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R E S U M O

Com o passar dos anos, o número de dispositivos conectados à Web continua aumen-
tando, cada um deles produzindo dados continuamente. Para construir um modelo
preditivo, um enorme volume de dados brutos não é necessariamente suficiente por
si só, pois deve ter algum tipo de informação significativa relacionada à saída do
modelo. Normalmente, temos que anotar os dados com algum tipo de rótulo, e usá-
los para supervisionar um modelo que será capaz de generalizar para dados não
vistos. No entanto, o processo de rotulagem pode ser entediante, longo, dispendioso
e propenso a erros. Muitas vezes, é o caso de a maioria dos nossos dados não estarem
rotulados. O aprendizado semissupervisionado alivia isso ao fazer fortes suposições
sobre a relação entre os rótulos e a distribuição dos dados de entrada. Esse paradigma
é frequentemente bem-sucedido, mas muitos dos seus algoritmos acabam confiando
demais nos poucos rótulos disponíveis. Na vida real, tanto os seres humanos quanto
os sistemas automatizados são propensos a erros; portanto, é essencial que nossos al-
goritmos sejam capazes de trabalhar com rótulos que são poucos e também não con-
fiáveis. De acordo com nossa revisão sistemática, muitas das abordagens existentes
que consideram esse cenário específico são métodos baseados em grafos. Como re-
sultado, esse trabalho tem como objetivo realizar uma extensa avaliação empírica dos
atuais algoritmos semissupervisionados baseados em grafos, ao mesmo tempo ten-
tando combinar as abordagens mais bem-sucedidas para construir um classificador
que seja robusto ao ruído de rótulo. Para fazer isso, comparamos a precisão dos clas-
sificadores na ocasião em que variamos a quantidade de dados rotulados e o ruído
de rótulos para muitas amostras diferentes. Também foram testados filtros baseados
em grafos, avaliando-se métricas como revocação, precisão, especificidade e medida
F1. Nossos resultados mostram que, se o conjunto de dados for consistente com nos-
sas suposições, poderemos detectar a maioria das instâncias ruidosas, embora isso se
torne mais difícil quando o número de rótulos disponíveis diminui.

Palavras-chave: Aprendizado semissupervisionado, ruído de rótulo, métodos basea-
dos em grafos, propagação de rótulos
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A B S T R A C T

As the years go by, the number of devices connected to the web keeps increasing, each
of them continuously producing data. In order to build a predictive model, a huge
volume of raw data is not necessarily enough by itself, as it must have some kind of
meaningful information related to the model’s output. Usually, we have to annotate
data with labels and use them to supervise a model that will be able to generalize
to unseen data. However, the labeling process can be tedious, long, costly, and error-
prone. It is often the case that most of our data is unlabeled. Semi-supervised learning
alleviates that by making strong assumptions about the relation between the labels
and the input data distribution. This paradigm has been successful in practice, but
most semi-supervised learning algorithms end up fully trusting the few available la-
bels. In real life, both humans and automated systems are prone to mistakes. Though
these mistakes may happen for different reasons, the result is the same: labels which
are not desirable, containing false information. We call this label noise, which has
been shown before to reduce classifier performance significantly. Algorithms must,
therefore, ideally be able to work with labels that are both few and also unreliable.
According to our systematic review, many of the existing approaches that consider
this particular scenario are graph-based methods. As a result, our work aims to per-
form an extensive empirical evaluation of existing graph-based semi-supervised algo-
rithms, while also trying to combine the most successful approaches in order to build
a classifier that is robust to label noise. To do that, we compare the accuracy of clas-
sifiers while varying the amount of labeled data and label noise for many different
samples. We test graph-based filters by evaluating metrics such as recall, precision,
specificity and F1 score.

Keywords: Semi-supervised learning, label noise, graph-based, label propagation
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Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate
it. And to make matters worse: complexity sells better.

— Edsger W. Dijkstra [25]
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1
I N T R O D U C T I O N

In the digital age, information is accumulating every second. Due to the overwhelm-
ing growth in the number of devices connected to the internet of things (IoT)[ 3, 75],
data consumption is ever-increasing, and it has become commonplace to have mas-
sive, complex, fast-growing datasets [26, 92]. The so-called “big data” is valuable
in guiding both scientists and industry professionals. It has been used to discover
needs, improve performance, automate decisions and innovate new business models
[88]. As a result, accessing the potential of these datasets is a top priority.

Collecting a huge amount of data is meaningless if one does not have the necessary
tools to understand it. Data analysis is a challenging task, and a thorough, large-scale
analysis needs to be carried out in a completely automated manner[ 45]. This is done
by making use of algorithms and concepts found within machine learning, which is the
sub�eld of Computer Science that aims to create a computer to learn some tasks from
experience [67]. It has been used extensively to extract meaningful knowledge from
data. A machine learning model uses a training datasetto select a hypothesis that is
consistent with it. There is always a trade-off: models that favor complex hypotheses
are expected to perform well with the provided data, but are also misled by random
errors and coincidental regularities [ 67]; simpler hypothesis generalizes better, but
may have lower accuracy by failing to explain the observed phenomena fully. In order
to learn something from the data, many of the machine learning approaches require
some form of annotation. These annotations hereinafter referred to as labels, are often
the attribute that we want to predict future data when considering a classi�cation or
regression task. In supervised learning, a hypothesis is selected based on the observed
association of labels to instances. Therefore the quantity and quality of labels should
determine how well the underlying data distribution can be approximated.

When labels are plenty enough, the observed input-output pairs encode enough
information to be learned so that a model can attain near-optimal performance. Un-
fortunately, in most real-life scenarios, the assumption that all labels are available is
not good enough [ 17]. Case in point, it is possible to obtain thousands of messages
each minute from a social network, but annotating all of them with a meaningful
label (as in, e.g., sentiment analysis) would be an insurmountable bottleneck. Other
times, like in the analysis of protein sequence data, a specialist would be required
and the labeling of each sample could take months.

Labeling data, be it by specialists or crowd-sourcing, often consumes too much time
and money. The process is also tedious and error-prone. As a result, it is desirable to
have good classi�cation results using as little labels as possible. Semi-Supervised Learn-
ing is a paradigm suited for when only a small subset of the data is labeled. The large
amounts of easy-to-obtain, unlabeled data serve to guide the labeled information by
modifying or prioritizing hypotheses [ 101]. Let us assume that the data is distributed
in input space such that clusters are easily identi�able. If labels are consistent within
each cluster, then we would only need one label per cluster, leading to a signi�cant
time-saving. This best-case scenario is too optimistic for most datasets. Alternatively,
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2 introduction

one can often enhance classi�er performance by adding a label consistency penalty
that is more intense at regions with a high density of data, as estimated by the un-
labeled examples. These and other semi-supervised approaches make assumptions
about how labels relate to the input distribution. When the datasets are consistent
with the assumptions, it is possible to obtain results close to a classi�er trained with
a fully labeled dataset, while requiring much less effort. This approach has been ap-
plied to a multitude of tasks, such as community detection [ 94], computer vision
[68], drug-protein interaction prediction [ 93], sentiment analysis [36] and word sense
disambiguation[ 96].

Although the traditional semi-supervised algorithms are designed to make the
most of the few labels they have available, they are usually not robust to label noise.
In the real world, humans get tired and automated systems get fooled. As such, it
would be wise not fully to trust the labeling process, and consider the labels to be
weak, i.e., unreliable to some extent. If the semi-supervised algorithm believes blindly
on the labels it is given, any labeling error could be propagated and affect classi�er
performance signi�cantly. By devising a semi-supervised learning approach that is
aware of the noise process, we should be able to identify suspicious labels and then
either correct, ignore or send them to be re-evaluated by a specialist.

More generally, noise can be de�ned as anything obscuring the relationship be-
tween the class and the features [38]. The three major sources of noise [38] are the
insuf�ciency of the description schema, corruption of the input features ( feature noise
or attribute noise), and misclassi�cation of training examples ( label noiseor class noise).
However, for real-world datasets, it is dif�cult to measure the insuf�ciency of the
description schema [104], and usually only the other two sources are considered. In
comparison with class noise, the attribute noise is both less harmful [ 104] and more
dif�cult to handle [ 74].

There are three ways of dealing with label noise. First, one could use label noise-
robust modelsthat do not explicitly handle label noise. They can only hope that the
usual over�tting avoidance mechanisms will also be useful to lessen the impact of
label noise. This may be a consequence, e.g., of the chosen loss function. It has been
shown that the squared error loss function is tolerant only to uniform noise [ 60].
The second type of approach would be the use of �lters to eliminate the noise from
the training set before using it for learning a classi�er. This can be done by either
removing instances with noisy labels or trying to correct them [ 86]. Thirdly, label
noise-tolerantmethods do consider label noise directly. In particular, supervised and
semi-supervised learning algorithms can be modi�ed to be tolerant to noise. A com-
prehensive label noise overview is given by [ 28].

The scarcity and the unreliability of labels have been individually well studied
[28, 102]. Despite this, there hasn't been much research that focuses on methods that
tackle both problems at once. The systematic review we conducted showed us that
most approaches that addressed this �t within the category of graph-based semi-
supervised algorithms. These methods represent each instance as a vertex in a graph,
and neighboring vertices are connected by edges weighted by some similarity met-
ric. This results in a smoothness criterion that discourages different predictions in
vertices with strong links to each other. We can then regularize our classi�er by re-
stricting ourselves to functions that are smooth with respect to the graph, and label
propagation allows us to spread the known labels to the unlabeled vertices through
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the graph structure. This prevalence of graph-based solutions is not surprising, as
those methods have distinct advantages: they are usually easy to implement, require
few if any tuning parameters, have interesting interpretations such as the Markov
random walk, and may be computed iteratively or solved by convex or quadratic
optimization. We found that there was a lack of a proper comparison between those
methods, as the results seldom shared a common dataset. Thus, this work provides
a thorough comparison of such graph-based methods, and the proposal of a novel
�lter that can identify and remove noisy labels, reducing the effect label noise has on
existing classi�ers.

1.1 objectives

The main objective of this work is to empirically evaluate, combine and modify exist-
ing graph-based semi-supervised approaches, using unlabeled instances to make the
most out of data whose labels are both few and unreliable.

This can be further divided into more speci�c objectives:

• Provide a systematic review, highlighting the existing approaches to identify
drawbacks and algorithms commonly employed within the scope of semi-supervised
learning subject to label noise.

• Empirically analyze different graph-based algorithms in order to measure their
accuracy in the presence of label noise and whether label noise-robust algo-
rithms exist. This includes varying the amount of labeled data, as well as the
amount of noise within those labels, using different seeds to determine the
sampling and noise process.

• Employ metrics such as precision, recall and F1 score to check if graph-based
semi-supervised label noise �lters are able to detect noisy instances while throw-
ing away little of the few available labels.

• Evaluate which assumptions must be made about a dataset in order to detect
noisy instances in a semi-supervised manner.

• Analyze the regularization framework and propose a modi�cation for it to be
less sensitive to label noise.

• Create a novel �ltering approach that builds on an existing graph-based SSL
classi�er.

1.2 hypotheses

This work assumes the following hypotheses:

• “If a dataset follows the SSL assumption, then whenever we exclude a single
label that is noisy from the label propagation process, it will likely be assigned
to another class with high con�dence.”

• “A linear classi�er based exclusively on the few smoothest eigenfunctions pro-
vides a prediction that is stable and robust to noise. ”
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• “Reducing the importance of label �tting for a given GSSL classi�er helps it
resist label noise.”

• “Under uniform label noise for a dataset with equally represented classes,
maintaining a constant ratio between class labels is bene�cial for a �ltering
approach.”

• “Giving the initial labels con�dence values based on the centrality (as given by
a degree matrix) of instances is undesirable if every example is equally suscep-
tible to label noise.”

1.3 overview

This thesis is divided as follows. Chapter 2 is divided into two main sections. The
�rst one introduces concepts related to this work, such as machine learning, semi-
supervised learning and label propagation. The second presents our systematic re-
view, including the research questions formulated, the algorithms used, the knowl-
edge bases queried, and the ensuing results. The proposal for this thesis is thoroughly
described in chapter 3. There, we introduce the contributions of this work. After pre-
senting the hypotheses based on our systematic review, we go over the choices we
made regarding the pipeline, chosen datasets, evaluation metrics, and con�guration
of experiments. We also present and interpret the results of our empirical evaluations.
Finally, chapter 4 summarizes our �ndings with a few concluding remarks.



2
B I B L I O G R A P H Y R E V I E W

The following chapter is divided into two main sections. To understand graph-based
semi-supervised learning subject to noise, we need to present some theoretical back-
ground and outline some necessary concepts. This can be found in Section2.1. The
second chunk of this chapter, Section 2.2, is devoted to the actual systematic review,
which is much more focused than the previous section. This systematic review an-
swers some research questions about semi-supervised learning with label noise by
querying many knowledge bases.

2.1 theoretical background

This section provides some background knowledge and fundamental concepts that
are necessary to understand the methods found in our systematic review. First, we
introduce the �eld of machine learning (Section 2.1.1), which concerns itself with
making computers learn from experience. Next, we learn about semi-supervised
learning, a paradigm within machine learning that combines labeled and unlabeled
data (Section 2.1.2). The focus of this dissertation lies on the graph-based subset of
semi-supervised learning algorithms (see Section 2.1.4). However, for the sake of com-
pleteness, we also delve brie�y into the other families of semi-supervised algorithms
(Section 2.1.3). We also touch upon label noise, including consequences and possible
ways to deal with it (Section 2.1.5).

2.1.1 Machine learning

Machine learningis the sub�eld of Computer Science that aims to make a computer
learn from data. This is de�ned formally in [ 67], which states that

“A computer program is said to learn from experience E with respect to
some class of tasksT and performance measure P, if its performance at
tasks in T, as measured byP, improves with experience E”.

Generalization is a key concept in machine learning. A machine learning model uses
a training datasetto learn some hypothesis, hopefully general enough to be applied
to new instances. It is said that the model suffers from over�tting when a learned
hypothesis �ts the data used to train the model perfectly, but performs signi�cantly
worse on new data. This may happen when the model only remembers the desired
output for the training dataset, instead of learning a more general rule. If a model is
not powerful enough, it could suffer from under�tting , which occurs when errors are
high even on the training dataset. A successful application of machine learning must
avoid both these problems.
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6 bibliography review

Machine learning always uses some representation of the data. Usually, this repre-
sentation comes as a collection ofn vectors with d dimensions:

X = fx1 , : : : , xn g (1)

Each vector is called an instance, and each of its components an attribute, or feature.
It is assumed that all instances are drawn independently and identically distributed
from some probability distribution P(x). Most often, the objective of a model is to
predict some attribute for novel instances. This attribute is hereafter referred to as a
labelfor each instance. In a classi�cationtask, the label may only have one of �nitely
possible values, each called aclass.

There are different levels of supervision in machine learning. Unsupervised learning
does not use any label at all. As such, it is not well-suited for classi�cation. How-
ever, unlabeled data can still be useful on its own for other tasks, such as clustering
instances together or estimating the density P(x). At the other end, the supervised
learningparadigm assumes all instances in X have their respective labels:

Y = fy1 , : : : , yn g (2)

For any classi�cation task, we'll assume that label comes from the set

C = f1, : : : , cg (3)

We will hereafter denote by c the number of classes, andl the number of labels. The
use of the (x i , y i ) input/output pairs is analogous to a teacher showing the expected
answer to a certain problem. When the goal is to build a classi�er, it is usually easier
to learn the conditional distribution P(y jx) directly using those pairs.

2.1.2 Semi-supervised learning de�nition

Semi-Supervised learning(hereafter SSL)is a paradigm that addresses the situation
where only the labels of a few instances are available, that is

Y = fy1 , : : : , y l g, l � n = l + u (4)

The input instances are divided accordingly:

X = Xl [ Xu = fx1 , : : : , x l g[ fx( l + 1) , : : : , x( l + u ) g (5)

As in supervised learning, a classi�er is sought after. On the other hand, the prob-
ability density of the input plays a big role, much like in unsupervised learning. The
key principle behind any SSL classi�er is that the data distribution P(x) can tell us
something about the conditional distribution of the labels, i.e. P(y jx). This notion of
usefulness can be made more precise. To do so, we look at a very important assump-
tion, which is employed by any supervised learning algorithm.
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Assumption 2.1.1 – Smoothness assumption for supervised learning
If two instances x1 , x2 are close, then so should be the corresponding outputs y1 ,
y2 [17].

Figure 1 illustrates the ideal scenario for SSL. The data is separated in two spirals
(or, more generally, two manifolds). Our prior intuition is then to expect a greater
label consistency within each manifold. It is important to note that instances in
the same manifold are connected by a path passing through a dense region of the
data distribution. Therefore, it makes sense that the desired classi�er should penal-
ize changes of the output within high-density regions. This idea is appealing, as we
usually do not have perfect information about the manifold structure beforehand, but
may use the unlabeled data to approximate p(x).

(a) Ground truth (b) Observed labels

Figure 1: An ideal scenario for semi-supervised learning

Assumption 2.1.2 – Smoothness assumption for semi-supervised learning
If two instances x1 , x2 in a high-density region are close, then so should be the
corresponding outputs y1 , y2 [17].

Most of the time, this assumption is reasonable in real-life problems. When it isn't,
there are ways around it. For example, whenever we are working with a textual
dataset, it could be that sentences mean the same thing but use different words to
express it. If we choose a bag-of-words representation, these sentences could quite
possibly be very far from each other in input space. Fortunately, algorithms such as
word2vec[65] can derive an alternative, semantic-based representation based on word
context, wherein the SSL smoothness assumption is expected to be satis�ed. If we can
�nd any such transformation of the input space, then SSL is viable.

As a special case of the smoothness assumption, we can formulate the following
two equivalent assumptions.
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Assumption 2.1.3 – Cluster assumption
If instances are in the same cluster, they are likely to be of the same class [17].

Assumption 2.1.4 – Low-density separation
The decision boundary should lie in a low-density region [ 17].

Although they are equivalent, different algorithms have been proposed whose
point of view focuses on either the cluster themselves, or the margin separating them.
There are two distinct ways to perform SSL: induction and transduction. The objec-
tive of inductive SSL algorithms is to learn a function that provides labels for novel
instances that were not in the training set. On the other hand, transductive algorithms
cannot handle unseen data, and thus the (unlabeled) test samples are included in the
training set. Therefore, transductive algorithms work with extra unlabeled data and
a simpler set of hypothesis to choose from (necessarily �nite for a classi�cation task).

2.1.3 Taxonomy of SSL outside of graph-based approaches

Even though this work focuses on graph-based SSL methods, it must be noted that
there exist many valid and different approaches to SSL. For the sake of completeness,
we discuss them here.

2.1.3.1 Generative models

Generative models were one of most common approaches to SSL in its early days. A
generative approach requires us to explicitly choose a family of models p(x jy, � ) and
priors p(y). That is, we know the form the distribution takes, but not the parameter
setting. The usual choice is to havep(x jy, � ) as a mixture model, such as a mixture of
gaussians, and a prior distribution for p(y) represented by the vector of random vari-
ables� . This vector has length c, which is the number of classes. Through Bayes' Rule,
one can derive the expression for p(y j x) and then proceed via maximum likelihood
estimation (MLE). There's an issue, however. One needs to estimate the parameters
� = � [ � of the mixture components so that the labels may be assigned to each
instance. At the same time, in order to estimate � , we need to know the labels of
each instance! This sort of mutual dependence makes it hard to �nd a straightfor-
ward solution. This kind of problem is famously solved via Expectation-Maximization
(EM) [23]. EM starts out with some estimate of model parameters � (e.g. the mean
and variance of two gaussians describing the data) and also of the prior distribution
� . The estimate may be completely random, or from some heuristic. From the initial
estimate, locally optimal parameters may be found via an iterative process, consist-
ing of two steps. At iteration t , the E-step estimates the expectation of the joint log
likelihood of labeled and unlabeled data:

� t (� , � ) =
lX

i = 1

log � y i p(x i jy i , � ) +
l + uX

i = l + 1

log
cX

y = 1

� y p(x i jy, � ) (6)

In this equation, y i 2 f1 : : : cgdenotes the label assigned to the i-th instance. with re-
spect to the hidden variables (in this case, binary variables representing label assign-
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ment). This depends on � t , the current belief for the mixture component parameters.
The M-step obtains � t + 1 by taking the values that maximize this expectation.

Even though EM algorithm has a strong theoretical foundation and allows for
some interesting analysis, it is somewhat limited in its applicability. Many real-world
datasets follow complex distributions that are hard to model, and thus the results
turn out to be suboptimal. Another drawback is that the EM algorithm in most cases
only guarantees a locally optimal solution. This can be mitigated by employing a
version of EM that makes use of deterministic annealing [ 87].

2.1.3.2 Low-density separation methods

Low-density separation methods aim to push away the decision boundary from unla-
beled instances. TheTransductive Support Vector Machine (TSVM)[42] makes use of the
same principles as Support Vector Machines, but also considers the unlabeled data.
Recall that the objective of a support vector machine is to �nd an optimal hyperplane
separating the two classes, speci�cally the one that maximizes the margin. The hyper-
plane is represented by a vector w , which is orthogonal to it, and a bias b. Assuming
that every label y i is either 1 or - 1 depending on the class, the SVM goal is

minimize V(w ,b) =
1
2

w � w =
1
2

jjw jj2 (objective function) ( 7)

subject to y i (xi � w + b) > 1, 8i 2 f1 : : : lg (8)

The transductive version of the support vector machine also accounts for the unla-
beled test data, constraining the candidate solutions further:

minimize V(w ,b, y l + 1 , : : : , yn ) =
1
2

w � w =
1
2

jjw jj2 (objective function) ( 9)

subject to y i (xi � w + b) > 1, 8i 2 f1 : : : lg (10)

y i (xi � w + b) > 1, 8i 2 fl + 1 : : : ng (11)

y i 2 f- 1,+ 1g,8i 2 fl + 1 : : : ng (12)

If the classes are not linearly separable, we must apply some transformation to
the input space so that they can be. The kernel trick allows us to implicitly de�ne
this hyperplane by replacing the each dot product x i � w with a user-de�ned kernel
function k(x i ,w ). Also, slack variablesmay be introduced to relax the separability
constraint. Whereas the SVM cost function may be solved via convex minimization,
the TSVM variant may not. This is due to the constraint 12, which requires the labels
to be one of two possible integers. Consequently, much like in EM, we'll have to
content ourselves with a solution that is only locally optimal.

Another possibility is to add a regularization term to a supervised classi�er. En-
tropy minimization [34] de�nes an a priori probability that favors separation between
classes. Assume that, for each classm, the con�dence that our classi�er assigns this
class to the i-th instance is given by F(m jxi ). Then we have the following regulariza-
tion term:

Hemp (y j x) = -
1
u

nX

i = l + 1

X

m 2 C

F(m jxi ) ln F (m jxi ) (13)
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where, as before,l is the amount of labeled instances, and u the amount of unlabeled
instances. This encourages con�dent predictions in high-density regions.

Information regularization[82]) is yet another approach, one that presents a term
of regularization that favors consistent decisions in each region of space. Let R be
the set of regions. Those regions can be determined by using components of an � -
neighborhood graph, among other ways. The proposed regularizer is based on the
Kullback-Leibler (KL) divergence between the predicted classi�cation F(y j x), and
whichever classi�cation is most consistent with each region R, namely F(y j R) =P

x 2 R P(x jR)F(y jx). Here, P(x jR) can be chosen to be the reciprocal of the number of
instances in region R. This leads to a criterion that measures smoothness with respect
to the regions in R:

IR(x; y) =
X

x 2 R

P(x jR)
X

y 2 C

F(y jx) log
F(y jx)
F(y jR)

(14)

For the transductive setting, one should �nd the �nite number of parameters fF(xi j
y j )gy j 2 C,i 2 1:::N that minimizes:

 
lX

i = 1

log F(y i jxi )

!

- �
X

R2 R

 (R)IR(x; y) (15)

In this equation, the � parameter controls the intensity of the regularization, and  (R)
dictates how much in�uence does each region have in this regularization. This can
be accomplished via a local propagation algorithm [ 20].

2.1.3.3 Deep semi-supervised learning

During the last decade, deep learning methods have become the center of much
attention in the machine learning community [ 50]. There are solid reasons behind
this rise in popularity. Designing neural networks with many hidden layers can be
done in a very �exible way, so much so that they are usually the popular choice every
time one needs to solve new, complex problems. The deep learning paradigm is also
well suited for huge datasets, as they process data in batches and can be executed
in a distributed setting. Their ability to learn features from the data has made it so
that deep neural networks are applied to all kinds of data, including images, video,
speech and textual data [32].

Naturally, many of the recent approaches in SSL research have tried to adapt those
deep neural networks to make the most of labeled and unlabeled data. Next, we
detail two of the state-of-the-art approaches for deep semi-supervised learning. A
more detailed overview of many deep SSL methods can be found in [ 79].

consistency regularization As mentioned in Section 2.1.2, the semi-supervised
smoothness assumption is at the core of SSL algorithms. Unsurprisingly, this assump-
tion has been implemented direcly within the �exible deep learning framework. More
speci�cally, those algorithms favor a neural net whose output is expected to stay con-
stant after a small perturbation x ! x0, where x 2 XU is a sample from the input
distribution. This can be accomplished by minimizing some distance d(f � (x), f � (x0) )
between the predicted output for x and x0.
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Although the minimization of the distance between predictions can be implemented
straightforwardly in the usual deep learning software libraries, one must �rst �nd a
suitable way to createthis perturbation in the �rst place. For example, the

Q
-model

algorithm introduced in [ 48] uses dropout to make its neural network have stochas-
tic outputs. This technique randomly disables some connections within the network,
making it possible for consecutive evaluations of the same input to have two differ-
ent outputs. In addition, data augmentationis used for further regularization. This is
best exempli�ed when we are dealing with image inputs. What data augmentation
does is to randomly �ip the original image x, add gaussian noise, or maybe perform
a small translation/rotation. For almost any reasonable application, this augmented
image, x0, should carry the same semantic meaning (i.e. the label) of the original im-
age. The chosen consistency regularization is the squared distance betweenf � (x) and
f � (x0), and the intensity of regularization, denoted by w(t ), is made to depend on the
number of iterations performed. The problem with the

Q
-model is that the training

targets (i.e. f � (x)) is based on a single evaluation of the network, which could very
well be unstable. The Temporal Ensemblingapproach [48] addresses this by accumulat-
ing the output for each instance over all iterations, and regularizing the augmented
input by using the distance between this weighted average and f � (x0). Another op-
tion is to take a weighted average over the neural network weights instead of the
output, as in the mean teacheralgorithm [ 85].

One �nal notable example of consistency regularization is Virtual Adversarial
Training (VAT) [ 68], which aims to make the predictor robust against random and
local perturbation. What VAT essentially does is to make the output distribution
isotropically smooth around each instance of the input. One of the key differences
that makes VAT stand out is that it is made to be robust to adversarialperturbation.
This adversarial perturbation r adv can be interpreted as a small perturbation in the
most anisotropic direction, i.e. in the direction that most deviates the current inferred
distribution from the status quo. The adversarial perturbation can be computed as

r � N

 

0,
�

p
dim (x)

!

g = r r d(f � (x), f � (x) + r )

r adv = �
g

 g

 (16)

where � and � are hyperparameters that need to be tuned by the user. The VAT
algorithm then minimizes a criterion that balances the supervised loss with the regu-
larization term d(f � (x), f � (x + r adv )) .

generative adversarial networks Generative adversarial networks [ 33] (GANs)
is a type of generative model (Section 2.1.3.1). As such, they model the input distribu-
tion p(x) directly. This is a harder task to accomplish than estimating the conditional
distribution p(y j x), which is what most classi�ers do. As a result, generative adver-
sarial networks require a signi�cant amount of unlabeled data. On the other hand,
when this data is indeed available, it can produce state-of-the-art results. Unlike older
generative models such as the mixture of gaussians, GANs use the architecture and
tools related to deep neural networks to model a very complex function, with poten-
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tially tens of thousands of parameters. Any GAN is expected to have at least two
components: a generator G(z), and a discriminator D(x). The main goal of the dis-
criminator is to determine whether the input it receives was sampled from the true
distribution p(x), or if was produced by G. More speci�cally, the output of D re�ects
how much the discriminator trusts that the input it received was sampled from p(x).
The generator G acts as an opposing force to the discriminator. It receives an input z
that was sampled from a simple, relatively low-dimensional latent space. By evaluat-
ing this input, it should output a sample that looks like it belongs to p(x). In other
words, all of this can be interpreted as a zero-sum game, where the generator is win-
ning exactly when the discriminator D cannot properly distinguish real samples from
those generated byG(z). What is ultimately sought after is the equilibrium described
by the following minimax equation:

min
G

max
D

�
Ex � p U ( x ) [log(D(x))] + Ez � p z log (1 - D(G(z)))]

�
(17)

deep learning and the future of ssl research With the recent develop-
ment of deep learning adaptations of the SSL paradigm, one might ask whether we
can safely abandon all previous forms of SSL. Deep SSL certainly looks promising,
and has already delivered state-of-the-art performances for complex problems. In
spite of that, those techniques are not yet the be-all and end-all of SSL. Let us take
the generative neural networks, for one. As mentioned previously, they need a lot
more of unlabeled data in order to accomplish the task of modelling p(x). Moreover,
it is not trivial to �nd the equilibrium described in Equation 17. The discriminator
and generator are usually jointly trained via the backpropagation algorithm. What
it is trying to achieve isn't to minimize the discriminator and generator functions
themselves, but something else. This fact makes it hard to achieve stability, leading
to alternative formulations [ 98] . In addition, deep neural networks are closely linked
to their architecture, which is usually more intricate than the graphs used by graph-
based semi-supervised learning. The question that one might ask is, how much of the
performance gains of a particular deep SSL method is due to the chosen architecture
itself? One study [72] considered a setting where all deep SSL algorithms shared simi-
lar, if not equal architecture. As expected, the deep SSL methods were able to improve
accuracy when compared to the supervised baseline based on the same architecture.
However, by choosing a supervised model with a carefully chosen architecture, reg-
ularization, data augmentation and training scheme, the authors were able to get
competitive results with an alternative that did not make use of any unlabeled data.
As one last observation, we believe that these deep SSL approaches usually require
a more sophisticated setup, and are unlikely to be found as off-the-shelf solutions in
a machine learning programming library. For all the reasons mentioned above, there
is reason to believe that, even if deep SSL methods have shown potential and may be
widely spread in the future, this does not invalidate the previous approaches. As a
matter of fact, every underlying idea that came before has been or will be incorpo-
rated into deep learning, and the “deep” implementation of those ideas will be used
if the situation calls for it.
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2.1.4 Graph-based semi-supervised learning

Graph-based methods have been a staple of semi-supervised learning for some time.
As of 2019, it is worth noting that two such methods were the representatives of semi-
supervised learning included in sklearn[73], a popular machine learning package for
the Python programming language. Many of the graph-based semi-supervised meth-
ods may be formulated as a convex optimization method. This means that they are
guaranteed to converge to the global optimum, as opposed to other semi-supervised
algorithms. They also do not require to comply with a parameterized decision rule.
Some of the resulting algorithms follow a simple iteration rule, being easy to imple-
ment. Finally, they may also be interpreted in different views, such as a random walk,
a minimization of a quadratic criterion, or even as the solution to the heat Equation
[103].

The three main steps taken in graph-based semi-supervised algorithms [41] are
presented in Figure 2. First, given a dataset X in attribute-value format, we need to
calculate similarity among the examples; then, a graph construction method needs to
be employed in order to generate a graph G; �nally, this information is provided to a
classi�er, so that it may return the predicted labels for all instances. This classi�er may
use, e.g., a label propagation algorithm to spread the known labels to the unlabeled
examples.

Figure 2: Steps to apply graph-based SSL.

2.1.4.1 Similarity calculation

The purpose of a measure of similarity is to compare two lists of numbers (i.e. vec-
tors), and compute a single number which evaluates their similarity. The basis of
many measures of similarity is Euclidean distance. In graph-based SSL approaches
the most commonly used similarity measure is the radial basis function kernel, also
known as the RBF kernel, with a parameter � that controls the sensitivity with re-
spect to the Euclidean distance.

w(i , j ) = e-


 x i - x j


 2

2� 2 (18)

2.1.4.2 Graph construction

A weighted graph emerges as a natural approximation to the intrinsic geometric
structure of the data. Vertices are the union of labeled instances Xl = fx1, : : : , xl gand
unlabeled instances Xu = fx l + 1 , : : : , x l + u g. It can be represented asG = ( V,E,W ) ,
where V = fv1 , v2 , : : : , vn gis a set of n vertices and E = fe1 , e2 , : : : , em gis a set of m
edges connecting pair of vertices vi and vj . The edges can have weights represented
by the n � n af�nity matrix W , that measures similarity between data instances.
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The most common methods for graph construction are: 1) the k-nearest neighbor
graph in which two vertices vi and vj are connected by an edge, if the distance
between vi and vj is among the k-th smallest distances from vi to other objects from
G. 2) � -neighbors where two vertices whose distance is within a pre-de�ned value �
are connected.

Many other schemes for graph construction have been proposed [10, 9]; In [ 9],
the advisor of this project proposed the RGCLI method which considers the labeled
data to establish connections in the SSL domain. This was the �rst approach that
considers the labels in graph construction, where the sum of the distances between
vi and its mutual neighbors and from these mutual neighbors to a labeled instance
vl is calculated.

2.1.4.3 Theoretical basis of graph-based semi-supervised learning

Graph-based SSL makes use of the assumptions de�ned in Section 2.1.2. However,
there is yet another fundamental assumption that is at the heart of graph-based SSL:

Assumption 2.1.5 – Manifold assumption
The (high-dimensional) data lie (roughly) on a low-dimensional manifold. [ 17].

A manifold, in the mathematical sense, is de�ned as any Hausdorff, connected,
topological space which is locally homeomorphic to the Euclidean of dimension d.
For more clari�cation on each of these concepts, refer to [ 49]. The most relevant part
for SSL is that this homeomorphism, which is some continuous mapping from the
manifold to Rd with an also continuous inverse mapping, is required so that the topo-
logical properties of euclidean space are preserved. The manifold assumption simply
states that d is small enough for our purposes. The desire for a representation in a
low-dimensional euclidean space is justi�ed. It is a very known fact that the distance
between neighbors is dominated by a large number of irrelevant attributes when
as the number of dimensions increase [67]. The manifold assumption avoids this
problem, as we only have to worry about this low-dimensional manifold the data is
supported on. How reasonable is this assumption? For almost any high-dimensional
dataset we use in practice, the input data we feed to the model is very wasteful with
respect to the number of dimensions used. More concretely, consider the task of digit
recognition. Any image consisting of a single digit “ 1” could be accurately described
by a few attributes: translation, rotation, thickness, scale, and whether it has a small
line at the bottom. Some embedding of this low-dimensional description has to be
present within the space of provided images, which may be arbitrarily large depend-
ing on the chosen resolution. In general, this assumption works well for any signal
that comes from a physical process. For example, speech signals are produced by the
vocal tract, which can be approximated by a collection of tubes. Graph-based SSL
shines when the data distribution satis�es the manifold assumption, and different
low-dimensional manifolds correspond to different classes. Consider Figure 3. Here,
there are two curves (manifolds) in space, each corresponding to a class. Notably,
instances relatively close to each other in euclidean distance may belong to different
manifolds.

Whenever that is the case, a new metric is necessary. We take thegeodesic distance
between instances. In other words, we only care about paths that traverse through
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(a) Euclidean distance (b) Geodesic distance

Figure 3: Using the geodesic distance incorporates unlabeled data as context when determin-
ing how close two instances are.

the manifold. The reason graphs are so useful is that they capture the underlying
geometric structure of the data. When the unlabeled data is large enough, the paths
induced by a graph are a good approximation.

Ultimately, the goal is to have a classi�er function that is smooth with respect to the
manifold. Assume that the data lies on a submanifold M . The crucial operator when
it comes to measuring manifold smoothness is the Laplace-Beltrami operator:

�f def= div (r f ) (19)

An important fact from multivariable calculus is that - div and r are formally adjoint
operators. Thus, for any vector �eld X:

Z

M



X, r f

�
dv =

Z

M
div (X)f dv (20)

In particular, when X = r , we get

S(f ) =
Z

M


 r f


 2 dv =

Z

M
� (f )f dv =



� (f ), f

�
L 2 ( M ) (21)

This means that, instead of measuring overall manifold smoothness of f by integrat-

ing the measure of local smoothness

 r f


 2 over the whole manifold, we may alter-

natively take the (in�nite-dimensional) inner product between � (f ) and f in L2(M )
Hilbert space.

There are a few more notable things about the Laplace-Beltrami operator. First, it
is a self-adjoint, positive semide�nite operator. Additionally, it can be shown that
the eigenfunctions of the Laplace-Beltrami operator provide a basis for all functions
in that same Hilbert space. Consequently, every function f has eigendecomposition
f =

P
i � i ei , where each eigenfunction ei has a corresponding eigenvalue � i . Con-
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stant functions have zero eigenvalues, and the remaining are strictly positive. Conse-
quently, the smoothness criterion above is simpli�ed to

S(f ) =


� (f ), f

�
L 2 ( M ) =


 X

i

� i � (ei ),
X

i

� i ei
�

L 2 ( M ) =
X

i

� i � 2
i (22)

The key observation here is that functions are smooth with respect to the manifold,
if and only if they are a linear combination whose weights favour mostly eigenfunc-
tions that have small eigenvalues. That is, they should have � i close (or, preferably,
equal) to zero for eigenfunctions with large eigenvalue � i . We can therefore force
smoothness by restricting our search to functions that are linear combinations of the
eigenfunctions with the p smallest eigenvalues, for some �xed p. Although the dis-
cussion above provides insight on how smoothness on manifolds may be de�ned, we
still have to �nd a way to ef�ciently compute a solution. This is where the graph
approximation is useful, as it allows for the discretization of the problem. We do not
have access to the true gradient and Laplace-Beltrami operators, but we may use the
graph structure to approximate them. Given the af�nity matrix of the graph (as de-
�ned in Section 2.1.4.2), we consider the following measure of local smoothness at a
given vertex v:

eSf (v) =
X

j :( v ,j ) 2 E

W vj (f (v) - f (j ))2 (23)

The analogue measure for overall manifold smoothness (as in Equation 21) is

eS(f ) =
X

v2 V

eSf (v) =
X

i 2 V

X

j :( i ,j ) 2 E

W ij (f (i ) - f (j ))2 (24)

Perhaps one of the most pivotal elements of graph-based SSL, thegraph Laplacianis
de�ned as

L = D - W (25)

where D , called the degree matrix, is a diagonal matrix with entries

D ii =
X

j :( i ,j ) 2 E

W ij (26)

The graph Laplacian has the same properties as what you'd expect from a discrete
analogue of the Laplacian-Beltrami operator. Namely, it satis�es

eS(f ) = f > Lf (27)

and its eigendecomposition provides a basis for the functions on the graph. Fortu-
nately, obtaining the smaller eigenvalues of the graph Laplacian matrix is a well-
studied problem, being implemented in most programming libraries for matrix ma-
nipulation. Note that, as a result of Equation 23, vertices with many similar neighbors
are the ones that in�uence the overall smoothness criterion the most. The way to take
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care of this is to perform normalization, leading to an alternate local smoothness
criterion:

eSnorm f (v) =
X

j :( v ,j ) 2 E

 s
W vj

D vv
f (v) -

s
W vj

D jj
f (j )

! 2

(28)

This decision in turn leads to a new Laplacian

L = I - D - 1
2 WD - 1

2 = D - 1
2 L- 1

2 D - 1
2 (29)

where I is the identity matrix. Most of the graph-based SSL algorithms will make
use of the unnormalized graph LaplacianL, or the normalized graph LaplacianL in some
capacity.

The expression f > Lf is a cost function related to the smoothness of f with respect
to the graph, given that the output of f is a single scalar. Now consider the case
where, instead of f , we have a classi�cation matrix F such that Fij is proportional to
the belief that instance i should be assigned to classj . In this case, we must apply the
graph laplacian to each column individually. The adapted smoothness cost is:

eS(F) =
cX

k = 1

(F[: ,k ] )L(F[: ,k ] )
> = tr (F> LF) (30)

where tr is the trace of the matrix. The same goes for the other graph Laplacian.

2.1.4.4 Label Propagation

Given a dataset X = fXl [ Xu grepresented as a graph G = ( V,E,W ), the inference
task is to diffuse the known labels to the unlabeled vertices. The matrix Y is given,
representing the initial labeling. Throughout this work, Y is de�ned to be

Yij =

8
<

:
1, if i < l and the label of the i-th instance belongs to class j

0, otherwise
(31)

Several methods for propagating labels have been proposed. Many label propagation
algorithms iteratively compute a distribution of labels on the vertices of the graph to
maximize the consistency with the clustering and manifold assumption. Following,
we list some of well-known label propagation algorithms.

gaussian fields and harmonic functions One of the simplest label prop-
agation algorithms is due to a 2002paper by Zhu et al. [ 100]. Let bY( 0) = Y = [ Yl ,Yu ]>

be the initial label matrix. Label propagation occurs via the iteration of the following:

bY( t + 1) = fW bY( t ) ; bY( t + 1)
l = Yl (32)

Here, fW is the row-normalized weight matrix, de�ned as fW = D - 1W . Under
the random walk point of view, we normalize edges to get transition probabili-
ties, but change it so that labeled instances act as sink states. Computing the limit
of the con�guration of this random walk is thus the same as �guring out which
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class is likely reached �rst. This random walk has the advantage of not requiring
some parameter t which controls the number of steps taken, such as in [ 81]. More-
over, it can be shown that this algorithm imposes Fl = Yl and then minimizes the
smoothness criterion F> LF. One can obtain the equilibrium in closed form, namely
Fu = ( I - fW uu )- 1 fW ul Yl .

A follow-up paper [ 103] builds upon the initial �ndings. It shows that the derived
solution is harmonic, which means that the value of the classifying function f at each
unlabeled instance is a weighted average of its neighbors at unlabeled points:

(� F)u = 0 (33)

Class mass normalizationprovides a method to incorporate the estimated frequency
of each class into the �nal prediction. Furthermore, it is shown that it is possible to
combine this method with any supervised classi�er.

local and global consistency The Local and Global Consistency algorithm
(LGC) [99] is one of the most widely known graph-based semi-supervised algorithms.
The cost being minimized is as follows:

Q(F) =
1
2

�
tr (F> LF) + �


 F- Y


 2

�
(34)

This approach uses the unnormalized graph Laplacian L (Equation 29). The parame-
ter � 2 (0,1 ) controls the trade-off between �tting labels versus enforcing the graph
smoothness by minimizing local differences. By taking the derivative of Q with re-
spect to F, one has

@Q
@F

=
1
2

@tr(F> LF)
@F

+
1
2

�
@


 F- Y


 2

@F
= LF+ � (F- Y)

= ( I - S)F+ � F- � Y

= (( 1+ � )I - S)F- � Y (35)

where S = D - 1
2 WD - 1

2 = I - L . By dividing the above by ( 1 + � ), we observe that
this derivative is zero exactly when

(I - � S)F = � Y (36)

with

� =
1

1+ �
2 (0,1) (37)

and

� = 1 - � (38)



2.1 theoretical background 19

The matrix (I - � S) is positive-de�nite. To verify this, let f be any column vector of
size n that is not null. Then,

f > (I - � S)f = f > 1
1+ �

(L + � I )f

=
1

1+ �

�
f > L f + �f > f

�
(39)

In this expression, 1
1+ � and � are positive constants. The �rst term is non-negative

due to the positive semi-de�niteness of L , and the second term has to be positive
for any non-null f . Any positive-de�nite matrix is invertible, so the optimal F can be
obtained as

F = � (I - � S)- 1Y (40)

We hereafter refer to (I - �S )- 1 as the propagation matrix P. Each entry Pij repre-
sents the amount of label information from Xj that Xi inherits. It can be shown that
the inverse is a result of a diffusion process, which is calculated via iteration:

F(0) = Y

F(t + 1) = � SF(t ) + ( 1- � )Y (41)

Moreover, it can be shown that the closed expression for F at any iteration is

F(t ) = ( � S)t - 1Y + ( 1 - � )
t - 1X

i = 0

(� S) i Y (42)

S is similar to D - 1W, whose eigenvalues are always in the range [- 1,1]. This ensures
the �rst term vanishes as t grows larger, whereas the second term converges to PY.
Consequently, P can be characterized as

P = ( 1 - � ) lim
t ! 1

tX

i = 0

(� S) i

= ( 1 - � ) lim
t ! 1

tX

i = 0

� i D
1
2 (D - 1W ) i D - 1

2 (43)

The transition probability matrix D - 1 W makes it so we can interpret the process
as a random walk. Let us imagine a particle walking through the graph according
to the transition matrix. Assume it began at a labeled vertex va , and at step i it
reaches a labeled vertex vb , initially labeled with class k. When this happens, va

receives a con�dence boost to class k. This boost is proportional to � i , but also to
the ratio between

p
D aa and

p
D bb . This gives us a good intuition as to the role of

� . More precisely, the contribution of vertices found later in the random walk decays
exponentially according to � i .

adsorption The Adsorption algorithm by Baluja et al. [ 5] introduces a random
walk that allows different types of actions. The labeled instances do not act purely
as absorbing states anymore. During the random walk, three things might occur. The
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�rst one is transitioning to the next instance, chosen randomly by the distribution of
the stochastic matrix. However, there is a chance that the random walk is abandoned
altogether. This puts less emphasis on vertices with high degree, e.g. viral videos
in the use case of video suggestion. Finally, each labeled node has aninjection prob-
ability which determines the chance of �nishing the walk. In the use case of video
suggestion, higher rated videos have greater injection probability.

The weighted averaging of neighbor beliefs is yet another view of SSL graph-based
algorithms. Let pinj

v , pabnd
v , pcont

v be the respective probabilities for injecting, aban-
doning and continuing for a given vertex v. Then it suf�ces to repeatedly calculate
the following for all vertices v, until convergence:

bYv = pinj
v � Yv + pcont

v �
X

v0:( v ,v0) 2 E

fW vv 0bYv + pabnd
v � 0m (44)

One can say that there are three forces at play. The higher the probability of continu-
ing the walk, the more we expect the outcome of the random walk of nearby vertices
to turn out similar. On the other hand, high injection probabilty means that the orig-
inal label information is received as soon as the walk reaches some labeled instance.
Finally, the abandon probability makes it so little label information is sent to far away
vertices. The iterative algorithm simply averages out the outcomes.

laplacian eigenmaps The Laplacian eigenmaps (LE) algorithm, proposed by
Belkin et. al. [7], uses a different approach than previous algorithms. Namely, the
smoothness criterion is enforced by restricting the solution to a combination of smooth
eigenfunctions. The LE algorithm consists of an unsupervised step and a supervised
step. In the �rst step, we consider the minimization of the smoothness criterion bY> LbY
only. However, this poses some problems, as a constant function would be a triv-
ial solution. When dealing with manifolds, the eigendecomposition of the Laplace-
Beltrami operator gives rise to a basis of eigenfunctions. Each eigenfunction ej is a
solution to the generalized eigenvector problem

Lf j = � j D ej (45)

where L is the graph Laplacian, D the degree matrix, and � j the eigenvalue corre-
sponding to f j . As discussed in Section 2.1.4.3, smaller eigenvalues correspond to
smoother eigenfunctions with respect to the manifold. In the discrete case, decom-
posing the graph Laplacian yields the values of such functions at each point. Having
that in mind, the �rst step consists of obtaining the p smoothest eigenfunctions. The
second step then uses the labeled information to derive the best coef�cients a1 , : : : , ap

to be used as a label-predicting linear combination of smooth eigenfunctions. This is
achieved by minimizing the error

Err (a1 , : : : , ap ) =
lX

i = 1

0

@Yi -
pX

j = 1

a j ej (i )

1

A

2

(46)
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2.1.5 Label noise

The concept of noisecan be described in many ways. Some have equated it to to a
non-systematic error [74]. Others have de�ned it as a phenomenon in data which is
not of interest to the analyst, but acts as a hindrance to data analysis [16]. Perhaps
the most encompassing de�nition is due to [ 38], which de�nes noise to be “anything
which obscures the relationship between description and class”. Possible causes of
label noise include imperfect or insuf�cient evidence, misleading patterns, perceptual
errors or even signal interference. Potential sources of label noise include four main
classes [28]: �rst, the information that is provided to the expert may be insuf�cient to
perform reliable labeling. Second, errors can occur in the expert labeling itself. This
includes both humans and automated classi�cation devices. Thirdly, it may come
from the subjectiveness of the labeling task, as in medical applications. Finally, label
noise can also simply result from data encoding or communication problems.

Classi�cation methods predict the class of new examples using a model inferred
from training data, where each example has a label associated that corresponds to the
true class of the example. However, the dataset or part of it can be exposed to a noise
process that affects the labels before being presented to the learning algorithm.The
process that contaminates labels is called label noise and is different from feature
noise [104].

Mislabeled instances may be outliers if their label has a low probability of occur-
rence in their neighborhood. Nevertheless, if labeling errors occur in a boundary
region where all classes are equiprobable, the mislabeled instances neither are rare
events nor look anomalous. Similarly, an outlier is not necessarily a mislabeled sam-
ple, as it can be due to feature noise or simply be a low-probability event [ 55].

Label noise is usually considered to be a stochastic process (as opposed to, say, gen-
erated in an adversarial manner). Let eY denote the random variable corresponding to
the class after the label noise process. There are a couple of ways to model the stochas-
tic labeling errors[ ? ]. In the noisy completely at random(NCAR) model, the occurence
of an error E is independent of all other random variables, including the uncorrupted
classY. It can be said that uniform label noiseoccurs if the incorrect label is chosen at
random within the NCAR model. The noisy at random(NAR) model allows for E to
depend on Y only, and can be speci�ed by a matrix encoding P( eYj Y). Finally, in the
noisy not at random(NNAR) model, the error depends both on the uncorrupted class
Y and input X. Although the NNAR model is less often used, it allows for modeling
the mislabeling near the boundary of classi�cation and low density regions.

2.1.5.1 Consequences of label noise on learning

The consequences of label noise are important and diverse [28]: “decrease in classi-
�cation performances, changes in learning requirements, increase in the complexity
of learned models, distortion of observed frequencies, dif�culties to identify relevant
features, etc”. The nature and the consequences depend on the type and the level
of label noise, the learning algorithm, and the characteristics of the training set. This
way, it is important for the machine learning professional to deal with label noise and
to consider these factors [28].

The most frequently reported consequence of label noise is a decrease in classi-
�cation performances. Lachenbruch [ 46] considered the case of binary classi�cation
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when both classes have Gaussian distribution with identical covariance matrix, where
a linear discriminant function can be used. For a large number of samples, the con-
sequence of uniform noise is noticeable only if the error rates � 1 and � 2 in each
class are different. The results of Lachenbruch [46] are extended in [47] for quadratic
discriminant functions, i.e. Gaussian conditional distributions with unequal covari-
ance matrices. In that case, prediction is affected even when label noise is symmetric
among the classes (� 1 = � 2). Many authors studied the impact of label noise in
classi�cation. Michalek and Tripathi [ 64] and Bi and Jeske [11] show that label noise
affects normal discriminant and logistic regression, where their error rates are in-
creased and their parameters are biased. In [37] the single-unit perceptron is studied
in the presence of label noise. Classi�cation performances of the K nearest neighbors
(KNN) classi�er are also affected by label noise [ 83]. Nettleton et al. [ 71] compare
the impact of label noise on four different supervised learners: naive Bayes, deci-
sion trees induced by C4.5, KNNs, and support vector machines (SVMs). There are
other consequences of label noise, for example, Zhang et al. [97] show that the con-
sequences of label noise are important in feature selection for microarray data. In an
experiment, only one mislabeled sample already leads to about 20% of not identi-
�ed discriminative genes, what is complicated since in microarray data, only a few
data are available. In medical applications, it is often necessary to perform medical
tests for disease diagnosis, to estimate the prevalence of a disease in a population or
to compare prevalence in different populations. However, label noise can affect the
observed frequencies of medical test results, what may lead to incorrect conclusions.

Label noise can affect learning requirements (e.g., number of necessary instances)
or the complexity of learned models. For example, Quinlan [ 74] warns that the size
of decision trees may increase in the presence of label noise, making them overly
complicated. Libralon et al. [ 53] show that removing mislabeled samples reduces the
complexity of SVMs (number of support vectors), decision trees induced by C 4.5
(size of trees) and rule-based classi�ers induced by RIPPER (number of rules). Noise
reduction can, therefore, produce models that are easier to understand, which is
desirable in many circumstances [80].

2.1.5.2 Methods to deal with label noise

In the literature, there exist three main approaches to take care of label noise [28]:
a �rst approach relies on algorithms that are naturally robust to label noise. This
way, the learning of the classi�er is assumed to be not too sensitive to the presence
of label noise. Several studies have shown that some algorithms are less in�uenced
than others by label noise. Experiments in the literature show that the performances
of classi�ers inferred by label noise-robust algorithms are still affected by label noise.
Label noise-robust methods seem to be adequate only for simple cases of label noise
that can be safely managed by over-�tting avoidance.

Second, it is possible to improve the quality of training data using �lter approaches.
In this case, noisy labels are typically identi�ed and treated before training occurs.
Mislabeled instances can either be relabeled or removed. Filter approaches are cheap
and easy to implement, but some of them are likely to remove a substantial amount
of data. One of the advantages of label noise cleansing is that removed instances have
no effects on the model inference step. In several works, it has been observed that
simply removing mislabeled instances is more ef�cient than relabeling them [ 21].
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Finally, there exist algorithms that directly model label noise during learning or
which have been modi�ed to consider label noise in an embedded fashion. The ad-
vantage of this approach is to separate the classi�cation and the label noise model,
allowing to use information about the nature of label noise. However, the main prob-
lem with these approaches is that they increase the complexity of learning algorithms
and can lead to over-�tting, because of the additional parameters of the training data
model.

Some loss functions deal with noise better than others. The 0-1 loss has impressive
noise tolerance, being always robust to uniform noise, but also non-uniform noise if
perfect classi�cation can be achieved using uncorrupted data. Other loss functions,
like the hinge loss used on support vector machines, are not robust even to uniform
noise. Ensemble methods can also be employed to improve noise tolerance. In par-
ticular, bagging is preferred to the usual boosting [ 24]. However, ensemble methods
suffer when all models are misdirected by a wrong label [ 4].

2.2 systematic review

This section presents our systematic review, which was conducted in October, 2018.
It is divided as follows. In section 2.2.1, the research questions are formulated, from
which keywords are obtained and combined with boolean operators to query a num-
ber of knowledge bases. Section2.2.2 goes into detail on the different approaches
found from that search and how they deal with label noise within SSL. Finally, 2.2.2
gives concluding remarks related to the research questions.

2.2.1 Methodology

A systematic review was conducted to investigate the following research questions:

RQ1 : Which semi-supervised algorithms are naturally robust to noise?

RQ2 : Are there pre-processing approaches that �lter data in a semi-supervised man-
ner, i.e. consider labeled and unlabeled data?

RQ3 : Have existing semi-supervised learning algorithms been modi�ed to be label
noise-tolerant?

RQ4 : Are there semi-supervised methods that were devised speci�cally to withstand
label noise?

RQ5 : Which benchmarks are usually employed to test the condition of scarce and
unreliable labels?

RQ6 : What kind of improvement is obtained by treating weak labels in semi-supervised
learning?

The papers reported hereafter result from a procedure divided in three steps. First,
we formulated queries through the combination of keywords with boolean operators
AND, OR. The keywords were chosen to be consistent with the aforementioned research
questions.
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• Q1:
(“label noise” OR “inaccurate labels” OR “inaccurate label” OR “noisy labels”
OR “noisy label” OR “noisy class” OR “class noise” OR “teacher noise”) AND
(“semisupervised” OR “semi supervised” OR “semi-supervised”)

Figure 4: Number of matches in each database for query 1.

After that, an initial list of candidates was obtained by querying a number of
databases. Namely, we included IEEE Xplore, ACM Digital Library, Science Direct,
and Springer Link (Figure 4). We also used the literature search function from Mende-
ley, Elsevier's program for managing and sharing research papers, to get more results.
The search procedure looked for matches in the title and abstract only, except for
Springer Link, which considered the whole document (we did not �nd a simple way
to restrict matches using the search functionality of its website).

From this initial list, pairwise string distances were calculated via the stringdist

R package. This information helped identify duplicate results (Figure 5).

Figure 5: Histogram of pairwise string distances for query 1.

After eliminating duplicates, we manually �ltered the results by reading its abstract
and deciding whether it was relevant enough.

2.2.2 Results

2.2.2.1 Label propagation algorithms

Among the approaches used in each article to deal with scarce and unreliable la-
bels, the most common was to extend a label propagation algorithm. These methods
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are examples of graph-based semi-supervised learning (hereafter GSSL), as they con-
struct a weighted graph G = (V,E,W ) to represent the data. Each vertex corresponds
to a vector in the training set, and each vertex is connected to the ones in its neigh-
bourhood (e.g. its k-nearest neighbors). The af�nity matrix W encodes the similarity
between neighbors, using some similarity function such as the radial basis function
kernel, as de�ned in Equation 18.

When performing label propagation, we must obtain a classi�cation matrix of soft
labels F= [ Fl , Fu ]> 2 Rn � c that minimizes a cost Q(F). The prior beliefs for F are
encoded as Y. Each row corresponds to the hard labels of a single vector. Rows
corresponding to unlabeled instances are zero-initialized, and the others are one-hot,
assigning each labeled vector to its corresponding label. The cost consists of a trade-
off between two criterions: one that ensures it �ts with the initial labels, and another
that provides a classi�er that is smooth w.r.t. the graph (strongly linked vertices are
likely to have same labels). This minimization has a random walk interpretation, in
which a particle starts a random walk from an unlabeled node. The labels at each
labeled node passed by decide the labels of the starting node, hence the name label
propagation.

classic graph -based ssl Before presenting novel approaches, we consider how
the algorithms presented in Section 2.1.4.4 deal with label noise. One of the earliest la-
bel propagation algorithms, named gaussian �elds and harmonic functions(GFHF)[103],
did not address label unreliability. It simply forced Fl = Yl and then minimized the
smoothness criterion

1
2

X

i ,j

W ij (Fi - Fj )2 = F> LF (47)

where L is the unnormalized graph Laplacian, and approximates the Laplace-Beltrami
operator on manifolds. In particular, this means that wrong labels not only stay that
way, but also propagate this error to its neighbours. This speci�c random walk stops
at the �rst encountered label. Therefore, if we have some mislabeled node that is away
from other labeled nodes but close to unlabeled ones, the effect is potentially catas-
trophic. Another classic GSSL algorithm, named local and global consistency(LGC)[99],
takes a step to address this issue. Whereas GFHF fully prioritizes the �tness crite-

rion

 bYl - Yl


 2 over the smoothness criterion, LGC introduces a hyperparameter �

to regulate the trade-off:

Q(F) =

 Fl - Yl


 2 +


 Yu


 2 + � (D - 1=2 F)> L(D - 1=2 F) (48)

where D is a diagonal matrix with the sum of each row of W . There is a similar trade-
off in the Adsorption algorithm [ 5], where one can lower the injection probability if
the labels are not to be trusted. Yet another version of this type of regularization is
due to [6]:

Q(F) =

 Fl - Yl


 2 + � F> LF (49)

This algorithm has been used in applications to address noisy labels, e.g. in image
and video annotation [ 30]. The inclusion of � somewhat mitigates the error propa-
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gation, as the �nal values of labeled nodes are not set in stone anymore. However,
the unreliable labels are not speci�cally identi�ed and treated; as such, they still
hold some in�uence over their respective neighborhoods. Finally, the regularization
of Laplacian Eigenmaps [7] outright restricts the class of functions used. Using a com-
bination of the �rst p smoothest eigenfunctions could be useful, specially if the less
smooth functions would be used to �t noisy instances. This last approach can be seen
as complementary to the previous ones.

bivariate formulation Both GFHF and LGC �t in a univariate regularization
framework, where F is the only variable considered. Thus, as mentioned previously,
they do not try to explicitly correct the initial labels in Y. This is addressed by the
graph tranduction via alternating maximization(GTAM)[ 89], as it minimizes the follow-
ing bivariate criterion:

Q(F,Y) =
1
2

tr
�

F> LF+ � (F- eY)> (F- eY)
�

(50)

Here, eY is a modi�ed version of the current, binary Y:

eYij =
D iiP

16 k 6 n D kk Ykj
! j Yij (51)

More speci�cally, the labels are normalized such that total in�uence (sum of con�-
dence values) of some classj is proportional to the class prior ! j . Within the labels
of each class, the normalization also ensures nodes with higher degree (as given by
the degree matrix D) are prioritized. The optimization uses a greedy gradient based
approach to perform alternating minimization, classifying a vertex at a time and con-
straining the solution to be a binary matrix.

The initial version of GTAM was robust to outlier noise and class imbalance. Yet,
in a sense it never doubts the initial labels, because it locks the initial values of
labeled vertices. This was eventually revised in the following year, leading to the label
diagnosis through self-tuning(LDST)[90] algorithm. It builds on GTAM and explores
the most bene�cial gradient directions of Q on both labeled and unlabeled nodes.
For the �rst t iterations, the most reliable among possible new labels is added, and
the least reliable among existing ones is removed. This replacement procedure is
therefore �nally able to correct the labels before continuing any further with label
propagation. More information on the robustness of GTAM and LDST is found on
[54].

particle cooperation and competit ion The particle cooperation and compe-
tition (PCC)[13] algorithm focuses on the random walk aspect of label propagation.
It formulates the problem as a nonlinear stochastic dynamical system, based on the
movements of particles. In this algorithm, a particle is instantiated at each labeled
node. Particles of each class can be seen as a team, and each node stores how much
it currently is dominated by each team. Each particle has two types of movement:
the random walkis akin to using normalized outgoing weights as transition proba-
bilities to select a neighbour; the greedy walkprefers to go to conquered neighbours
and maintain dominance. From this initial algorithm, a number of improvements
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have been applied to increase its tolerance to label noise. [12] made it so that par-
ticles are pushed away whenever near instances with different labels, reducing the
effect of mislabeled particles. It also introduced an undesirable territory switching
phenomenon, where teams of particles may switch territory with another team. This
phenomenon was addressed in [14], along with some enhancements in the construc-
tion of the graph.

using different types of norm Most of the previous label propagation algo-
rithms rely on variants of the same smoothness criterion F> LF. It can be shown [91]
that the generalized Laplacian smoother is in fact a kind of `2-norm:

F> L( k + 1) F =

 � ( k + 1) F


 2

2 (52)

where � ( k + 1) is a recursively de�ned graph difference operator. In particular, � ( 1) is
the weighted, oriented incidence matrix of the graph. As it is an `2-norm, the graph
Laplacian smoother cannot set any graph differences to be exactly zero. As a result, it
does not have good local adaptativity: the graph differences will either be all small or
all large. In contrast, the `1-norm minimization allows for a classi�er that is sensitive
(wiggly) in some regions but also constant or smooth in others.

Approximate kNN-SGSSL with noisy label handling[84] (AkNN-SGSSL_dn) uses `1-
norm on both graph construction and cost minimization. To improve the eff�ciency of
graph construction, it sparsely reconstructs each sample from its k nearest neighbors
in feature space instead of using all the other samples. From this, we get a sparse
af�nity matrix W . For the cost minimization, the smoothing term is a bit different
than the usual Laplacian, as it uses reconstruction error:

F> Lrec F =

 F- Wf


 2

=
NX

i = 1


 Fi -

X

j 6= i

W ij Fj

 2 (53)

where Lrec = ( I - W )> (I - W ) is equal to the Laplacian L only if we �rst row-
normalize W . Consequently, the smoothness term is actually an `2-norm. That being
said, the `1-norm does make an appearance, namely in the �tting term. The bivariate
cost formulated is given by

Q(F,Y) = F> Lrec F+ � 1

 F- Y


 2 + � 2


 Y - Y0




1 (54)

where Y0 is the noisy, initial value of Y. The use of the generalized minimal residual
method(GMRES)[77] speeds up the minimization process considerably.

Ideas from semi-supervised learning are applicable even when all data is labeled.
In [ 2], the LGC cost (see Section2.2.2.1) was applied along with the restriction


 F




0 6
c for some constant c. The reason for this norm is that few positive instances were
expected. The minimization of this cost provided soft labels to the �nal classi�er, a
multi-label regression forest, instead of hard labels. This enabled the classi�er to not
treat every label with the same certainty, reducing the effect of label noise.

The `1-norm has been employed for �ne-grained labeling of large shape collections[39],
that is, dividing objects (in this instance, 3D models) of the same category into sub-
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categories. More precisely, it is one of two regularization methods that help determine
a distance metric for each class which captures the underlying geometric similarity
within that class (the example given is that the dissimilarity of chair bases would be
a suitable distance within the class of swivel chairs).

Large-Scale sparse coding(LSSC) [57] uses the `1-norm to transform noise-robust
semi-supervised learning into a generalized sparse coding problem. Although not the
�rst to use this type of norm, they manage to make it scalable by providing a large-
scale extension. This extension is based on [27] and involves the eigenfunctions of the
normalized Laplacian matrix L . Speci�cally, they restrict F = U L m v where U L m is an
n � m matrix whose columns are the m eigenvectors with smallest eigenvalues. Thus,
the solution must be a combination of the m eigenfunctions of the graph Laplacian
that are smoothest w.r.t the manifold. This results in a cost

Q(v) =
1
2


 U L m v - Y


 2

2 + �

 � L U L m v




1 (55)

where B is the normalized Laplacian version of the graph difference operator � .
Semi-supervised learning with noise can also be seen as a graph-signal restoration

problem, as in [61], which uses a generalized graph smoothness priorto learn an image
classi�er given noisy labels. The objective includes a �delity term to minimize the
`0-norm between the observed labels and a reconstructed graph-signal. By assuming
that both the signal F and its gradient are smooth, the cost is

Q(F) =

 Yl - Fl




0 + � 1F> LF + � 2F> L2 F (56)

Thus we have two smoothness terms, whereas the �rst term is an `0-norm that is
approximated in practice by

(Y - DF)> U(Y - DF) (57)

, being minimized alternatively with F through the iterative reweighted least squares
strategy(IRLS)[22].

Semi-Supervised learning under Inadequate and Incorrect supervision(SIIS) [31] applies
to the unnormalized Laplacian L ideas similar to the ones in LSSC. Let U be the
matrix containing the eigenvectors. SIIS uses a similar large-scale extension, here
named smooth eigenbase pursuit. It restricts the classifying function to be a combination
of the m smoothest eigenfunctions of the graph Laplacian. To do this, the matrix of
eigenfunctions U is replaced with U m , which contains only the m eigenfunctions
with smallest eigenvectors. The corresponding diagonal matrix of eigenvalues is � m .
Both the �rst and second term are regularized with an `2,1 norm. Additionally, there
is a third term to further encourage use of the smoothest eigenfunctions, even when
already restricted to the m most smooth. We end up with:

Q(v) =

 �U m v




2,1 + � 1

 (Uv ) l - Yl




2,1 + � 2 tr (v> � m v) (58)

Notably, SIIS was shown to be superior to LSSC and SPMR (see Sections2.2.2.1,
2.2.2.3) on datasets like ISOLET and RCV1[51] under heavy label noise. That being
said, the algorithm has some parameter sensitivity, and in practice seemed to favor
the �tting term.
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2.2.2.2 Semi-Supervised Support Vector Machines

The hinge loss used by support vector machines is not robust to label noise, even
when it is uniform. The Huberized Laplacian SVM[62] replaces it with a continuously
differentiable loss function called Huber hinge loss `H , which gives a milder penalty
than the squared hinge loss.

`H (y i , f (xi )) =

8
>>><

>>>:

0 if

 1 - y i f (xi )


 2 (- 1 , - h)

( 1+ h - y i f ( x i )) 2

4h if

 1 - y i f (xi )


 2 [- h, h]

1 - y i f (xi ) if

 1 - y i f (xi )


 2 (h,+ 1 )

(59)

where the hyperparameter h can be set between0.01 and 0.9, and is such that the
limit of `H as h ! 0 is the linear hinge loss. It builds on the LapSVM[ 8] framework,
utilizing a primal approximation with a preconditioned conjugate gradient method
to it run faster without losing much accuracy.

The problem of dealing with label noise when only positive and unlabeled data is
available is tackled by [ 19]. The robust ensemble of SVMsemploys a bagging strategy
in which the positive and unlabeled sets are resampled to obtain base model train-
ing sets. A Wilcoxon signed-rank test indicates that there is a statistically signi�cant
improvement over bagging SVM [ 69] and class-weighted SVM [56] on a collection of
public benchmark datasets when the unlabeled and positive data are both contami-
nated.

The SVM´s hinge loss is again replaced in [15]. The task being considered is image
retrieval. For large-scale image search, this can be done via a hashing method, as
it approximates the nearest neighbor search. The margins used by the transductive
support vector machine (TSVM) can be useful here, but it needs to be made robust
to label noise. This time, the choice of loss function is the ramp loss. More speci�cally,
the ramp loss is given by

Rs (t ) = min (1 - s,max (0,1 - t )) (60)

such that 1 6 s 6 0 is a hyperparameter set by the user.

2.2.2.3 Self-Paced learning

The self-paced learning(SPL)theory is inspired by learning principles of animals and
human beings. Much like learning a skill in real life, one must begin with an easy
task that gets more challenging as time goes on. As such, the model is trained on
easy samples at �rst, and then moves on to more complex examples (e.g. ones that
it is having trouble with). making the model more and more mature. Making use of
the SPL methodology has the potential to make SSL learning label noise-tolerant, as
it is robust to outliers and heavy noises[ 63].

Self-Paced Manifold Regularization(SPMR)[35] incorporates the self-paced learning
paradigm into manifold regularization. More speci�cally, it adopts a soft SP-regularizer
that linearly weighs samples with respect to their losses. This is enough to outper-
form LSSC (see Section2.2.2.1) when arti�cial label noise is introduced in the MIT
CBCL dataset [66], ORL face dataset [78], and USPS handwritten digit dataset [ 40].
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2.2.2.4 Probabilistic model

The probabilistic semi-supervised model in [ 95] is intricate: it assumes that multiple
labelers are involved, and each labeler has a level of expertise that depends on the
features of the input. Most importantly, it allows each input vector to have missing
annotations for some or all labelers. In order for the unlabeled data to still be useful,
a modi�ed version of the prior given by the graph Laplacian is used. The logistic-
GP algorithm uses expectation maximization: the E-step calculates the expectation
of the true labels zi ; the M-step estimates the model parameters that describe the
prediction p(y i j zi , xi ) of each labeler given the true label and the input vector. In
the experiments, the distribution of the predicted label y i is assumed to be normal,
centered in zi and with variance that is a logistic function of xi .

2.2.3 Final remarks

After examining the results, we were able to draw conclusions about our research
questions. With regards to RQ1, we found out that the usual semi-supervised algo-
rithms based on support vector machines or the graph Laplacian have their perfor-
mance signi�cantly affected by label noise. Among the results returned by our query,
there was a surprising lack of approaches that use unlabeled data to help �ltering
the data, as in RQ2. One exception is the gradient-based �ltering approach contained
within the LDST algorithm. Most of the algorithms encountered were a modi�cation
of existing ones to withstand noise (as in RQ3) instead of initially being built that
way (RQ4). In general, the benchmarks varied a lot (RQ5). Usually, the label noise was
manually introduced into a clean set. One exception was the NUS-WIDE dataset [ 18],
which contains 269.648 images crawled from the Flickr social forum. The advantage
is that there is a manually veri�ed ground truth set, but also the set of original weak
tags obtained through crawling. Finally, the improvement obtained by making the
algorithms tolerant to noise was noticeable ( RQ6).
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T H E S I S P R O P O S A L

This chapter presents the proposal of this thesis. In Section 3.1, we put forward our
research questions. Our methodology is outlined in Section 3.2. The methodology
includes our pipeline, how we generated and managed the many con�gurations, as
well as our chosen datasets and evaluation metrics. The actual results are featured
in Section 3.3, where we illustrate our empirical evaluation with tables and �gures.
We objectively state the most notable individual results within each experiment, and
then interpret them collectively.

3.1 research questions

In this work, we aim to answer:

• Are there any graph-based semi-supervised algorithms that are robust to label
noise?

• Many algorithms have hyperparameters dictating the importance of �tting the
classifying function to the observed labeled data. To what extent does the tun-
ing of those parameters reduce the effect of label noise?

• Do the algorithms minimizing objectives with `1 norm produce better results
than the ones employing quadratic criterions?

• Which GSSL algorithms have predictions with lower variance when label noise
is present?

• Can we get better classi�cation results by applying a �lter before running the
GSSL algorithm?

• What kind of algorithm could potentially exploit the characteristics of previous
label noise-robust GSSL classi�ers, while addressing their shortcomings?

3.2 methodology

In what follows, our methodology is established. First, we present our pipeline (sec-
tion 3.2). Our method for evaluation is outlined (section 3.2.2). Next, considerations
for the many con�gurations for our experiments are presented (section 3.2.3). After
that, the noise model is detailed (section 3.2.4), and we justify the parameter selec-
tion for the GSSL classi�ers (section 3.2.5) . We also go over some implementation
details (section 3.2.6). Lastly, the chosen af�nity matrices and datasets are presented
(sections 3.2.7 and 3.2.8, respectively).

31
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3.2.1 Pipeline

For every experiment we have conducted, the basic approach remained the same.
Each experiment can be interpreted as a huge list of con�gurations. Each con�gura-
tion contains parameters for reading the input, adding label noise, as well as parame-
ters for semi-supervised classi�ers and semi-supervised �lters. In addition, each con-
�guration has an initial seed that determines the outcome of random events such as
selecting labeled instances, and corrupting labeled instances. In total, 20 seeds were
used. Once a con�guration is selected, Figure 6 shows a state diagram to illustrate
the different steps that must taken until the con�guration is fully processed. First, the
dataset is read, including features and labels. Then, the subset of labeled instances is
randomly selected, and a portion of it corrupted by label noise. After that, an af�n-
ity matrix is created from the input features. Some of our experiments utilize �lters,
in which case we must compute some metric speci�c to it. Otherwise, we can skip
that, get the predictions from a classi�er and calculate the accuracy. Our pipeline
consist of many different components which provide different interfaces. One can
see each component and how they interface with one another in Figure 7. It is par-
ticularly worth noting that the “Con�guration speci�er” component interacts with
almost everything else. In practice, we use a dictionary that maps strings to the value
of hyper-parameters. Each element is dispatched accordingly by employing a pre�x
system (section3.2.3). The output values for the relevant metrics obtained during the
execution of a single con�guration are saved in a CSV �le. Identical con�gurations
with different seeds are aggregated later, when we compute the mean and standard
deviation of desired quantities.

Figure 6: State diagram showing the execution of a single con�guration within an experi-
ment.
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Figure 7: Diagram showing the interfaces required by each component of our system. Color-
coded for convenience. Blue: provides interface to the seed and value of hyper-
parameters for the con�guration. Green: provides interface to perfect label infor-
mation (on labeled instances, and also unlabeled for evaluation purposes). Red:
interface to imperfect label information. Black: any other interface.

3.2.2 Evaluation

There exist only a few datasets where incorrect labels have been identi�ed [ 52, 59].
Arti�cial label noise is more common in the literature. Most studies use label noise
that is introduced in real datasets by: 1) randomly selecting instances and 2) changing
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their label into one of the other remaining labels. Some authors introduce label noise
using a pairwise scheme. Two classesc1 and c2 are selected, then each instance of
classc1 has a probability P to be incorrectly labeled as c2 and vice versa. This label
noise models situations where only certain types of classes are mislabeled.

In the literature, most experiments assess the ef�ciency of methods to take care of
label noise in terms of accuracy, since a decrease in accuracy is one of the main con-
sequences of label noise. We can also investigate the �lter precision in order to verify
if the removed instances actually correspond to mislabeled instances. Two types of
errors are distinguished in the literature [ 28]. Type 1 errors (ER1) are correctly labeled
instances that are erroneously removed.

ER1 rate =
# of correctly labeled instances which are removed

# of correctly labeled instances
(61)

Type 2 errors (ER2) are mislabeled instances which are not removed.

ER2 rate =
# of mislabeled instances which are not removed

# of mislabeled instances
(62)

Often, we express these quantities implicitly by using the notion of speci�city and
recall.

specificity =
# of correctly labeled instances which are not removed

# of correctly labeled instances
= 1- ER1 rate

(63)

recall =
# of mislabeled instances which are removed

# of mislabeled instances
= 1 - ER2 rate (64)

Consider the set of instances that some �lter marked as noisy. If the speci�city close
to 1, there is a high con�dence that each of the marked instances is indeed noisy; if
the recall is close to 1, almost all truly noisy instances were detected by the �lter.

Finally, the noise elimination precision ( NEP) is given by the percentage of removed
samples that are actually mislabeled.

NEP =
# of mislabeled instances which are removed

# of removed instances
(65)

A good data cleansing method must �nd a balance between speci�city, recall, and
NEP. Conservative �lters remove few instances and are therefore precise (high speci-
�city and NEP), but they tend to keep most mislabeled instances (low recall). Hence,
classi�ers learned with data cleansed by such �lters achieve low accuracy. On the
other hand, aggressive �lters remove more mislabeled instances (high recall) to in-
crease the classi�cation accuracy, but they also tend to remove too many instances
(low speci�city and NEP). The metric we chose to rank a �lter based on this trade-off
is the F1 score, which is the harmonic mean of recall and NEP:

F1 score=
2 � precision � recall

precision + recall
(66)
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3.2.3 Experiment con�guration

The main challenge when performing this sort of comparison work is dealing with
the combinatorial explosion that leads to a huge amount of con�gurations. To make
this more evident, let us consider the parameters that must be �xed for each con�g-
uration for a set experiment. Any con�guration can be divided into 7 subcon�gura-
tions:

subRandom : Random seed for sampling the dataset and determining labels to be corrupted
with noise. We chose to have 20 such seeds.

subData : The chosen dataset.

subLabel : The percent of data instances that are labeled. This can be interpreted as setting
the value for the fraction l

l + u , where l and u are the number of labeled and
unlabeled examples, respectively.

subNoise : The noise process the label is subject to. We always use the NCAR (noisy
completely at random) model, so we are essentially just specifying the rate of
labels set to be “�ipped”.

subFlt : Which �lter is used to clean up the noisy labels, if any. These �lters might also
have separate hyperparameters.

subAffMat : The chosen construction method that maps the input features to an af�nity
matrix. Includes hyperparameters such as � for the RBF kernel, and k for a
KNN graph.

subAlg : The chosen GSSL algorithm, including the setting of any hyperparameters.
These are

– LGC: Local and Global Consistency

– GFHF: Gaussian Fields and Harmonic Functions

– LE: Laplacian Eigenmaps

– GTAM: Graph Transduction Through Alternating Minimization

– SIIS: Semi-Supervised Learning under Inadequate and Incorrect supervi-
sion

– RF: Random Forest

A thorough comparison would require a number of con�gurations equal to

20� jsubData j � jsubLabel j � jsubNoise j � jsubFlt j � jsubAffMat j � jsubAlg j (67)

For this very reason, most of the datasets we chose are smaller than the huge datasets
to which the Big Data buzzword is attributed. Although there are techniques to
make GSSL viable for huge datasets, the traditional GSSL algorithms work best for
moderately-sized datasets (a few thousand instances).
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3.2.4 Noise model

There is much �exibility in the way one can model the noise process the data is
subject to. With enough resources, one can gather a set of labels that was veri�ed
enough times to be accepted as the truth, and use this to create aconfusion matrix .
The entry corresponding to the i-th row, j-th column will estimate the chance that an
instance of classi will be wrongfully assigned to class j . Obviously, this requires a lot
of effort and would need to be done individually for each dataset. For this work, we
instead focus on uniform label noise, in which we select labels at random and corrupt
them by assigning to a different class. We believe that understanding the behaviour
of classi�ers subject to a simpler noise process is a necessary step before moving on
to more speci�c cases. Our interest is in observing how the performance metrics are
affected when we increase the noise level, which is to be taken as the percentage of
labels to be corrupted. This means that, for a noise level of 10%, we would randomly
select 10% of labels and assign them to a random incorrect class. This number is
rounded if the division is inexact. For experiments 1 and 2 only, we made the problem
easier by maintaining the noise level constant for each class. Assuming a dataset has
two classes A and B, a a noise level of10% implies we corrupted 10% of the labels
corresponding to A, and the same for B. As we'll see, even this kind of noise is able
to adversely impact SSL classi�ers.

3.2.5 Parameter selection

Before going over the results on each dataset, we justify the chosen con�gurations
for the parameters of each classi�er. First of all, the GFHF classi�er has no parame-
ters. This is a very desirable trait, as validation can be very dif�cult. Validating with
few and unreliable labels is an open problem, which will have to be addressed going
forward. For this work, we are content to investigate the behaviour of these classi-
�ers under different settings, determine the extent that a classi�er may be able to
resist noise for a near-optimal parameter setting, and whether that setting implies
bad performance in the noise-free scenario. With that in mind, our goal was to se-
lect a set of parameter settings that yielded diverse predictions. As such, we chose �
from f0.1,0.9,0.99,0.999gso as to produce more diversity than just dividing the unit
interval regularly. We argue this is due to the random walk interpretation of the LGC
algorithm, in which rewards decay according to � t . In practice, any � near 0.1 values
the �rst reachable vertex very highly, whereas the difference between � = 0.9 and
� = 0.99 was more noticeable. Recall that the GTAM classi�er is based on LGC's cost
function. Due to this equivalence, we used Equation 37 to transform � to � (Table 1),
such that LGC and GTAM had access to settings that were comparable. For SIIS, we
lacked such insight, and thus chose from a range used on previous work [ 31]. For
Experiments 1 and 2, the Manifold Regularization classi�er used, initially, a percent-
age p = 20% of the labeled instances as the number of eigenfunctions. This turned
out to be both problematic and enlightening. Reducing the amount of eigenfunctions
for the dataset was impactful enough for the Manifold Regularization classi�er to
obtain better results when there were fewer labels, due to using less eigenfunctions.
This was then corrected so that p represented exactly the number of eigenfunctions,
instead of a percentage of the labeled instances. As for the chosen values ofp, we
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chose p = 1 and p = 4 as they are expected to work well with datasets g 241c and
g241n, given that we know the number of clusters the data comes from beforehand.
From there, we increased the number of eigenfunctions until the number was large
enough to consistently decrease classi�cation accuracy with 10% labels and no noise.

Table 1: LGC,GTAM: equivalent values for � and �

� (decay parameter) � (importance of label �tting)

0.01 99.0

0.1 9.0

0.9 0.1111

0.99 0.0101

0.999 0.0010

3.2.6 Implementation of SSL classi�ers

All of our pipeline was implemented using the Python language. This included a sys-
tem that speci�ed the desired combinations of parameters and put them into a long
list. Each element of the list was a dictionary that mapped named parameters to their
desired value for the con�guration. Each parameter string had a pre�x, indicating
where that parameter would be relevant. The pre�xes were:

• (empty): general parameters, such as the initial seed governing any event that
required randomness.

• input_: parameters used to select the dataset.

• aff_: parameters used for constructing the af�nity matrix

• noise_: parameters used during the noise process

• �t_ : parameters used during the �ltering process

• alg_: parameters used during the classi�cation process

• out_: results were saved to the dictionary using this pre�x.

To accomplish our task, we made use of selector methods, which redirected program
�ow to the relevant SSL algorithm, passing on to their constructor the relevant hy-
perparameters. Every SSL method found in this work was implemented from scratch.
The LGC and GFHF classi�ers were implemented twice (with different approaches
that should yield the same result), in order to further reduce the risk of error. The
tensorflow-gpu [1] package enabled us to create a GPU implementation for both LGC
and our proposed �lter, LGC_LVOf . Consequently, we were able to run them for larger
datasets in reasonable time. We were not able to �nd a suitable implementation of
GTAM or SIIS, so again we had to create our own. We note that earlier versions of
both papers detailing those algorithms had small mistakes in their equations, and we
unfortunately had to redo some experiments as a result. With that in mind, we argue
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that the current accessibility of many of the GSSL algorithms must be improved. We
hope that, by making our project available on Github 1, we can take a step towards a
greater ease of access.

3.2.7 Chosen af�nity matrices

For the construction of an af�nity matrix, we have chosen to employ a symmetric
KNN graph with k = 15. It is obtained by �rst computing the usual 15-nearest neigh-
bor graph, and subsequently making it symmetric by taking the maximum value
between Wij and Wji for every (i , j ) pair. We have used two kinds of weights for
the af�nity matrix. The �rst kind is constant weights, i.e. Wij = 1. This was used
for Experiments 1,3,4. The other was to use a RBF kernel (Equation18) with hyper-
parameter � set to be d

3 , where d is the mean distance between an instance and its
10th neighbor. We refer to it as the heuristic � . For fast, gpu-bound exact nearest
neighbour calculation, we have made use of the faiss package [43].

3.2.8 Chosen datasets

As mentioned in Section 2.1.4.3, graph-based semi-supervised learning relies on the
manifold assumption, as well as the semi-supervised smoothness assumption and
cluster assumption. This is the price we pay to make unlabeled data useful. These
sorts of assumptions are valid in many datasets, but not all. With that in mind, we
chose our datasets such that there is diversity with respect to the extent that each
assumption is being classi�ed. We list each dataset below. For every one of them,
an illustration is provided. Whenever dataset with more than two dimensions, we
perform a Locally Linear Embedding (LLE) [ 76] for visualization, as it makes use of
similar assumptions and can give us some insight about the output of GSSL classi�ers.
We emphasize that this is for visualization purposes only, and no transformation or
preprocessing is applied to any of those datasets before being fed to some classi�er.

two moons The two moons (also known as spiral) is perhaps the single most
used “toy dataset” in SSL. Not only does the dataset has only have two dimensions,
but the correct decision is curved so as to avoid passing through high-density re-
gions. Therefore, all SSL assumptions are satis�ed. However, we can “deteriorate”
this dataset in order to make it less compatible with the low-density separation as-
sumption. The sklearnpackage has anoise parameter that increases the overlap be-
tween the spirals. The effect of this parameter is shown in 8. In this �gure, we also
show the edges induced by the symmetric KNN graph with k = 15.

digit1 The Digit 1 dataset [17] was consists of arti�cially generated images of the
digit 1. This satis�es the manifold assumption, as the images were produced accord-
ing to the speci�cation of 5 parameters: two for translation, one for rotation, one for
line thickness and one for the length of the small line at the bottom. Downsampling
and omission of certain pixels reduces the 16 by 16 image to a 241-dimensional in-
stance. This dataset does not show an obvious cluster structure. More precisely, 9

1 code soon available on author's GitHub: https://github.com/brunoklaus
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