CDC54	220,8	83,04	0,376	0,260	0,177	essencial
YPR020W/	510,2	148,12	0,290	0,266	0,130	não essencial
YPR021C/	256,5	39,56	0,154	0,136	0,144	não essencial
YPR022C/	156,9	30,60	0,195	0,139	0,130	não essencial
YPR023C/	459,6	75,10	0,163	0,123	0,111	não essencial
YPR024W/YME1	158,4	38,30	0,242	0,231	0,180	não essencial
YPR025C/CCL1	303,4	47,55	0,157	0,109	0,126	essencial
YPR026W/ATH1	70,1	31,63	0,451	0,222	0,141	não essencial
YPR027C/	117,8	29,86	0,253	0,382	0,115	não essencial
YPR028W/_ex1	1152,2	264,35	0,229	0,319	0,301	não essencial
YPR028W/_ex2	1743,2	698,24	0,401	1,830	0,301	não essencial
YPR033C/HTS1	917,4	140,20	0,153	0,142	0,295	essencial
YPR034W/	298,5	43,44	0,146	0,117	0,112	essencial
YPR035W/GLN1	2127,4	558,95	0,263	0,188	0,525	essencial
YPR036W/VMA13	1411,2	252,04	0,179	0,103	0,193	não essencial
YPR037C/	645,6	86,58	0,134	0,163	0,116	não essencial
YPR038W/	345,3	69,75	0,202	0,219	0,111	não essencial
YPR040W/	105,9	34,23	0,323	0,585	0,150	não essencial
YPR041W/TIF5	820,0	120,49	0,147	0,158	0,315	essencial
YPR042C/	253,6	55,90	0,220	0,188	0,119	não essencial
YPR043W/_ex1	3554,1	1561,98	0,439	0,417	0,872	não essencial
YPR044C/	1680,1	924,19	0,550	0,467	0,110	não essencial
YPR045C/	111,5	50,64	0,454	0,660	0,130	não essencial
YPR046W/	516,5	92,87	0,180	0,194	0,131	não essencial
YPR047W/MSF1	170,6	57,61	0,338	0,212	0,138	não essencial
YPR048W/	309,6	52,70	0,170	0,110	0,151	essencial
YPR049C/	55,5	19,67	0,354	0,377	0,127	não essencial
YPR050C/	329,1	49,12	0,149	0,125	0,148	não essencial
YPR051W/MAK3	456,0	50,94	0,112	0,146	0,084	não essencial
YPR052C/NHP6A	1238,2	438,63	0,354	0,357	0,351	não essencial
YPR053C/	743,9	174,93	0,235	0,228	0,066	não essencial
YPR054W/SMK1	21,2	9,35	0,441	1,589	0,114	não essencial
YPR055W/SEC8	261,7	57,19	0,219	0,238	0,144	essencial
YPR056W/	143,5	30,07	0,210	0,285	0,123	essencial

YPR057W/	302,8	58,16	0,192	0,133	0,097	não essencial
YPR058W/YMC1	275,9	57,20	0,207	0,162	0,145	não essencial
YPR059C/	649,1	109,61	0,169	0,150	0,119	não essencial
YPR060C/ARO7	521,4	72,43	0,139	0,158	0,217	não essencial
YPR061C/	50,9	15,46	0,304	0,276	0,150	não essencial
YPR062W/	1293,1	281,21	0,217	0,202	0,184	não essencial
YPR063C/_ex1	858,7	110,76	0,129	0,151	0,176	não essencial
YPR063C/_ex2	978,8	135,93	0,139	0,162	0,176	não essencial
YPR064W/	35,5	12,70	0,358	0,249	0,062	não essencial
YPR065W/ROX1	551,4	183,21	0,332	0,277	0,144	não essencial
YPR066W/	72,1	20,06	0,278	0,273	0,097	não essencial
YPR067W/	405,6	76,04	0,187	0,180	0,138	não essencial
YPR068C/	82,4	18,83	0,229	0,275	0,116	não essencial
YPR069C/SPE3	722,2	192,16	0,266	0,296	0,360	não essencial
YPR070W/	152,5	36,29	0,238	0,361	0,136	não essencial
YPR071W/	60,6	23,04	0,380	0,579	0,110	não essencial
YPR072W/	349,4	37,80	0,108	0,080	0,163	não essencial
YPR073C/LTP1	459,5	53,72	0,100	0,000	0,103	não essencial
YPR074C/	1355,2	391,64	0,117	0,147	0,217	não essencial
YPR075C/	264,6	79,37	0,300	0,229	0,409	não essencial
YPR076W/	108,6	24,59	0,300	0,179	0,130	não essencial
YPR077C/_f	90,9	42,45	0,220	0,179	0,099	não essencial
YPR077C/_i	180,0			0,203	0,079	
	· ·	88,03	0,489		•	não essencial
YPR078C/	109,9	45,80	0,417	0,302	0,136	não essencial
YPR079W/	169,1	35,19	0,208	0,126	0,130	não essencial
YPR080W/_f	2596,5	1385,87	0,534	0,425	0,871	não essencial
YPR082C/	383,0	69,83	0,182	0,176	0,179	essencial
YPR084W/	140,1	22,36	0,160	0,201	0,135	não essencial
YPR085C/	174,0	22,97	0,132	0,102	0,122	essencial
YPR086W/SUA7	427,2	43,11	0,101	0,104	0,151	essencial
YPR087W/	881,2	135,00	0,153	0,114	0,077	não essencial
YPR088C/	1047,6	214,20	0,204	0,215	0,178	essencial
YPR090W/	110,9	25,35	0,229	0,315		não essencial
YPR091C/	236,2	53,08	0,225	0,180	0,168	não essencial
YPR092W/	84,5	18,06	0,214	0,183	0,163	não essencial
YPR093C/	101,9	24,46	0,240	0,169	0,117	não essencial
YPR094W/	594,4	141,68	0,238	0,276	0,104	essencial
YPR095C/	82,4	13,08	0,159	0,206	0,115	não essencial
YPR097W/	244,8	32,59	0,133	0,136	0,161	não essencial
YPR098C/	459,5	87,56	0,191	0,115	0,158	não essencial
YPR099C/	544,8	85,09	0,156	0,107	0,132	não essencial
YPR100W/	548,6	114,42	0,209	0,155	0,126	não essencial
YPR101W/	334,1	78,82	0,236	0,164	0,113	não essencial
YPR103W/PRE2	699,9	161,12	0,230	0,176	0,210	essencial
YPR104C/FHL1	119,5	36,04	0,302	0,302	0,106	essencial
YPR105C/	212,9	27,99	0,131	0,118	0,126	essencial
YPR106W/	137,8	48,96	0,355	0,320	0,095	não essencial
YPR107C/	231,8	46,50	0,201	0,246	0,159	essencial
YPR108W/	630,9	114,90	0,182	0,201	0,186	essencial
YPR109W/	277,6	49,82	0,179	0,199	0,098	não essencial
YPR110C/RPC40	1036,9	140,02	0,135	0,121	0,232	essencial
YPR111W/DBF20_ex2	73,1	18,13	0,248	0,189	0,138	não essencial
YPR112C/	545,8	95,68	0,175	0,196	0,190	essencial
YPR113W/PIS1	1704,2	482,75	0,283	0,218	0,170	essencial
YPR114W/	284,4	43,89	0,154	0,165	0,185	não essencial
YPR115W/	176,5	36,40	0,206	0,267	0,124	não essencial
			1		· · ·	1

YPR117W/	148,6	27,02	0,182	0,203	0,122	não essencial
YPR118W/	836,7	122,53	0,146	0,148	0,155	não essencial
YPR119W/	278,0	134,23	0,483	0,313	0,121	não essencial
YPR120C/	751,1	361,09	0,481	0,362	0,134	não essencial
YPR121W/	49,2	23,54	0,478	0,885	0,196	não essencial
YPR122W/AXL1	118,6	27,88	0,235	0,373	0,104	não essencial
YPR123C/	105,8	50,67	0,479	0,267	0,100	não essencial
YPR124W/CTR1	270,2	112,39	0,416	0,200	0,118	não essencial
YPR125W/	429,7	66,54	0,155	0,179	0,160	não essencial
YPR126C/	388,1	93,17	0,240	0,200	0,089	não essencial
YPR127W/	161,6	45,65	0,282	0,134	0,237	não essencial
YPR128C/	129,2	38,73	0,300	0,358	0,144	não essencial
YPR129W/SCD6	357,5	78,85	0,221	0,238	0,203	não essencial
YPR130C/	277,6	75,55	0,272	0,349	0,158	não essencial
YPR131C/	344,7	43,91	0,272	0,136	0,130	não essencial
YPR132W/RPS28B_ex2_f	1489,4	721,23	0,127	0,130	0,789	não essencial
					·	
YPR133C/	622,5	56,85	0,091	0,090	0,174	essencial
YPR134W/MSS18	153,9	23,81	0,155	0,179	0,097	não essencial
YPR135W/CHL15	219,8	53,85	0,245	0,216	0,144	não essencial
YPR136C/	71,6	25,52	0,356	1,058	0,117	essencial
YPR137W/	434,6	68,33	0,157	0,198	0,149	essencial
YPR138C/	679,3	202,07	0,297	0,170	0,149	não essencial
YPR139C/	560,9	76,90	0,137	0,123	0,135	não essencial
YPR140W/	274,1	53,66	0,196	0,157	0,136	não essencial
YPR141C/KAR3	136,0	73,38	0,540	0,364	0,119	não essencial
YPR142C/	403,1	130,40	0,323	0,442	0,091	essencial
YPR143W/	1243,2	287,54	0,231	0,257	0,202	essencial
YPR144C/	449,9	97,32	0,216	0,112	0,150	essencial
YPR145W/ASN1	2107,9	506,98	0,241	0,201	0,368	não essencial
YPR146C/	837,9	149,03	0,178	0,127	0,055	não essencial
YPR147C/	215,9	43,57	0,202	0,144	0,121	não essencial
YPR148C/	1069,9	240,17	0,224	0,209	0,178	não essencial
YPR149W/NCE2	1373,2	741,22	0,540	0,371	0,361	não essencial
YPR150W/	58,9	42,09	0,715	0,328	0,110	não essencial
YPR152C/	56,2	12,05	0,215	0,230	0,114	não essencial
YPR153W/	21,4	8,68	0,407	0,759	0,136	não essencial
YPR154W/	303,9	70,87	0,233	0,221	0,177	não essencial
YPR155C/NCA2	97,2	19,38	0,199	0,185	0,132	não essencial
YPR157W/	70,7	36,21	0,512	0,501	0,139	não essencial
YPR158W/	128,9	46,66	0,362	0,223	0,113	não essencial
YPR159W/KRE6	611,4	128,45	0,210	0,169	0,189	não essencial
YPR160W/GPH1	190,8	74,82	0,392	0,269	0,249	não essencial
YPR161C/SGV1	325,8	39,47	0,121	0,119	0,115	essencial
YPR162C/	205,6	35,76	0,174	0,162	0,127	essencial
YPR163C/TIF3	1572,7	443,99	0,282	0,296	0,351	não essencial
YPR164W/	74,5	17,27	0,232	0,162	0,131	não essencial
YPR165W/RHO1	1305,2	334,74	0,256	0,245	0,161	essencial
YPR166C/MRP2	1068,2	157,84	0,230	0,152	0,162	não essencial
YPR167C/MET16	637,5	229,03	0,148	0,132	0,162	não essencial
YPR168W/	64,7	16,00	0,339	0,230	0,162	essencial
YPR169W/	531,9	115,55	0,247	0,230	0,261	essencial
YPR170C/	248,8	72,67	0,217	0,221	0,100	não essencial
					·	
YPR171W/	142,6	22,19	0,156	0,139	0,124	não essencial
YPR172CV/DS4	231,7	45,69	0,197	0,176	0,166	não essencial
YPR173C/VPS4	894,0	214,02	0,239	0,228	0,158	não essencial
YPR174C/	154,1	81,96	0,532	0,334	0,116	não essencial

YPR175W/DPB2	241,4	125,87	0,521	0,396	0,147	essencial
YPR176C/BET2	212,1	43,35	0,204	0,238	0,135	essencial
YPR178W/PRP4	119,8	12,96	0,108	0,114	0,105	essencial
YPR179C/	130,0	25,78	0,198	0,142	0,142	não essencial
YPR180W/	243,6	35,63	0,146	0,147	0,147	essencial
YPR181C/SEC23	516,1	124,73	0,242	0,280	0,229	essencial
YPR182W/SMX3	436,4	115,15	0,264	0,303	0,068	essencial
YPR183W/DPM1	562,4	108,43	0,193	0,169	0,217	essencial
YPR184W/	61,8	26,08	0,422	0,224	0,154	não essencial
YPR185W/	197,2	39,24	0,199	0,197	0,124	não essencial
YPR186C/TFC2	183,9	38,96	0,212	0,181	0,128	essencial
YPR187W/RPO26_ex1	1492,9	329,75	0,221	0,238	0,244	essencial
YPR188C/	737,1	131,67	0,179	0,107	0,129	não essencial
YPR189W/SKI3	196,6	32,13	0,163	0,125	0,148	não essencial
YPR190C/RPC82	302,5	87,15	0,288	0,203	0,149	essencial
YPR191W/QCR2	305,2	83,48	0,274	0,259	0,227	não essencial
YPR193C/	64,2	14,99	0,233	0,182	0,160	não essencial
YPR194C/	250,3	119,44	0,477	0,275	0,156	não essencial
YPR195C/	108,9	17,73	0,163	0,153	0,055	não essencial
YPR196W/MAL63	52,0	10,44	0,201	0,203	0,120	não essencial
YPR197C/	78,9	21,18	0,269	0,309	0,124	não essencial
YPR198W/SGE1	428,1	79,30	0,185	0,170	0,096	não essencial
YPR199C/	205,0	38,56	0,188	0,192	0,102	não essencial
YPR200C/	62,2	13,71	0,221	0,191	0,143	não essencial