Características do triatleta amador de distância olímpica e as associações com o desempenho
Data
2020-12-18
Tipo
Tese de doutorado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
O triatlo, apesar de recente, tem se tornado cada vez mais popular. Na literatura, há poucos estudos sobre o perfil dos praticantes dessa modalidade esportiva, principalmente sobre os triatletas amadores. Objetivo: O estudo avaliou o perfil dos triatletas amadores através das variáveis antropométricas, parâmetros fisiológicos, condição do sono, cronotipo, hábitos pessoais, condições clínicas e perfil genético. Investigou, também, os preditores dos tempos parciais e total de prova, além de comparar as diferenças entre os triatletas mais lentos e mais rápidos dentro de uma prova de distância olímpica. Métodos: Quarenta e cinco indivíduos (trinta e nove homens e seis mulheres) participaram deste estudo transversal observacional. Os participantes foram avaliados quanto às características antropométricas (massa corporal, estatura e composição corporal por meio da absorciometria de dupla energia por raios X [DXA]), aptidão física aeróbia (consumo máximo de oxigênio [V̇O2max], limiar anaeróbio e ponto de compensação respiratória, velocidade aeróbia máxima [VAM] e economia de corrida [EC]) e avaliação genética através da análise de polimorfismos dos genes: enzima conversora de angiotensina (ACE, rs1799752), receptor de bradicinina (BDKRB2, rs71103505), α-actinina 3 (ACTN3, rs1815739) e angiotensinogênio (AGT, rs699). Foram aplicados questionários sobre histórico médico e hábitos pessoais, rotina de treinamento, experiência em triatlo (ET) e perfil cronotípico. Resultados: No grupo masculino, V̇O2max, VAM e EC foram 59,9 ± 6,3 ml/kg/min, 17,8 ± 1,4 km/h e 1,17 ± 0,08 kcal/kg/km, respectivamente. No grupo feminino, V̇O2max, VAM e EC foram 50,3 ± 6,1 ml/kg/min, 15,0 ± 1,4 km/h e 1,27 ± 0,10 kcal/kg/km, respectivamente. As variáveis mais importantes nos modelos de regressão múltipla para estimar o desempenho foram VAM, ET, porcentagem do V̇O2max atingida no limiar anaeróbio (%LAn V̇O2max) e porcentagem de massa magra (%MM). Conclusões: a VAM faz parte de todas as equações preditivas de desempenho em cada modalidade e no tempo total de prova; a experiência no triatlo é muito importante para prever o tempo na natação, ciclismo e tempo total de prova; e %MM contribui significativamente para prever o tempo no ciclismo e o tempo total de prova entre atletas amadores. Os atletas mais lentos e rápidos foram diferentes na composição corporal e no desempenho aeróbio (V̇O2max, VAM e velocidades no Lan e PCR), mas não na EC.
Triathlon has recently become popular worldwide. There are few studies available on the profile of these athletes, mainly on amateur athletes, who are the fastest growing in the world. Aim: The study evaluated anthropometric variables, physiological parameters, sleep condition, chronotype, personal habits, clinical conditions and genetic profile of amateur triathletes, and investigated the predictors of overall race time and splits disciplines and the differences between the slower and faster triathletes. Methods: Fourty-five subjects (thirty-nine men and six women) participated in this cross-sectional observational study. Participants were evaluated for anthropometric characteristics (body mass, height, and body composition through dual energy X-ray absorptiometry [DXA]), aerobic physical fitness (maximum oxygen consumption [V̇ O2max], anaerobic threshold and respiratory compensation point, maximum aerobic velocity [MAV], and running economy [RE]), and genetic evaluation (polymorphisms of four genes related to sports performance: ACTN3, AGT, ACE, and BDKRB2). Questionnaires on personal and medical habits, training routine, triathlon experience (TE), and circadian preference were applied. Results: In the male group, V̇ O2max, MAV and RE were 59.9 ± 6.3 ml/kg/min, 17.8 ± 1.4 km/h, and 1.17 ± 0.08 kcal/kg/km, respectively. In the female group, V̇ O2max, MAV, and RE were 50.3 ± 6.1 ml/kg/min, 15.0 ± 1.4 km/h, and 1.27 ± 0.10 kcal/kg/km, respectively. The most important variables in multiple regression models for estimating performance were MAV, TE, aerobic threshold, V̇ O2 percentage of V̇ O2max (%AT V̇ O2max), and lean mass percentage (%LM). Conclusions: MAV is part of all the prediction equations of performance in each modality and in total race time; triathlon experience is very important to predict swim, cycle, and total race time; and %LM contributes significantly to predict cycle and total race time among amateur athletes. Slower and faster athletes were different in body composition and aerobic performance, but not for RE.
Triathlon has recently become popular worldwide. There are few studies available on the profile of these athletes, mainly on amateur athletes, who are the fastest growing in the world. Aim: The study evaluated anthropometric variables, physiological parameters, sleep condition, chronotype, personal habits, clinical conditions and genetic profile of amateur triathletes, and investigated the predictors of overall race time and splits disciplines and the differences between the slower and faster triathletes. Methods: Fourty-five subjects (thirty-nine men and six women) participated in this cross-sectional observational study. Participants were evaluated for anthropometric characteristics (body mass, height, and body composition through dual energy X-ray absorptiometry [DXA]), aerobic physical fitness (maximum oxygen consumption [V̇ O2max], anaerobic threshold and respiratory compensation point, maximum aerobic velocity [MAV], and running economy [RE]), and genetic evaluation (polymorphisms of four genes related to sports performance: ACTN3, AGT, ACE, and BDKRB2). Questionnaires on personal and medical habits, training routine, triathlon experience (TE), and circadian preference were applied. Results: In the male group, V̇ O2max, MAV and RE were 59.9 ± 6.3 ml/kg/min, 17.8 ± 1.4 km/h, and 1.17 ± 0.08 kcal/kg/km, respectively. In the female group, V̇ O2max, MAV, and RE were 50.3 ± 6.1 ml/kg/min, 15.0 ± 1.4 km/h, and 1.27 ± 0.10 kcal/kg/km, respectively. The most important variables in multiple regression models for estimating performance were MAV, TE, aerobic threshold, V̇ O2 percentage of V̇ O2max (%AT V̇ O2max), and lean mass percentage (%LM). Conclusions: MAV is part of all the prediction equations of performance in each modality and in total race time; triathlon experience is very important to predict swim, cycle, and total race time; and %LM contributes significantly to predict cycle and total race time among amateur athletes. Slower and faster athletes were different in body composition and aerobic performance, but not for RE.