RAB23 mutations in carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity

Data
2007-06-01
Tipo
Artigo
Título da Revista
ISSN da Revista
Título de Volume
Resumo
Carpenter syndrome is a pleiotropic disorder with autosomal recessive inheritance, the cardinal features of which include craniosynostosis, polysyndactyly, obesity, and cardiac defects. Using homozygosity mapping, we found linkage to chromosome 6p12.1-q12 and, in 15 independent families, identified five different mutations (four truncating and one missense) in RAB23, which encodes a member of the RAB guanosine triphosphatase (GTPase) family of vesicle transport proteins and acts as a negative regulator of hedgehog (HH) signaling. in 10 patients, the disease was caused by homozygosity for the same nonsense mutation, L145X, that resides on a common haplotype, indicative of a founder effect in patients of northern European descent. Surprisingly, nonsense mutations of Rab23 in open brain mice cause recessive embryonic lethality with neural-tube defects, suggesting a species difference in the requirement for RAB23 during early development. the discovery of RAB23 mutations in patients with Carpenter syndrome implicates HH signaling in cranial-suture biogenesis-an unexpected finding, given that craniosynostosis is not usually associated with mutations of other HH-pathway components-and provides a new molecular target for studies of obesity.
Descrição
Citação
American Journal of Human Genetics. Chicago: Univ Chicago Press, v. 80, n. 6, p. 1162-1170, 2007.
Coleções
Pré-visualização PDF(s)