Quantifying dimensional severity of obsessive-compulsive disorder for neurobiological research

dc.citation.volume79
dc.contributor.authorShavitt, Roseli G.
dc.contributor.authorRequena, Guaraci
dc.contributor.authorAlonso, Pino
dc.contributor.authorZai, Gwyneth
dc.contributor.authorCosta, Daniel L. C.
dc.contributor.authorde Braganca Pereira, Carlos Alberto
dc.contributor.authordo Rosario, Maria Conceicao [UNIFESP]
dc.contributor.authorMorais, Ivanil
dc.contributor.authorFontenelle, Leonardo
dc.contributor.authorCappi, Carolina
dc.contributor.authorKennedy, James
dc.contributor.authorMenchon, Jose M.
dc.contributor.authorMiguel, Euripedes
dc.contributor.authorRichter, Peggy M. A.
dc.coverageOxford
dc.date.accessioned2020-08-04T13:39:53Z
dc.date.available2020-08-04T13:39:53Z
dc.date.issued2017
dc.description.abstractCurrent research to explore genetic susceptibility factors in obsessive-compulsive disorder (OCD) has resulted in the tentative identification of a small number of genes. However, findings have not been readily replicated. It is now broadly accepted that a major limitation to this work is the heterogeneous nature of this disorder, and that an approach incorporating OCD symptom dimensions in a quantitative manner may be more successful in identifying both common as well as dimension-specific vulnerability genetic factors. As most existing genetic datasets did not collect specific dimensional severity ratings, a specific method to reliably extract dimensional ratings from the most widely used severity rating scale, the Yale-Brown Obsessive Compulsive Scale (YBOCS), for OCD is needed. This project aims to develop and validate a novel algorithm to extrapolate specific dimensional symptom severity ratings in OCD from the existing YBOCS for use in genetics and other neurobiological research. To accomplish this goal, we used a large data set comprising adult subjects from three independent sites: the Brazilian OCD Consortium, the Sunnybrook Health Sciences Centre in Toronto, Canada and the Hospital of Bellvitge, in Barcelona, Spain. A multinomial logistic regression was proposed to model and predict the quantitative phenotype [i.e., the severity of each of the five homogeneous symptom dimensions of the Dimensional YBOCS (DYBOCS)] in subjects who have only YBOCS (categorical) data. YBOCS and DYBOCS data obtained from 1183 subjects were used to build the model, which was tested with the leave-one-out cross-validation method. The model's goodness of fit, accepting a deviation of up to three points in the predicted DYBOCS score, varied from 78% (symmetry/order) to 84% (cleaning/contamination and hoarding dimensions). These results suggest that this algorithm may be a valuable tool for extracting dimensional phenotypic data for neurobiological studies in OCD.en
dc.description.affiliationUniv Sao Paulo, Sch Med, Dept Psychiat, Rua Dr Ovidio Pires de Campo,785-3,Andar Sala 7, BR-01060970 Sao Paulo, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Math & Stat, R Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
dc.description.affiliationHosp Bellvitge Princeps Espanya, Dept Psychiat, OCD Clin & Res Unit, Barcelona, Spain
dc.description.affiliationSunnybrook Hlth Sci Ctr, Ctr Addict & Mental Hlth, 2075 Bayview Ave,Suite FG42, Toronto, ON M4N 3M5, Canada
dc.description.affiliationFed Univ Sao Paulo UNIFESP, Dept Psychiat, Child & Adolescent Psychiat Unit UPIA, Rua Borges Lagoa 570, BR-04038020 Sao Paulo, Brazil
dc.description.affiliationUniv Fed Rio de Janeiro UFRJ, Inst DOr Pesquisa & Ensino IDOR, Inst Psiquiatria, Av Venceslau Braz,71 Fundos Botafogo, BR-22290140 Rio De Janeiro, RJ, Brazil
dc.description.affiliationUniv Barcelona, Carlos III Hlth Inst, Bellvitge Biomed Res Inst IDIBELL, Ctr Invest Red Salud Mental,Dept Clin Sci, Bellvitge Campus,Feixa Llarga S-N, Barcelona 08907, Spain
dc.description.affiliationUnifespFed Univ Sao Paulo UNIFESP, Dept Psychiat, Child & Adolescent Psychiat Unit UPIA, Rua Borges Lagoa 570, BR-04038020 Sao Paulo, Brazil
dc.description.sourceWeb of Science
dc.format.extent206-212
dc.identifierhttp://dx.doi.org/10.1016/j.pnpbp.2017.06.037
dc.identifier.citationProgress In Neuro-Psychopharmacology & Biological Psychiatry. Oxford, v. 79, p. 206-212, 2017.
dc.identifier.doi10.1016/j.pnpbp.2017.06.037
dc.identifier.issn0278-5846
dc.identifier.urihttps://repositorio.unifesp.br/handle/11600/57165
dc.identifier.wosWOS:000413145700018
dc.language.isoeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofProgress In Neuro-Psychopharmacology & Biological Psychiatry
dc.rightsAcesso restrito
dc.subjectObsessive-compulsive disorderen
dc.subjectPhenotypeen
dc.subjectAlgorithmen
dc.subjectDimensional assessmenten
dc.titleQuantifying dimensional severity of obsessive-compulsive disorder for neurobiological researchen
dc.typeArtigo
Arquivos
Coleções