Síntese e caracterização óptica de nanopartículas Ru2Si3 em matriz SiO2/Si implantada com íons Ru+
Arquivos
Data
2021-12-07
Tipo
Dissertação de mestrado
Título da Revista
ISSN da Revista
Título de Volume
Resumo
A presente dissertação versa sobre a busca de materiais eficientes, baseados na tecnologia
padrão do silício existente, para aplicações no infravermelho próximo, em particular no intervalo de
comprimento de onda entre 1,53 e 1,57 μm (conhecido como banda C), desde que este intervalo
corresponde a terceira janela de transmissão dos sistemas de comunicações por fibra óptica.
A pesquisa foi então direcionada ao estudo sistemático de um siliceto de metal de transição
4d: o sesquisiliceto de rutênio - Ru2Si3, um material semicondutor baseado em Si que possui gap de
energia direto e propriedades de fotoresposta no intervalo espectral entre 1,3-1,8 μm. Aqui,
apresentamos a síntese material e as propriedades vibracionais e ópticas de nanopartículas Ru2Si3
em matriz SiO2/Si. A correlação de defeitos de rede e efeitos de tensão/deformação com as
propriedades ópticas fundamentais das fases do siliceto foram também abordadas e discutidas.
As nanopartículas de Ru2Si3 em matriz SiO2/Si(001) foram sintetizadas pela técnica de
implantação iônica (perfil de íons de Ru+ implantados próximo a interface Si/SiO2), seguida de
tratamentos térmicos em atmosfera inerte em duas etapas: em baixa (150 °C / 72 h) e em altas
temperaturas (1100, 1200 e 1300 °C / 6 h). A cada etapa do processo de síntese, a formação de fase,
bem como a produção de defeitos foi caraterizada.
Os resultados de espectroscopia de espalhamento Raman confirmam a obtenção da fase α-
Ru2Si3 (ortorrômbica) e uma suposta transição para a fase β-Ru2Si3 (tetragonal). Existe apenas um
relato controverso na literatura do sucesso de síntese da fase β. Espectroscopia de reflectância no
infravermelho próximo e espectroscopia óptica no UV-Vis-NIR (modo refletância difusa) revelaram
comportamentos espectrais similares, caraterizadas por bandas largas no intervalo 0,5-1,0 eV. A
natureza do gap fundamental de energia não pode ser acuradamente determinada devido à
significativa contribuição de centros de defeitos opticamente ativos.
Os experimentos de fotoluminescência (PL) em baixas temperaturas (5-80 K) e em função da
densidade de potência de excitação (1-7 mW/mm2) sugerem diferentes transições ópticas
radiativas. Os resultados mostram que concomitantemente com a formação das nanopartículas
semicondutoras, existe uma evolução complexa de defeitos com os tratamentos térmicos em altas
temperaturas, tornando as interpretações e as atribuições das bandas PL difíceis. Contudo, três
possibilidades como origem da PL foram discutidas: (i) contribuição da transição óptica direta de α-
e β-Ru2Si3 tensionado para PL em ≈ 0,808 eV; tensão esta principalmente devido a diferença entre
coeficientes de expansão térmica entre Ru2Si3, Si e SiO2; (ii) a PL em ≈ 0,894 eV pode ser devido a
recombinação relacionada à armadilha através de um nível aceitador raso em α-Ru2Si3 não intencionalmente dopado; (iii) A PL observada em ≈ 0,808 eV não pode ser definitivamente
atribuída ao Ru2Si3. Si defeituoso têm bandas PL (linhas D1-D4) na mesma região espectral onde a
recombinação radiativa do Ru2Si3 é esperada.
The present work deals with the search for efficient materials, based on the existing silicon standard technology, for applications in the near-infrared, in particular in the wavelength range between 1.53 and 1.57 μm (known as C-band) since that interval corresponds to the third transmission window of optical fiber communication systems. The research was then addressed to the systematic study of a 4d transition metal silicide: the ruthenium sesquisilicide - Ru2Si3, a Si-based semiconducting material that has a direct energy gap and photoresponse properties in the spectral range between 1.3-1.8 μm. Here, we present the material synthesis and the vibrational and optical properties of Ru2Si3 nanoparticles into SiO2/Si matrix. The correlation of lattice defects and stress/strain effects with the fundamental optical properties of the silicide phases was also discussed. The Ru2Si3 nanoparticles in SiO2/Si(001) matrix were synthesized by the ion implantation technique (Ru+ ions profile implanted close to the Si/SiO2 interface), followed by heat treatments in an inert atmosphere in two steps: at low 150 °C / 72 h) and at high temperatures (1100, 1200 e 1300 °C / 6 h). At each step of the synthesis process, the phase formation and the production of defects were characterized. Raman spectroscopy results confirm the α-Ru2Si3 (orthorhombic) phase and a supposed transition to the β-Ru2Si3 (tetragonal) phase. There is only one literature controversial report about the β-phase synthesis success. Near-infrared reflectance spectroscopy and UV-Vis-NIR optical spectroscopy (diffuse reflectance mode) revealed similar spectral behaviors, characterized by broadbands in the 0.5-1.0 eV range. The nature of the fundamental energy gap can not be accurately determined due to the significant contribution of optically active defect centers. Photoluminescence (PL) experiments at low temperatures (5-80 K) and as a function of excitation power density (1-7 mW/mm2) suggest distinct radiative optical transitions. The results show that concomitantly with the formation of the semiconducting nanoparticles, there is a complex evolution of defects with heat treatments at high temperatures, making interpretations and assignments of PL bands difficult. However, three possibilities as the origin of PL were discussed: (i) contribution of direct optical transition of strained α- and β-Ru2Si3 to PL signal at ≈ 0.808 eV; strain is mainly due to the difference in thermal expansion coefficients between Ru2Si3, Si, and SiO2; (ii) PL at ≈ 0.894 eV could be due to trap-related recombination through a shallow acceptor level in a nonintentionally doped α-Ru2Si3; (iii) the PL observed at ≈ 0.808 eV can not be definitively attributed to Ru2Si3. Defective Si has PL bands (D1-D4 lines) in the same spectral region where Ru2Si3 radiative recombination is expected.
The present work deals with the search for efficient materials, based on the existing silicon standard technology, for applications in the near-infrared, in particular in the wavelength range between 1.53 and 1.57 μm (known as C-band) since that interval corresponds to the third transmission window of optical fiber communication systems. The research was then addressed to the systematic study of a 4d transition metal silicide: the ruthenium sesquisilicide - Ru2Si3, a Si-based semiconducting material that has a direct energy gap and photoresponse properties in the spectral range between 1.3-1.8 μm. Here, we present the material synthesis and the vibrational and optical properties of Ru2Si3 nanoparticles into SiO2/Si matrix. The correlation of lattice defects and stress/strain effects with the fundamental optical properties of the silicide phases was also discussed. The Ru2Si3 nanoparticles in SiO2/Si(001) matrix were synthesized by the ion implantation technique (Ru+ ions profile implanted close to the Si/SiO2 interface), followed by heat treatments in an inert atmosphere in two steps: at low 150 °C / 72 h) and at high temperatures (1100, 1200 e 1300 °C / 6 h). At each step of the synthesis process, the phase formation and the production of defects were characterized. Raman spectroscopy results confirm the α-Ru2Si3 (orthorhombic) phase and a supposed transition to the β-Ru2Si3 (tetragonal) phase. There is only one literature controversial report about the β-phase synthesis success. Near-infrared reflectance spectroscopy and UV-Vis-NIR optical spectroscopy (diffuse reflectance mode) revealed similar spectral behaviors, characterized by broadbands in the 0.5-1.0 eV range. The nature of the fundamental energy gap can not be accurately determined due to the significant contribution of optically active defect centers. Photoluminescence (PL) experiments at low temperatures (5-80 K) and as a function of excitation power density (1-7 mW/mm2) suggest distinct radiative optical transitions. The results show that concomitantly with the formation of the semiconducting nanoparticles, there is a complex evolution of defects with heat treatments at high temperatures, making interpretations and assignments of PL bands difficult. However, three possibilities as the origin of PL were discussed: (i) contribution of direct optical transition of strained α- and β-Ru2Si3 to PL signal at ≈ 0.808 eV; strain is mainly due to the difference in thermal expansion coefficients between Ru2Si3, Si, and SiO2; (ii) PL at ≈ 0.894 eV could be due to trap-related recombination through a shallow acceptor level in a nonintentionally doped α-Ru2Si3; (iii) the PL observed at ≈ 0.808 eV can not be definitively attributed to Ru2Si3. Defective Si has PL bands (D1-D4 lines) in the same spectral region where Ru2Si3 radiative recombination is expected.