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The subventricular zone (SVZ) of the adult mammalian brain hosts full potential neural stem cells (NSCs). NSCs
are able to respond to extracellular signals in the brain, amplifying the pool of progenitor cells and giving rise to
neuroblasts that show ability to migrate towards an injury site. These signals can come from vascular system, ce-
rebrospinal fluid, glial cells, or projections of neurons in adjoining regions. CXCL12, a chemokine secreted after
brain injury, reaches the SVZ in a gradient manner and drives neuroblasts towards the lesion area. Among
many other molecules, matrix metalloproteinase 2 and 9 (MMP-2/9) are also released during brain injury.
MMP-2/9 can cleave CXCL12 generating a new molecule, CXCL12(5-67), and its effects on NSCs viability is not
well described. Here we produced recombinant CXCL12 and CXCL12(5-67) and evaluated their effect in murine
adult NSCs migration and survival in vitro. We showed CXCL12(5-67) does not promote NSCs migration, but does
induce cell death. The NSC death induced by CXCL12(5-67) involves caspases 9 and 3/7 activation, implying the
intrinsic apoptotic pathway in this phenomenon. Our evidences in vitro make CXCL12(5-67) and its receptor po-
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tential candidates for brain injuries and neurodegeneration studies.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Resident neural stem cells (NSCs) persist in the adult mammalian
central nervous system (CNS) and encourage the search for potential
treatments for neurodegenerative and acute brain diseases. Full poten-
tial stem cells (type B or astrocytes-like cells) line in the subventricular
zone (SVZ) along the wall of the lateral ventricles in the brain. These
cells are capable of proliferate, increasing the pool of progenitor cells
through the generation of transient amplifying cells (type C cells)
(Alvarez-Buylla and Garcia-Verdugo, 2002; Doetsch et al., 1997). The
SVZ neurogenic niche comprises many components such as the vascular
system, extracellular matrix, microglia, astrocytes, neurons, and cere-
brospinal fluid (CSF), representing a countless source of stimuli to
NSCs (Falcao et al., 2012; Lim and Alvarez-Buylla, 2014; Walton et al.,
2006). The type C cells can give rise to oligodendrocytes or generate im-
mature (“blasts”) neurons called neuroblasts or type A cells in vivo
(Doetsch et al., 1999). Together with type B and type C cells, neuroblasts
are generally referred as neural progenitor cells (NPCs) and migrate
along the rostral migratory stream (RMS) to the olfactory bulb (OB)
(Lois and Alvarez-Buylla, 1994), where they differentiate into multiple
types of interneurons (Lledo et al., 2008). During an injury, such as
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stroke (Arvidsson et al., 2002), traumatic brain injury (Ramaswamy et
al., 2005), or neurodegenerative diseases (Saha et al.,2012), neuroblasts
can migrate towards different areas of the CNS in response to signalling
factors. Nevertheless, CNS regeneration process must overcome many
obstacles besides NSCs expansion and migration, such as survival, dif-
ferentiation into specific neural subtypes, and integration into a pre-
existing neural network. Despite this capacity of neuroblasts to generate
neurons in different CNS areas, the majority of them undergo apoptosis
when arriving at a lesion site, resulting in absent or poor regeneration of
adult mammalian brain (Arvidsson et al., 2002; Malone et al., 2012;
Thored et al., 2006).

After a brain injury, soluble factors are released at the lesion site,
reaching the SVZ through blood vessels, parenchymal diffusion or cell-
cell communication. These factors provide cues that direct neuroblasts
to the damaged areas. The chemokine CXCL12 (C-X-C motif ligand 12)
- which also regulates homing and maintenance of stem cells in the
niches - is among these factors (Kokovay et al., 2010). CXCL12, previ-
ously known as SDF-1 (stromal cell-derived factor 1), is a small secreted
chemotactic cytokine composed of 67 amino acids. The N-terminus
amino acid sequence of CXCL12 (KPVSLSYR, amino acids 1 to 8) (Fig.
1a) is critical for receptor activation and the sequence RFFESHI (amino
acids 12 to 18) promotes the initial docking of the chemokine to its re-
ceptor CXCR4 (Crump et al., 1997). CXCL12 is abundant and selectively
expressed in the developing and mature CNS (Tham et al., 2001), and is
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Fig. 1. Recombinant CXCL12 and CXCL12(5-67) production and their effect in Jurkat cells chemotaxis. (a) Nucleotides sequences inserted in the uP vector to produce rCXCL12 and
rCXCL12(5-67). CXCL12 Mus musculus sequence was used as reference to synthesize the recombinant chemokines and KOZAC sequence was inserted before the signal peptide. Kpnl
and Xhol restriction enzyme sites are flanking the coding sequence. Bgll recognition site is identified and was used to check the insert presence in the vectors. CXCL12(5-67) lacks the
first four amino acids from the full length chemokine (K, lysine; P, proline; V, valine; S, serine). (b) Level of rCXCL12 or rCXCL12(5-67) secreted by HEK293 and NSCs tested by ELISA.
Untransfected: 1.9, SEM + 23.2, n = 3; Empty vector: —49.3, SEM 4 12.9, n = 10; uP-CXCL12: 296.9, SEM =+ 28.9, ****P < 0.0001 uP-CXCL12 vs. untransfected, n = 22; uP-CXCL12(5-
67): SEM 4 17.8, ****P < 0.0001 uP-CXCL12 vs. untransfected, n = 39; Untransfected NSC: 54.3, SEM + 4.3, n = 2. (c) Jurkat cells chemotaxis in the presence of 50 ng/mL of rCXCL12
or rCXCL12(5-67) and controls. The chemotactic activity was also determined in the presence of CXCR4 antagonist (AMD3465). Fresh medium: 7.3, SEM + 1.1, and 8.2, SEM 4+ 0.04;
Empty vector: 7.5, SEM + 0.5, and 8.5, SEM =+ 0.08; rCXCL12: 34.7, SEM + 2.8, and 15.67, SEM + 0.8, ****P < 0.0001 rCXCL12 vehicle vs. rCXCL12 AMD3465, **##P < 0.0001 rCXCL12
vehicle vs. Fresh medium vehicle, and *#P = 0.0042 rCXCL12 AMD3465 vs. Fresh medium AMD3465. Vehicle and AMD3465 values were presented in that order. N = 3. (d) Jurkat
cells chemotaxis in the presence of 100 or 200 ng/mL of rCXCL12 or rCXCL12(5-67). The chemotactic activity was also determined in the presence of CXCL12 N-terminal peptide
[KPVSLSYR-NH, (pep-NH2)]. Empty vector: 5.9, SEM =+ 1.0, and 6.7, SEM + 0.3; 100 ng/mL rCXCL12: 30.1, SEM =+ 1.9, and 43.0, SEM =+ 4.5, ***P = 0.0003 rCXCL12 vehicle vs.
rCXCL12 pep-NH2, ¥##P < 0.0001 rCXCL12 vehicle vs. Empty vector vehicle, and #***#P < 0.0001 rCXCL12 pep-NH2 vs. Empty vector pep-NH2; 200 ng/mL rCXCL12: 28.8, SEM + 1.0,
and 28.3, SEM + 1.1, ¥#*##p < 0,0001 rCXCL12 vehicle vs. Empty vector vehicle, and #***#P < 0.0001 rCXCL12 pep-NH2 vs. Empty vector pep-NH2. 100 ng/mL rCXCL12(5-67): 6.3, SEM
+0.1,and 7.6, SEM =+ 1.4; 200 ng/mL rCXCL12(5-67): 5.3, SEM =+ 0.5, and 5.7, SEM =+ 0.8. Vehicle and pep-NH2 values were presented in that order. N = 3. *Two-way or *one-way ANOVA.

secreted by endothelial cells, astrocytes, microglia and neurons
(Banisadr et al., 2003). CXCR4 (C-X-C motif receptor 4) is the signalling
G protein-coupled receptor of CXCL12, also widely expressed in the CNS
(Banisadr et al., 2002).

The CXCL12/CXCR4 axis is involved in mobilization, proliferation,
migration and differentiation of progenitor cells mainly during develop-
ment but also in adulthood (Bajetto et al., 1999; Imitola et al., 2004; Itoh
et al,, 2009; McGrath et al.,, 1999; Tiveron et al., 2006). Constitutive ex-
pression of CXCL12 in the adult CNS is kept at a low level, and is upreg-
ulated under injury states, when then CXCL12 enhances the recruitment
of neuroblasts from the SVZ neurogenic niche to lesion sites and pro-
vides signalling for a potential endogenous stem cell-based repair (for
areview see Li et al,, 2012).

Partial cleavage of CXCL12 at the N-terminus by distinct peptidases
results in loss of chemotactic activity and impairment in CXCR4 receptor
affinity (Cho et al., 2010; Delgado et al., 2001; Levesque et al., 2003). The
proteolytic cleavage of CXCL12 by matrix metalloproteinase 2 and 9
(MMP-2 and 9) removes selectively the first four N-terminus amino
acids from the full length molecule, generating the truncated form
CXCL12(5-67) (McQuibban et al., 2001). Previous work (Denoyer et
al.,, 2012; Van Raemdonck et al., 2014; Vergote et al., 2006; Zhu et al.,
2009) showed that CXCR3, natural receptor of CXCL9, 10 and 11, acts
as signalling receptor for CXCL12(5-67). These authors also demonstrat-
ed in those independent studies that CXCL12(5-67) affects the viability

of differentiated cell types in the CNS, but its effect on neural stem cells
remains poorly studied.

The aim of the present work was to investigate the activity of the
truncated form of CXCL12, CXCL12(5-67), in NSCs viability. Herein we
produced CXCL12 and CXCL12(5-67) recombinant and assessed their
activity on adult murine NSCs migration and viability in vitro. Our
data show, for the first time, that CXCL12(5-67) induces apoptosis in
adult NSCs in vitro. The demonstration of an emerging role for
CXCL12(5-67) in the low regenerative capacity of the CNS provides a
basis for considering this cleaved form of CXCL12 as a novel target for
treatment during traumatic brain and neurodegenerative diseases.

2. Results
2.1. CXCL12(5-67) is not chemotactic to CXCR4™ cells

We constructed uP vectors containing either the native or the
cleaved form of CXCL12 sequence and transfected HEK293T cells in
order to produce CXCL12 and CXCL12(5-67) (Fig. 1a). Both forms of re-
combinant CXCL12 [rCXCL12 and rCXCL12(5-67)] were secreted in
HEK293T conditioned medium. The concentration obtained was on av-
erage 296.9 ng/mL for rCXCL12 and 263.1 ng/mL for rCXCL12(5-67)
(Fig. 1b). HEK293T cells transfected with empty uP vector and
untransfected did not secret detectable amounts of CXCL12.
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Additionally, adult NSCs cultivated as neurospheres secreted detectable
amount of CXCL12 in the medium (mean 49.96 ng/mL).

To test the chemotactic activity of the recombinant proteins CXCL12
and CXCL12(5-67), we used Jurkat cells, a human T lymphocyte cell line
that express high-affinity CXCR4 receptor and respond to chemotaxis
promoted by CXCL12 (Hesselgesser et al., 1998). Conditioned medium
from HEK293T cells transfected with empty vector did not induce che-
motaxis, corroborating the result that showed HEK293T conditioned
medium does not contain significant amounts of CXCL12 (Fig. 1c). As
expected, rCXCL12 induced Jurkat cells chemotaxis and the specific
CXCR4 antagonist (AMD3465) blocked this effect.

We have previously shown that a synthetic octapeptide analogous to
CXCL12 N-terminus [KPVSLSYR-NH,], here denominated pepNH,, was
not able to induce chemotaxis in NSCs (Filippo et al., 2013). Since
pepNH, contains missing amino acids of CXCL12(5-67), here we asked
whether pepNH, would be able to rescue the chemotactic activity
when added together CXCL12(5-67). When pepNH, - which contains
CXCR4 receptor activation domain - was added to the Jurkat cells

b Fresh medium

Empty vector
rCXCL12
rCXCL12(5-67)

0 40 80

together with rCXCL12(5-67) (which preserves CXCR4-docking do-
main), no chemotaxis was observed. More, CXCL12(5-67) did not in-
duce chemotaxis even when higher concentrations were tested (Fig.
1d). Unexpectedly, pepNH, increased chemotaxis induced by
100 ng/mL, but not 200 ng/mL, of rCXCL12.

After confirmation that rCXCL12 secreted by transfected HEK293T
cells preserves the chemotactic activity on CXCR4™" cells, we evaluated
the effect of the recombinant molecules, either rCXCL12 or
rCXCL12(5-67), on NSCs migration (Fig. 2). Adult NSC were cultured
as multicellular free-floating spheres (neurospheres) and, after adhe-
sion to a laminin-coated surface, were treated with the recombinant
chemokines. We considered the distance that cells reached outside the
sphere contour as a measure of migration. As expected, rCXCL12(5-
67) did not induce NSC migration when compared to cells treated
with empty vector (Fig. 2a, b). On the other hand, rCXCL12 was able
to increase in 30% the distance NSCs migrated when compared to
fresh medium or conditioned medium from cells transfected with
empty vector.

120 160

Distance migrated (um)

Fig. 2. Effects of CXCL12 and CXCL12(5-67) on neural stem cell migration in vitro. (a-b) Neurospheres were treated for 24 h with 50 ng/mL rCXCL12, rCXCL12(5-67) or controls and had
the radii measured in three different areas, starting from the edge of the sphere to the farthest migrated cell. The average of these values for each sphere is plotted in the graph. Fresh
medium: 103.5, SEM = 4.3, n = 28; Empty vector: 99.4, SEM =+ 4.8, n = 26; rCXCL12: 130.8, SEM =+ 4.4, n = 31, ***P < 0.0001 rCXCL12 vs. Empty vector; rCXCL12(5-67): 114.8, SEM

+ 3.6, n = 34. Bar: 100 pum.
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2.2. CXCL12(5-67) induces neural stem cell death

Despite NSCs have been described as less susceptible to cytotox-
icity than differentiated cells (Brazel et al., 2014), we hypothesised
CXCL12(5-67) could be inducing apoptosis in NSCs, implicating this
molecule in the poor spontaneous regeneration of the CNS. As an in-
dicator of early apoptosis, we evaluated the translocation of
phosphatidylserine (PS) to the outer leaflet of the plasma membrane
using annexin V-binding assay. Neurospheres were dissociated and
NSCs were cultured for 24 h on laminin-coated coverslips. We evalu-
ated PS translocation after 24 h of treatment with rCXCL12(5-67),
rCXCL12, or staurosporine as positive control (a pleiotropic kinase
inhibition that induces cell death). rCXCL12(5-67) induced PS trans-
location in NSCs in comparison with empty vector or rCXCL12 treat-
ments (Fig. 3a,b), suggesting that rCXCL12(5-67) induces apoptosis
in NSCs.
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DAPI

o
T

w
1
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2.3. CXCL12(5-67) activates intrinsic pathway of apoptosis in NSCs

Annexin V assay suggested CXCL12(5-67) induces apoptosis in NSCs,
but because even a transient loss of the plasma membrane integrity al-
lows annexin V binding regardless of whether or how the cells die, we
decided to confirm the effect of rCXCL12(5-67) in NSCs by assessing
cleavage of caspases 3 and 7, since their activation is involved in apopto-
tic cell death pathways.

The treatment of NSCs with rCXCL12(5-67) for 4, 6 or 24 h induced
activation of caspases 3/7 when compared to control (fresh medium) or
rCXCL12 (Fig. 4 a) confirming the apoptosis-mediated cell death in-
duced by CXCL12(5-67). In order to investigate which apoptotic path-
way is involved in the CXCL12(5-67)-induced cell death, we measured
the activation of caspase 8 (extrinsic pathway) and caspase 9 (intrinsic
pathway) in NSCs treated with rCXCL12(5-67) in vitro. Caspase 9 (Fig.
4c) was activated by rCXCL12(5-67), but caspase 8 did not (Fig. 4b),

rCXCL12 rCXCL12(5-67)

Fig. 3. Apoptosis detection by annexin V binding assay in NSC treated with CXCL12 and CXCL12(5-67). (a-b) NSC isolated from neurospheres and cultured for 24 h with 1 pM
staurosporine, 200 ng/mL rCXCL12 or CXCL12(5-67). Exteriorised phosphatidylserine (PS) is demonstrated by annexin V binding (green). Empty vector: 0.02, SEM + 0.01;
Staurosporine: 3.26, SEM + 0.3, **P = 0.0017 Staurosporine vs. Empty vector; rCXCL12: 0.09, SEM + 0.03; rCXCL12(5-67): 1.9, SEM & 0.3, **P = 0.0037 rCXCL12(5-67) vs. Empty
vector. N = 4 areas in the picture. 7AAD (red), and DAPI (blue). Bars: 20 um (upper set) and 100 um (bottom set).
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Fig. 4. Activation of caspases in NSCs treated with CXCL12 and CXCL12(5-67). (a) Caspases 3 and 7 activation evaluation in dissociated NSCs treated with empty vector media (value
subtracted from all treatments), 1 UM staurosporine, 200 ng/mL rCXCL12 or 200 ng/mL CXCL12(5-67) for 4, 6 or 24 h in independent experiments. Staurosporine: 164.1, SEM + 28.4;
386.7, SEM 4+ 36.6; 1580, SEM + 67.4. rCXCL12: —79.42, SEM 4+ 82.9; —201.9, SEM + 19.75; 109.2, SEM + 20.6. rCXCL12(5-67): 658.9, SEM =+ 24.0; 686.7, SEM + 62.9; 1099, SEM
+ 18.9. Values presented in the following order: 4, 6 and 24 h. At 4 h: ****P < 0.0001 rCXCL12 vs. rCXCL12(5-67); At 6 h: ****P < 0.0001 rCXCL12 vs. rCXCL12(5-67); At 24 h: ****P <
0.0001 rCXCL12 vs. rCXCL12(5-67). 4 and 6 h, n = 10; 24 h, n = 11. (b) Caspase 8 activation evaluation in dissociated NSCs treated with empty vector media, 1 ng/mL IFN-y
+ 4 ng/mL TNF-c, 200 ng/mL rCXCL12 or CXCL12(5-67). Empty vector: 190.1, SEM + 9.4; IFN + TNF: 155.5, SEM 4 7.4; rCXCL12: 139, SEM + 6.2; rCXCL12(5-67): 173.5, SEM 4 5.8.
N = 11. (c) Caspase 9 activation evaluation in dissociated NSCs treated with empty vector media, 1 pM staurosporine, 200 ng/mL rCXCL12 or CXCL12(5-67). Empty vector: 450.9, SEM
=+ 10.7; Staurosporine: 1047, SEM = 22.2; rCXCL12: 492.1, SEM =+ 9.8; rCXCL12(5-67): 1293, SEM & 23.3. N = 11. ****P < 0.0001 Staurosporine vs. Empty vector; ****P < 0.0001
rCXCL12(5-67) vs. Empty vector. RLU: relative luminescence units.

confirming CXCL12(5-67) induced cell death through the intrinsic path- 7 activation, confirming CXCR4 receptor does not mediate CXCL12(5-
way of apoptosis. 67) activity (Fig. 5 a).
Since CXCR3 has been implicated as a receptor targeted by
2.4. NSCs express CXCR3 receptor and CXCL9 ligand prevents CXCL12(5- CXCL12(5-67), we assessed CXCR3 expression in NSCs and astrocytes
67)-induced caspases activation in vitro by PCR. Astrocytes as well as NSCs cultivated from naive mice
or animals submitted to traumatic brain injury (TBI) showed to express
CXCL12(5-67) has been described to lose its original affinity for CXCR3 receptor (Fig. 5b). In order to corroborate the findings from other
CXCR4 receptor and to bind to CXCR3 receptor (Denoyer et al., 2012; groups showing CXCL12(5-67) binds to CXCR3 we took advantage from
Vergote et al.,, 2006; Zhu et al., 2009). In order to confirm that the affinity between CXCR3 and its natural ligand CXCL9 (Cole et al.,
CXCL12(5-67) induces cell death by targeting other receptor than 1998) to assess CXCL12(5-67)-CXCR3 affinity. We incubated NSCs
CXCR4, we repeated caspases 3/7 activation experiment but at this with CXCL9 for 1 h at 4 °C to allow receptor-ligand binding and to
time adding the selective CXCR4 antagonist, AMD3465. As expected, avoid or delay receptor internalization and recycling as well as cell sig-
rCXCL12(5-67) with CXCR4 antagonist continued inducing caspases 3/ nalling. After this period, cells were treated with rCXCL12, rCXCL12(5-
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Fig. 5. CXCL12(5-67) induces caspases activation through CXCR3 and not CXCR4 receptor. (a) Caspases 3 and 7 activation evaluation in dissociated NSCs treated with empty vector media
(value subtracted from all treatments), 1 uM staurosporine, 200 ng/mL rCXCL12 or CXCL12(5-67) for 24 h and in the presence of CXCR4 antagonist (AMD3465) or its vehicle pre-
treatments for 1 h. Staurosporine plus vehicle: 1580, SEM 4+ 67.4; rCXCL12 plus vehicle: 109.2, SEM + 20.6; rCXCL12(5-67) plus vehicle: 1099, SEM + 18.9; Staurosporine plus
AMD3465: 1646, SEM =+ 31.9; rCXCL12 plus AMD3465: 232.6, SEM + 24.9; rCXCL12(5-67) plus AMD3465: 1240, SEM 4 25.6. N = 11. (b) Conventional PCR showing expression of
CXCR3 receptor in NSCs cultured from naive or traumatic brain injured (TBI) mice and astrocytes. GAPDH was used as housekeeping gene. Full-length gel is presented in
Supplementary Fig. 2. (c) NSCs pre-treated with vehicle or 200 ng/mL CXCL9 (last bar) for 1 h at 4 °C. After that, NSCs received empty vector supernatant, 1 pM staurosporine,
200 ng/mL rCXCL12 or CXCL12(5-67) for 4 h and then were assessed for caspase 3/7 activation. Empty vector: 617.5, SEM + 22.8; Staurosporine: 1896, SEM 4+ 62.4; rCXCL12: 641.8,
SEM 4 41.8; rCXCL12(5-67): 771.6, SEM + 21.5; CXCL9 + rCXCL12(5-67): 667, SEM 4 36.7. N = 10. ****P < 0.0001 Staurosporine vs. Empty vector; **P = 0.006 rCXCL12(5-67) vs.
Empty vector; P = 0.0815 rCXCL12(5-67) vs. CXCL9 + rCXCL12(5-67). RLU: relative luminescence units.
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67) or controls (empty vector or Staurosporine) and left to recover at 37
°C for 4 h. As we anticipated, CXCL9 pre-treatment prevented
rCXCL12(5-67) caspases 3/7 activation (Fig. 5¢), suggesting that
CXCL9 and rCXCL12(5-67) bind to the same receptor, CXCR3.

3. Discussion

In the healthy brain, MMP-2/9 modulate neural progenitor cell mi-
gration from the SVZ to the olfactory bulb along the rostral migratory
stream (Bovetti et al., 2007), whereas following brain lesions, MMP-2/
9 participate on migration of neural progenitors into an injured area. Be-
sides migration, MMPs play regulatory activity in different tissues, pro-
cessing active molecules as surface receptors, growth factors and
chemokines (Ben-Hur et al., 2006; Kang et al., 2008; Lee et al., 2006).
CXCL12 is one of the many substrates of MMP-2/9, and cleavage in a
specific site at N-terminal portion of CXCL12 generates CXCL12(5-67)
(McQuibban et al., 2001). In addition, enhanced MMP-2/9 expression
is involved in the pathophysiologic mechanisms of brain injury and neu-
rodegenerative diseases (Hoehna et al.,, 2012; Kaplan et al., 2014;
Stomrud et al,, 2010; Uckermann et al., 2011).

Here we showed that CXCL12(5-67) impairs NSCs migration. These
results corroborated with the reports of Peng et al. (2012) which dem-
onstrated that the proteolytic processing of CXCL12 by MMP-2/9 re-
duces foetal neural progenitor cell migration. We also observed no
difference on migration when we increased CXCL12(5-67) concentra-
tion, suggesting a migration abolishment rather than receptor affinity
reduction. These findings are in accordance with many other studies
showing that most of CXCL12 receptor activation sequence disrupts mi-
gration mediated by CXCR4 receptor. When we tried to recover the full-
length molecule chemotactic capacity by adding CXCL12 N-terminal
peptide (KPVSLSYR-NH,, pep NH,) together with CXCL12(5-67), still
no effect on migration was observed. This observation indicates that
the spatial arrangement of these sequences in the full-length molecule
is important for binding and activation of CXCR4 receptor.

Chemokines have been reported to act in an optimal concentration,
with no improvement in the cell migration when concentration in-
creases (Ottoson et al., 2001; Poznansky et al., 2000). Furthermore, it
was reported that an increase in CXCL12 concentration above the opti-
mal range blocks cell migration by ligand dimer formation, downregula-
tion of receptor expression or its desensitization (Pelletier et al., 2000).
Corroborating these observations, here we saw no difference in migra-
tion when cells were treated with increasing concentrations of
CXCL12. Surprisingly, the N-terminal peptide enhanced CXCL12 chemo-
taxis at 100 ng/mL, but caused no effect at 200 ng/mL. Since the peptide
per se does not induce chemotaxis, the effect observed may be due to an
interaction between the peptide and the full-length molecule,
preventing CXCL12 dimer formation, thus improving the chemotactic
activity. Additionally, high concentrations of CXCL12 can induce dimer-
ization of CXCRA4 receptors, affecting signal transduction, which also can
help to explain why CXCL12 chemotactic effect is not concentration de-
pendent (Zlatopolskiy and Laurence, 2001).

As migration is one of multiple steps of neurogenesis, disruption of
this process can ultimately affect newborn neurons survival. But here
we aimed to assess the direct effect of CXCL12(5-67) on NSCs survival.
Even though CXCL12(5-67) has been implicated in neurodegeneration
by HIV and retinal degeneration (Denoyer et al., 2012; Vergote et al.,
2006; Zhang et al., 2003), but its role in adult NSCs remained unclear.
Here we showed, for the first time, that CXCL12(5-67) induces the in-
trinsic apoptosis pathway in adult NSCs. Treatment with CXCL12(5-
67) induced activation of caspases 3 and 7 early as after 4 h of treatment
in vitro, and apoptosis was also confirmed using the annexin V binding
assay.

CXCL12(5-67) activity has been shown to occur through CXCR3 re-
ceptor, but its expression in neural stem cell remained a point of contro-
versy. Here, we also showed that NSCs from traumatic brain injured and
naive animals cultivated in vitro express CXCR3. Since astrocytes are in

close contact to NSCs, we also decided assess whether that cell type
could be a target for CXCL12(5-67) by expressing CXCR3 receptor.
Once CXCL12(5-67) acted directly on NSCs, we did not investigate sec-
ondary effects of CXCL12(5-67) by CXCR3 activation of astrocytes. Based
on these findings, a possible role for CXCL12(5-67)-CXCR3 axis on new-
born cell death in the brain is proposed, making in vivo investigations
necessary to confirm this hypothesis.

The activity of CXCL12(5-67) through CXCR3 receptor has been
shown before (Denoyer et al., 2012; Zhu et al., 2009). Here we aimed
to confirm this finding using CXCL9, a natural ligand of CXCR3. NSCs
pre-treated with CXCL9 were not susceptible to the CXCL12(5-67) apo-
ptotic effects. The effect of CXCL12(5-67) on NSCs in this set of experi-
ments were less prominent then before, but still significant. This result
can be explained by the fact that the cells were kept for 1 h at 4 °C,
which keeps the viability but reduces the metabolic activity, enzymatic
reactions rates, as well as transcription and translational processes
(Hunt et al., 2005; Sonna et al., 2002).

4. Conclusions

The chemokine cleavage is a physiological process and represents an
endogenous mechanism to inactivate soluble factors and then control
their activity. The findings described here highlighted, for the first
time, the involvement of the CXCL12 cleaved form, CXCL12(5-67), in
neural stem cell death in vitro. These results provide basis for an in
vivo investigation, where apoptosis of neuroblasts could be assessed
in brain injuries and neurodegenerative diseases models. The
CXCL12(5-67) occurrence is consistent with the environment generat-
ed after neuronal cell death, where neuroblasts are recruited from SVZ
and follow the CXCL12 gradient, as well as MMP-2 and 9 are released
during cell migration. Our data support the hypothesis that CXCL12(5-
67) is responsible for NSC death during brain injury and diseases, and
in vivo experiments should be conducted in order to confirm it. We sug-
gest that following a cortical injury, CXCL12 is secreted at the injured
area attracting neuroblasts from SVZ. Activated MMP-2/9 collaborates
with neuroblasts migration through extracellular matrix remodelling,
but also cleaves CXCL12. This process generates CXCL12(5-67) that acti-
vates the intrinsic apoptosis pathway via activation of CXCR3, leading to
cell death.

5. Methods

5.1. Production of recombinant CXCL12 and CXCL12(5-67) by HEK293T
cells

CXCL12 [GenBank: L12029] and CXCL12(5-67) DNA sequences pre-
ceded by Kozak sequence (GCCGCC) were synthesized by GenScript
using pUC57 vector. The sequences of either forms of CXCL12 were
digested with restriction enzymes Kpnl and Xhol, and cloned into the
uP vector containing the cytomegalovirus (CMV) promoter and
polycloning (Sacramento et al., 2010), generating uP-CXCL12 and uP-
CXCL12(5-67) plasmids. Plasmids were amplified and purified using
an endotoxin free plasmid kit (Qiagen). HEK293T cells were grown in
DMEM supplemented with 10% heat-inactivated foetal calf serum
(FCS) and used for transfection after trypsin-EDTA dissociation. Twen-
ty-four hours before transfection, cells were seeded on a 60 mm dish
at a density of 1 x 10° cells. One hour before transfection, the medium
was replaced with a medium containing 0.5% FCS and cells were
transfected using FUGENE (Promega) with 6 pg of DNA. Supernatant
was collected after 48 h, centrifuged at 500 x g for 10 min at RT, filtrated
by 0,22 um membrane pore and kept at —20 °C.

5.2. ELISA

Quantification of recombinant CXCL12 and recombinant CXCL12(5-
67) secreted by HEK293T cells into the culture medium was performed



T. Adelita et al. / Stem Cell Research 22 (2017) 61-69 67

using mouse CXCL12/SDF-1 DuoSet DY460 (R&D) following the
manufacturer's instructions. Briefly, the capture antibody was diluted
in phosphate buffered saline (PBS) at a final concentration of 2 ug/mL
and adsorbed overnight. Blockage was done with PBS containing 1% bo-
vine serum albumin (BSA) for 2 h. A seven point standard curve using
two-fold serial dilutions was done starting at 3 ng/mL and performed
in triplicate, and the samples were quantified in duplicates for each di-
lution (1:125, 1:250, 1:500). Plates were incubated for 2 h. The detec-
tion antibody was used at a final concentration of 400 ng/mL with 2%
normal goat serum (NGS). Streptavidin-horseradish peroxidase (HRP)
was diluted at 1:200 and incubated for 20 min. The substrate solution
used was 0.3% of o-phenylenediaminedihydrochloride (OPD) in citric
acid solution, pH 5.0, for 20 min. The reaction was interrupted using
2 N H,S0,4 and the optical density was determined using a microplate
reader set at 490 nm VersaMax Absorbance Microplate Reader (Molec-
ular Devices).

5.3. Chemotaxis assay

To analyze the capacity of recombinant CXCL12 and recombinant
CXCL12(5-67) to attract CXCR4™ cells, Jurkat cells were maintained at
adensity of 1 x 10° cells/mLin RPMI1640 medium with 10% FCS, 1% glu-
tamine, and 1% penicillin/streptomycin antibiotics. To perform the che-
motaxis assay, cells were centrifuged at 90x g for 3 min at RT, and
suspended in free serum RPMI1640 medium at a density of 1 x 10°
cells/mL. 700 pL of conditioned medium produced by HEK293T
transfected cells with empty uP, uP-CXCL12 or uP-CXCL12(5-67) plas-
mids were added to the bottom of 24 well plates. After that, 200 L of
cell suspension were placed on the upper transwell chamber of 8 pm in-
serts (Millipore). The plate with the chambers was incubated for 4 h at
37 °Cand 5% CO,. Cells that migrated to the bottom of the well were re-
covered and counted in a haemocytometer. When CXCR4 antagonist
was added, 8 uM of AMD3465 (Tocris) or vehicle were added to the
cells for 40 min before place the cells in the inserts.

5.4. Animals

All animals were obtained from UNIFESP Animal Facility and all ex-
periments were carried under protocols approved by the Research
Ethics Committee (CEP) from Universidade Federal de Sdo Paulo (CEP
1223/11).

5.5. Isolation of adult NSCs and neurospheres formation

Adult NSCs were obtained from the SVZ of 45 days old C57BL/6 fe-
male mice. After euthanasia by cervical dislocation, brain was removed,
the SVZ dissected in the sagittal plain, and the tissue maintained in
DMEM/F12. After sedimentation, supernatant was discarded, and cells
were dissociated by incubation with 0.1% trypsin/EDTA during 5 min
at 37 °C. To stop trypsin action, 10% FCS was added and cells were cen-
trifuged for 5 min at 130x g, and supernatant was removed. Isolated
cells were then suspended in DMEM/F12 1:1 (v/v), supplemented
with 2% B27, 20 ng/mL EGF, 20 ng/mL FGF2, 1% penicillin/streptomycin,
and 5 pg/mL heparin. Cells were filtered in 40 um nylon membrane and
plated on a poly(2-hydroxyethyl metracrylate) (poly HEMA) pre-coat-
ed 75 cm? flask to avoid adhesion. Cells obtained from 4 mice were
used in each flask. Neurospheres formation takes up to 5 days to
occur, and during this time culture medium was partially changed
after 2-3 days by centrifugation for 5 min at 100xg. After the
neurospheres reach a diameter around 100 um, the spheres were me-
chanically dissociated, plated in 4 flasks also coated with poly HEMA
and cultured until new neurospheres be formed. Secondary spheres
were used to perform all experiments. For assays in which cells needed
to be counted, the neurospheres were dissociated, filtered in 40 pm
nylon membrane, and isolated cells were counted in a haemocytometer.

5.6. NSC migration assay

Neurospheres were plated in 24-well 10 pug/mL poly-L-lysine
(Sigma-Aldrich) and 50 pg/mL laminin (UNIFESP) coated plates for
24 h to allow adhesion to the plate surface. Once neurospheres adhered,
cells tended to leave the sphere, migrating outwards in a randomly fash-
ion. The neurospheres were treated by an additional 24 h with rCXCL12
or rCXCL12(5-67) and, at the end of the incubation period, cells were
photographed using an inverted microscope (Olympus). For NSC migra-
tion analysis, the distance from the edge of the sphere to the farthest mi-
grated cells was measured at three distinct locations per sphere using
Image], and the average of this value was plotted in the graph.

5.7. Caspase activation assays

Caspases 3/7, 8 and 9 were measured using Caspase-Glo Assay kit
(Promega) according to the manufacturer's instructions. Briefly, NSCs
were seeded on a 96-well plate at a density of 1 x 10* cells and incubat-
ed for 24 h to allow neurospheres attachment. Cells were treated for dif-
ferent periods of time followed by 1 h incubation at 37 °C with Caspase-
Glo. The luminescence produced is proportional to caspase activity and
was quantified in the supernatant using FlexStation 3 Microplate Reader
and SoftMax Pro (Molecular Devices). A negative control consisting of
cells that were not treated was also included in each assay. As positive
controls, 1 uM staurosporine or 1 ng/mL IFN-vy and 4 ng/mL TNF-a
(R&D) were used to induce caspase activity. When CXCR4 antagonist
was used, 8 UM of AMD3465 or vehicle were added to the cells for 1 h
before chemokine treatments. For the CXCR3 competition experiment,
cells were pre-treated for 1 h at 4 °C with 200 ng/mL of recombinant
CXCL9 (Life Technologies) (as described by Uppaluri et al. (2008) with
modifications), and then treated with rCXCL12, rCXCL12(5-67) or
controls.

5.8. Annexin V and 7AAD staining and fluorescence image analysis

Apoptosis was measured using Annexin V binding followed by fluo-
rescence microscopy analysis. Briefly, neurospheres were dissociated
and isolated cells were cultured for 24 h on glass coverslips coated
with poly-L-lysine and laminin. After that, cells were treated for 24 h
with rCXCL12, rCXCL12(5-67) or staurosporine, the medium was re-
moved and cells washed with PBS before staining. Annexin V-FITC (BD
Pharmigen) and 7-amino-actinomycin D-PE (7AAD) for nuclear stain-
ing (Life Technologies) were both diluted in 1x binding buffer and
cells were stained for 15 min at 37 °C in the dark, then washed twice
with 1x binding buffer, fixed with 4% PFA and mounted with Prolong
Gold Antifade with DAPI (Life Technologies). Inmunofluorescence visu-
alization was performed using a confocal microscope LSM 780-NLO
(Zeiss). Fluorescence intensity was quantified using Image] by measur-
ing four different and exclusive areas in the same figure. The error bar
represents how the signal was homogenous (or not) in the field of view.

5.9. Primary cortical astrocytes culture

Astrocyte culture was prepared from cerebral hemispheres of 2 day-
old C57BL/6 mice. Brain cortices from the newborn pups were aseptical-
ly removed and meninges were excised carefully. The tissue was me-
chanically dissociated and then filtered through a 40 um nylon
membrane. The filtered cells containing astrocytes were suspended in
DMEM supplemented with 10% FCS, antibiotics and seeded in 75 cm?
tissue culture flasks at a density of 1 x 107 cells. Cells were incubated
at 37 °C in a humidified atmosphere containing 5% CO,. After two days
the flask was vigorously shook to detach microglia and all the superna-
tant was discarded. The medium was totally replaced and changed
every two days. Astrocytes were subcultured when reached confluence
and then plated to perform the experiments. Astrocytes were character-
ized with GFAP and S100B by immunocytochemistry.
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5.10. Mice traumatic brain injury (TBI) model

Injury to mouse primary motor cortex (M1) was performed in
45 days old C57BL/6 mice as previously described Chiba et al., 2004;
Coulson-Thomas et al., 2008). The animals were anesthetized using
100 pL of 2.5% 2,2,2-Tribromoethanol (Sigma Aldrich) intraperitoneally
and positioned in the stereotaxic apparatus. A metal needle was chilled
using isopentane on dry ice and was inserted 4 times, during 30 s each,
into the motor cortex (stereotaxic coordinates from bregma: AP
+0.198 mm; ML +0.175 mm; DV —0.15 mm). After surgery, the ani-
mals were kept warm and received acetaminophen at drink water.
The SVZ was dissected 24 h after the injury and the neural stem cells
grown according to isolation of adult NSC and neurospheres formation
protocol.

5.11. RT-PCR

Total RNA from astrocytes or neurospheres obtained from TBI or
naive animals was extracted using TRIzol protocol and quantified
using GE NanoVue Spectrophotometer. Two micrograms of total RNA
were reverse-transcribed with Oligo(dT)15 Primer and ImProm-II Re-
verse Transcription System (Promega) protocol. A negative control
with all constituents but without DNA was included in the PCR reaction.
The primers used were CXCR3: sense 5’ TACCTATCAGCCAACTACGATCA
3, antisense: 5’ ACCACTACCACTAGCCTCATAG 3’; and GAPDH sense: 5’
TTCGACAGTCAGCCGCATCTTCTT 3/, and antisense: 5’
GCCCAATACGACCAAATCCGTTGA 3'.The thermal cycling conditions
were 2 min at 92 °C, and 35 cycles of 30 s at 94 °C, 30 s at 60 °C, 30 s
at72 °C,and 5 min at 72 °C. The products were submitted to electropho-
retic run in 1.8% agarose, 80 V, 1 h, stained with Blue Green loading dye
(LGC) and revealed after ultraviolet incidence using BioRad ChemiDoc.
The gene ruler low range DNA ladder (Fermentas) was applied in all
runs.

5.12. Statistical analysis

Data were expressed as mean + SEM from technical replicates (N),
and the data were evaluated statistically by analysis of variance
(ANOVA) followed by the Bonferroni test. The difference between
values was considered statistically significant when the P < 0.05. The
symbols meaning are as follow: *P < 0.05, **P < 0.01, ***P < 0.001, ****P
< 0.0001. The GraphPad Prisma 5 was used for statistical analysis and
graphing. To determine the p-value, QuickCalcs at <graphpad.com/
quickcalcs/pValue2/> was used.
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