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Abstract
In recent years, the intensification of the use of immunosuppressive therapies has increased the incidence of invasive infections
caused by opportunistic fungi. Considering that, the spread of azole resistance and amphotericin B (AmB) inefficiency against
some clinical and environmental isolates has been described. Thus, to avoid a global problem when controlling fungal infections
and critical failures in medicine, and food security, new approaches for drug target identification and for the development of new
treatments that are more effective against pathogenic fungi are desired. Recent studies indicate that protein acetylation is present
in hundreds of proteins of different cellular compartments and is involved in several biological processes, i.e., metabolism,
translation, gene expression regulation, and oxidative stress response, from prokaryotes and eukaryotes, including fungi, dem-
onstrating that lysine acetylation plays an important role in essential mechanisms. Lysine acetyltransferases (KATs) and lysine
deacetylases (KDACs), the two enzyme families responsible for regulating protein acetylation levels, have been explored as drug
targets for the treatment of several human diseases and infections. Aspergilli have on average 8 KAT genes and 11 KDAC genes
in their genomes. This review aims to summarize the available knowledge about Aspergillus spp. azole resistance mechanisms
and the role of lysine acetylation in the control of biological processes in fungi.We also want to discuss the lysine acetylation as a
potential target for fungal infection treatment and drug target discovery.
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Introduction

The increase in the number of immunocompromised individ-
uals and the development of mechanisms of resistance to the
main antifungal drugs make fungal infection a serious clinical
problem worldwide, with an estimate of one and a half million
deaths per year [1, 2]. In addition, fungal infections are
neglected by social and political communities [3], which cre-
ates a worse scenario. The current therapy to treat fungal dis-
eases remains unsatisfactory, and significant investment in
research is required to develop novel therapeutic alternatives
[4, 5]. Further efforts in the development of new antifungal
drugs and/or a combination of drugs are urgent and must be
investigated to improve both human health and agricultural
production [2]. Epidemiological studies report high azole re-
sistance among Candida and Aspergillus species [6]. There
are more than 250 Aspergillus species, around 40 of which
are reported to cause infection in humans [7], such as
Aspergillus fumigatus and Aspergillus flavus, the most com-
mon pathogens to which humans are exposed daily [8, 9].
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In recent years, studies have tried to explore the pathogen-
esis and treatment of diseases from the epigenetic perspective.
Epigenetic mechanisms, including histone modifications that
directly affect chromatin structure, such as methylation, phos-
phorylation, and acetylation, have been widely explored for
the development of new treatments for cancer and inflamma-
tory, immunological, and neurodegenerative diseases [10], but
they have been less explored for fungal infections. Among
epigenetic mechanisms, such as DNA methylation, modifica-
tion of chromatin by proteins, the polycomb/trithorax system,
and modulation of gene expression by microRNA, protein
acetylation is one of the most studied epigenetic mechanisms,
a dynamic posttranslational modification (PTM) present in
hundreds of proteins, and the most notable modification on
histones at lysine residues [11]. Not only histones can be acet-
ylated but also several non-histone proteins involved in nu-
merous biological processes, i.e., metabolism, translation,
gene expression regulation, and oxidative stress response,
have also been reported as acetylated in prokaryotes and eu-
karyotes, including fungi [12, 13].

In this review, we will explore the mechanisms of azole
resistance in aspergilli, protein acetylation in fungi, especially
in the Aspergillus genus, and describe the potential use of
inhibitors of lysine acetyltransferases and lysine deacetylases
as an antifungal therapy strategy.

Targets for antifungal therapy and known
resistance mechanisms in Aspergillus spp.

Azoles are the first choice of therapy for treating invasive as-
pergillosis [14]. The azole class comprises agents such as
itraconazole, voriconazole, posaconazole, and, more recently,
isavuconazole [15, 16] that are active against the Aspergillus
species. Over the last few years, the incidence of secondary
resistance to azole has increased among Aspergillus species,
especially A. fumigatus [17–19], the one that causes aspergillo-
sis most frequently [8, 20]. Although azole resistance has been
widely reported [17, 21], the overall frequency of resistance in
Aspergillus spp. is underestimated, mainly because most med-
ical centers do not perform susceptibility testing routinely.

A. fumigatus azole resistance can be mediated by cyp51A
and non-cyp51A-dependent mechanisms [22]. A. fumigatus
strains with secondary azole resistance may show various mu-
tations in the cyp51A gene [23, 24], which encodes the 14-α-
lanosterol demethylase enzyme from cytochrome P450, the
main target of these compounds [25]. These microorganisms
develop resistance through two routes of resistance: (1) due to
long-term therapy with azole derivatives, the patient route; and
(2) due to the contact of these microorganisms with azolic com-
pounds used in agriculture, the environmental route [18, 26–28].

In patients with chronic pulmonary diseases receiving
long-term azole therapies, A. fumigatusmay undergo multiple

genetic changes during infection, including changes that con-
fer resistance to these compounds [29]. Resistance mecha-
nisms involving point mutations in the cyp51A gene can be
found in laboratory cultures. These mutations can generate
amino acid substitutions in G54, G138, G448, or M220,
which are primarily located close to the opening of one of
the two access channels of the protein binder, preventing the
attachment of most of the azole molecules and thus reducing
the interaction between drug andmicroorganisms [26, 30–32].
Similarly, the substitution in L98 is located at a highly con-
served loop-like region, and modifications in this region affect
the antifungal agent in the binder access channel [26, 33].

The environmental route of resistance is caused by tandem
repeat (TR) mutations in the cyp51A promoter region, which
causes overexpression of the protein and leads to a higher
amount of antifungal agent required to prevent enzyme activ-
ity. The insertion of 34, 46, 53, or 120 base pairs into the
cyp51A promoter region, combined or not wi th
nonsynonymous mutations, TR34/L98H, and TR46/Y121F/
T289A, may confer diverse degrees of azole resistance
[34–37]. However, in vivo resistance development has pri-
marily been associated with nonsynonymous mutations in
cyp51A-inducing amino acid substitutions of hot spots (e.g.,
G54, G138, M220, and G448) or non-cyp51A-mediated
mechanisms, but not with tandem repeats [37]. Although
A. fumigatus is not phytopathogenic, many fungicides whose
structures are similar to those of clinical compounds act
against these microorganisms. Thus, the hypothesis is that
A. fumigatus may develop resistance to azole compounds
due to contact with molecules used in agriculture to protect
plants against fungal pathogens [38, 39].

Although less characterized, azole resistance in A. fumigatus
has also been attributed to the non-cyp51 mutations. Genes
involved in efflux pump play a role in azole resistance.
A. fumigatus multidrug resistance pumps have been described
in several studies and have been shown to be associated with
increased resistance to itraconazole [40–42]. The deletion of the
cdr1B gene encoding ATB-binding cassette (ABC) transporter,
which is dependent on the transcriptional factor AtrR [43], re-
sulted in azole-sensitive phenotypes [43, 44]. Another example
of non-cyp51 mutation is the amino acid substitution in the
HapE (P88L) subunit of the CCAAT-binding complex that re-
sulted in increased cyp51A expression [45, 46]. In addition, the
deletion of a sterol element-binding protein in A. fumigatus
(SrbA) showed decreased levels of the cyp51A and cyp51B
expression, as well as hyper-sensitivity to azoles [47, 48].
Recent studies suggest that a substitution (R243Q) in
AfCox10 causes azole resistance in A. fumigatus [49].

Azole resistance in A. fumigatus imposes the need to use
alternative antifungal agents for the treatment of aspergillosis,
such as amphotericin B (AMB) and echinocandins [14]. AMB
used to be adopted as the first line of choice in the treatment of
the disease, but it was replaced by compounds belonging to
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the class of azoles due to its high toxicity [50]. Moreover,
echinocandins are increasingly being used as a prophylaxis
for patients at high risk of developing invasive fungal dis-
eases, as well as in the therapy of patients with known or
probable invasive aspergillosis who do not respond to conven-
tional therapy. However, resistance to echinocandins was re-
ported in Candida species and in A. fumigatus due to a muta-
tion in the FKS genes, which encode the β-(1,3)-glucan syn-
thase enzymes [51, 52].

Lysine acetylation in fungi

The accurate regulation of the protein function is crucial for
the organization and functioning of biological networks.
Among the various regulatory processes, reversible PTMs
provide a sophisticated apparatus to control the protein func-
tion. An important advantage of PTMs is that they can be
regulated at a much faster rate and with a lower energy cost
than protein turnover [53].

Multiple PTMs are well characterized, including phosphor-
ylation, glycosylation, ubiquitination, methylation, and acety-
lation. Protein acetylation occurs by adding an acetyl group to
the Nε-amino group of lysine residues, eliminating the posi-
tive charge of this amino acid. This modification can result in
alterations in the function of proteins by influencing their cat-
alytic activity, their ability to interact with other proteins, or
their subcellular localization [12, 53].

Lysine acetylation was first described for the N-terminal
domains of histones in which it regulates chromatin structure
and gene transcription [54]. However, the repertoire of acety-
lated lysines (Kac) has been expanded in the last 10 years with

the inclusion of thousands of non-histone proteins in several
organisms, such as bacteria, protozoans, worms, plants, mam-
mals, insects, and fungi [55–62].

Several recently published studies have described the set of
lysine-acetylated proteins, called acetylome, of different fungi
species , including nonpathogenic fungi such as
Saccharomyces cerevisiae and human pathogenic species
such as Candida albicans and A. fumigatus [61–63]. These
acetylomes revealed thousands of Kac sites of hundreds of
proteins from different cellular compartments involved in sev-
eral biological processes. The complete list of fungi
acetylomes is shown in Table 1.

The most acetylated proteomes identified were those from
Trichophyton rubrum mycelia (23.3%), Yarrowia lipolytica
(22.1%), S. cerevisiae (19.6%), Cryptococcus neoformans
(19.60%), and A. fumigatus (23.90%) [62, 64, 73, 74]. In
S. cerevisiae and Y. lipolytica, the two nonpathogenic fungi,
most of the acetylated proteins identified are involved in the
regulation of glucose/amino acid metabolism and lipid metab-
olism, respectively [64, 74]. The T. rubrum acetylome re-
vealed several acetylated proteins involved in metabolism
and protein synthesis, but higher levels were observed in the
mycelia in the growing stage compared with the conidial
stage, which represents a quiescent state [73].

Among pathogenic species, several proteins associated with
pathogenicity are acetylated. For example, in Phytophthora
sojae and Fusarium graminearum, the two plant pathogens,
some virulence factors and enzymes responsible for the produc-
tion of secondary metabolites related to pathogenicity are acet-
ylated [65, 68]. On the other hand, the acetylome of human
pathogen C. albicans revealed acetylated proteins involved
not only with glycolysis and oxidative phosphorylation but also

Table 1 Acetylomes from different fungi species

Organism Number of Kac sites Number of Kac proteins Pathogenic Proteome size % Kac Ref

Saccharomyces cerevisiae 2878 1059 No 5907 19.6% [64]

Phytophthora sojae 2197 1150 Yes (plants) 26,469 6.0% [65]

Botrytis cinerea 1582 954 Yes (plants) 10,364 5.8% [66]

Histoplasma capsulatum 775 456 Yes (human) 9214 4.9% [67]

Fusarium graminearum 577 364 Yes (plants) 13,334 2.7% [68]

Candida albicans 1073 477 Yes (human) 9038 5.3% [69]

Candida albicans 2048 926 Yes (human) 6040 15.30% [62]

Aspergillus flavus 1383 652 Yes (plants/human) 12,818 5.2% [70]

Beauveria bassiana 463 283 Yes (arthropod) 10,363 2.7% [71]

Magnaporthe oryzae 1551 704 Yes (plants) 12,791 5.5% [72]

Trichophyton rubrum (conidia) 386 285 Yes (human) 10,005 2.8% [73]

Trichophyton rubrum (mycelia) 5414 2335 Yes (human) 10,005 23.3% [73]

Yarrowia lipolytica 3163 1428 No 6454 22.1% [74]

Cryptococcus neoformans 3535 1461 Yes (human) 7441 19.60% [62]

Aspergillus fumigatus 5238 2312 Yes (human) 9662 23.90% [62]
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with histone acetylation, including H3K56ac, which is associ-
ated with the virulence of C. albicans [63, 75]. In addition, the
acetylome network of C. neoformans, A. fumigatus, and
C. albicans revealed that 40% of the pathogenicity-associated
factors are acetylated, indicating that their functions are poten-
tially influenced by Kac [62]. Indeed, the acetylome of the
etiological agent of histoplasmosis, Histoplasma capsulatum,
includes some virulence factors, such as calmodulin and DnaK,
that are important for calcium intracellular intake during fungal
infections [67].

A. flavus, a mostly saprophytic soil fungus, was the first
specie from the Aspergillus genus with the acetylome de-
scribed [70]. A total of 1383 Kac sites were detected in 652
proteins, with proteins related to secondary metabolite biosyn-
thesis, i.e., enzymes with a predicted function in aflatoxin
biosynthesis. Moreover, several transcriptional factors and
proteins related to DNA repair mechanisms were acetylated.
The acetylome of the A. fumigatus Af293 and A. fumigatus
azole-resistant strains is under investigation in our group.

Control of lysine acetylation in fungi

Protein acetylation levels are controlled by the activity of two
enzyme families: lysine acetyltransferases (KATs), called “the
writers,” and lysine deacetylases (KDACs), “the erasers.”
KATs catalyze the addition of an acetyl group to the ε-amino
group of a lysine residue, while KDACs do the opposite,
removing the acetyl group from these proteins.

The KATs are grouped on the basis of their structural ho-
mology and catalytic mechanism. The KAT families are di-
vided into three broad groups: GNAT (Gcn5-related N-acetyl-
transferases), MYST (MOZ, Ybf2/Sas3, Sas2, Tip60), and
p300/CBP (protein of 300 kDa and CREB-binding protein)
[76–78]. Other KAT enzymes have been identified, such as
Rtt109 [63], transcription factor (TAFII250) [79], and nuclear
receptor coactivators (SRC and CLOCK) [80–82]. The
GNAT, MYST, and p300/CBP families are the most studied,
and various crystallographic structures of their relatives have
been reported [83]. The MYST family is identified only in
eukaryotic cells, while the GNAT family is present and con-
served in all domains of life [84]. Additionally, p300/CBP is
metazoan-specific, while Rtt109 is fungal-specific [85].

Lysine deacetylases, also called histone deacetylases, have
been classified into two groups: histone deacetylase Zn2+–de-
pendent family (classes I, II, and IV) and nicotinamide ade-
nine dinucleotide (NAD+)–dependent family (class III). In
S. cerevisiae, three classes are present: (1) class I, represented
by RPD3, HOS1, and HOS2; (2) class II, HDA1 and addi-
tionally HOS3, which is a fungal-specific KDAC [86]; (3)
class III (sirtuins) [87, 88]. The eighteen KDACs found in
humans are classically divided into four classes based on phy-
logenetic analysis and sequence homology concerning yeast

protein sequences [89]. A complete description of fungal
KATs and KDACs was previously reviewed [13].

KATs and KDACs in Aspergillus spp.

Nutzmann and colleagues (2011) identified 40 genes
encoding putative acetyltransferases in A. nidulans. Studies
performed with the A. nidulans gcnE knockout strain showed
that gcnE plays a minor function in the primary metabolism
[90, 91]; however, this gene regulates development by induc-
ing conidiation genes and activating specific gene clusters
required for the biosynthesis of secondary metabolites [92,
93]. The orthologue gene in A. flavus (AflgcnE) is essential
for growth and development. In addition, these results show
that AflgcnE is also essential for cell wall integrity, genotoxic
stress resistance, aflatoxin biosynthesis, and pathogenicity in
maize seeds [94].

Esa1, aMYST family member, is the catalytic subunit of the
NuA4 complex that specifically acetylates histone H4 [95]. The
acetylation of histone H4 lysine 12 (H4K12) plays a role in the
activation of secondary metabolite gene clusters in A. nidulans
[96]. The gene expression data showed that a H4 acetyltrans-
ferase (MYST3) histone may play a role in the epigenetic con-
trol of aflatoxin gene transcription inA. parasiticus, in response
to willow bark volatile exposure [97].

Rtt109 is a fungal-specific KAT that acetylates the histone
H3K56 to promote gene activation and genome stability [98]
and is essential for pathogenicity in C. albicans [99].
Although Rtt109 has been widely characterized regarding its
function and structure, the role it plays in Aspergillus spp. is
yet to be determined.

The reversible modification of lysine acetylation per-
formed by KDACs is present in all organisms. About eleven
KDACs are predicted in the Aspergillus spp. genome on av-
erage, with five zinc-dependent members and six sirtuins
(Fig. 1 and Online Resource 1).

RpdA (class I), a S. cerevisiae RPD3 orthologue, is essen-
tial for cell viability in A. nidulans and A. fumigatus, as its
deletion significantly affects fungal development in both or-
ganisms [100–102]. The RpdA homolog in A. oryzae (HdaB/
AoRpd3) is also essential for cell integrity and is involved in
stress tolerance [103, 104]. HosA is another KDAC class I
member in A. nidulans that plays a minor role as an active
enzyme [86, 101, 105], although its homolog in A. oryzae
(HdaD) regulates growth, asexual development, secondary
metabolite production, and stress response [103, 104].

HdaA (class 2) is the main contributor to the overall KDAC
activity, and knockout cell lines were obtained in A. nidulans,
A. oryzae, and A. fumigatus [86, 103, 106]. The A. fumigatus
ΔhdaA strain showed a reduction in growth and in the produc-
tion of secondary metabolites, but the reduction in virulence
was not observed for the murine IA model [107]. The removal
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of hdaA fromA. oryzae showed that this genemay play a role in
stress response in liquid culture [103].

Sirtuins are involved in multiple cellular events, including
transcriptional silencing, chromatin remodeling, mitosis, and
lifespan duration [108]. Class I to III sirtuins are predicted in
ascomycete filamentous fungi, whereas S. cerevisiae has only
class I sirtuins (Sir2p, Hst1p, Hst2p, Hst3p, and Hst4p). In
A. nidulans, HstA (class II sirtuin) has a predicted KDAC ac-
tivity [109, 110]. Class I sirtuin HstD/AoHst4 was removed
from A. oryzae and associated with a significant role in fungal
growth, sporulation, stress responses, and secondary metabolite
production [104, 111]. The knockout of the AoHst4 orthologue
in A. nidulans (AN1226) resulted in decreased mycelial autol-
ysis, conidiophore development, sterigmatocystin biosynthesis,
and extracellular hydrolases production [87].

KAT and KDAC inhibitors as potential
antifungal enhancers

Epigenetics and PTMs have been reported to constitute an
important regulatory mechanism in the transcription of genes

and a link between genotype, phenotype, and environment in
most eukaryotes, including fungi [112]. Changes in protein
acetylation are relevant to many diseases such as obesity, di-
abetes mellitus, cancer, neurodegenerative, and inflammatory
diseases, and several KATs and KATs inhibitors have been
developed for treatment of these illnesses [113]. Some of these
KATs and KDACs inhibitors could be repurposed for treat-
ment of fungal infections, alone or combinedwith the classical
compounds. In the next topics, we will summarize some in-
hibitors that have been tested in fungi.

Trichostatin A (TSA), an organic antibiotic produced by
Streptomyces hygroscopicus, is known for its antifungal activ-
ity, with a broad spectrum of inhibition of class I and II
KDACs, but its precise mode of action remains poorly under-
stood [114, 115]. TSA showed a promising antifungal strategy
for the treatment of A. fumigatus in combination with azole
[116, 117]. Sodium butyrate (SB), another KDAC inhibitor,
showed antifungal activity against the Candida species and
C. neoformans [118]. Moreover, studies have indicated that
SB affects some morphological and enzyme activity–related
factors essential to the virulence of C. neoformans [119]. The
study of the synergistic effect of MGCD290, a Hos2 fungal

Fig. 1 Lysine acetyltransferases and deacetylases in S. cerevisiae, C. neoformans, A. fumigatus, and H. sapiens
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KDAC inhibitor with different azoles in opportunistic fungal
isolates, is one of the main studies that supports the use of
KDAC inhibitors as antifungal drugs [120]. Nicotinamide is
widely used as an overall sirtuin inhibitor [89, 121]. This
inhibitor strongly inhibited the growth of C. albicans,
C. krusei, A. fumigatus, and A. nidulans [75] and decreased
the activity of some enzymes produced by C. albicans,
T. rubrum, and Trichophyton mentagrophytes [122]. Other
sirtuin inhibitors have been reported, such as sirtinol,
splitomycin, salermide, cambinol, and 5-methylmellein.
A. nidulans cultivated in 5-methylmellein showed an increase
in the production of secondary metabolites, which could be
used as a potential drug discovery tool [123].

Garcinol, a polyisoprenylated benzophenone derivative
and a KAT inhibitor [124], caused a significant growth defect
in C. neoformans, but the data showed the existence of off-
target effects in addition to Gcn5 inhibition [125]. Anacardic
acid (6-pentadecylsalicylic acid), a KAT inhibitor that inhibits
p300, PCAF, and Tip60 in vitro, affects mycelial cell growth
and conidial germination, also inducing apoptosis-like cell
death in Magnaporthe oryzae [126]. Indeed, fungal-specific
KAT Rtt109 was reported to be required for the treatment of
pathogenesis caused by C. albicans, reinforcing the potential
of KAT inhibitors as a therapeutic strategy [99].

Conclusion and perspectives

In the past few years, the increase in fungal strains resistant to
the main antifungal drugs used in clinical settings and in ag-
riculture has been widely reported [127–130]. Thus, to avoid a
global concern regarding the control of fungal infections and
to prevent critical failures in medicine and food safety, more
controlled use of triazoles by patients and in agriculture is
necessary. In addition, the development of new antifungal
classes and/or combinations of drugs with higher selectivity
and low toxicity, which could contribute to overcoming the
resistance in pathogenic fungi, are urgent [116].

Several KAT and KDAC inhibitors are currently under de-
velopment as drugs for various human diseases, from tumors
to fungal infections [131]. The Food and Drug Administration
(FDA) has already approved some KDAC inhibitors for the
treatment of cancer, such as vorinostat, romidepsin, belinostat,
and panobinostat [132–137]. In addition, chidamide, another
KDAC inhibitor, was recently approved in China for treat-
ment of peripheral T cell lymphoma [138]. Several other
KDAC inhibitors combined with classical chemotherapeutic
compounds present promising results in preclinical and clini-
cal trials.

Although not widely used for the treatment of fungal infec-
tions, there is great potential for use of available KAT and
KDAC inhibitors or for the exploration of these proteins as
drug targets for the development of new antifungal

compounds. Despite the possible side effects, toxicity, and
pleiotropic effects that these inhibitors could have, it is still
valid not only to apply “drug repurposing” of the available
approved inhibitors but also to perform large screening ap-
proaches to identify new compounds for further application
in fungal infection treatments. Moreover, studies that not only
identify new molecules but also understand their action
mechanism—including off-target effects, structure-activity re-
lations, pharmacokinetic/pharmacodynamic properties, and
biomarkers design—are necessary to reduce toxicity, which
will contribute enormously to the KAT and KDAC efficacy.

Thus, any efforts to learn the role of protein acetylation in
the biology of Aspergillus and other fungi species will con-
tribute not only to advance the understanding as to how these
pathogens interact with their hosts and cause diseases but also
to provide the opportunity of using KATs and KDACs as drug
targets to develop new inhibitors that could be used to treat
these diseases that affect millions of persons worldwide.
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