Aerobic exercise training rescues protein quality control disruption on white skeletal muscle induced by chronic kidney disease in rats

Nenhuma Miniatura disponível
Data
2018
Autores
Almeida Monteiro De Moraes, Wilson Max [UNIFESP]
Moraes de Souza, Pamella Ramona
da Paixao, Nathalie Alves
Oliveira de Sousa, Luis Gustavo
Ribeiro, Daniel Araki [UNIFESP]
Marshall, Andrea G.
Prestes, Jonato
Irigoyen, Maria Claudia
Brum, Patricia Chakur
Medeiros, Alessandra [UNIFESP]
Orientadores
Tipo
Artigo
Título da Revista
ISSN da Revista
Título de Volume
Resumo
We tested whether aerobic exercise training (AET) would modulate the skeletal muscle protein quality control (PQC) in a model of chronic kidney disease (CKD) in rats. Adult Wistar rats were evaluated in four groups: control (CS) or trained (CE), and 5/6 nephrectomy sedentary (5/6NxS) or trained (5/6NxE). Exercised rats were submitted to treadmill exercise (60min., five times/wk for 2months). We evaluated motor performance (tolerance to exercise on the treadmill and rotarod), cross-sectional area (CSA), gene and protein levels related to the unfolded protein response (UPR), protein synthesis/survive and apoptosis signalling, accumulated misfolded proteins, chymotrypsin-like proteasome activity (UPS activity), redox balance and heat-shock protein (HSP) levels in the tibialis anterior. 5/6NxS presented a trend towards to atrophy, with a reduction in motor performance, down-regulation of protein synthesis and up-regulation of apoptosis signalling
increases in UPS activity, misfolded proteins, GRP78, derlin, HSP27 and HSP70 protein levels, ATF4 and GRP78 genes
and increase in oxidative damage compared to CS group. In 5/6NxE, we observed a restoration in exercise tolerance, accumulated misfolded proteins, UPS activity, protein synthesis/apoptosis signalling, derlin, HSPs protein levels as well as increase in ATF4, GRP78 genes and ATF6 protein levels accompanied by a decrease in oxidative damage and increased catalase and glutathione peroxidase activities. The results suggest a disruption of PQC in white muscle fibres of CKD rats previous to the atrophy. AET can rescue this disruption for the UPR, prevent accumulated misfolded proteins and reduce oxidative damage, HSPs protein levels and exercise tolerance.
Descrição
Citação
Journal Of Cellular And Molecular Medicine. Hoboken, v. 22, n. 3, p. 1452-1463, 2018.
Coleções