Murine melanoma cells incomplete reprogramming using non-viral vector

Nenhuma Miniatura disponível
Data
2017
Autores
Camara, D. A. D. [UNIFESP]
Porcacchia, A. S.
Costa, A. S.
Azevedo, R. A.
Kerkis, I.
Orientadores
Tipo
Artigo
Título da Revista
ISSN da Revista
Título de Volume
Resumo
Objectives: The reprogramming of cancer cells into induced pluripotent stem cells or less aggressive cancer cells can provide a modern platform to study cancer-related genes and their interactions with cell environment before and after reprogramming. Herein, we aimed to investigate the reprogramming capacity of murine melanoma B16F10 cells. Materials and methods: The B16F10 was transfected using non-viral circular DNA plasmid containing the genes Sox-2, Oct4, Nanog, Lin28 and green fluorescent protein (GFP). These cells were characterized by immunofluorescence, analysis RT-PCR and cell cycle. Results: Our results demonstrated for the first time that reprogramming of B16F10 may be induced using non-viral minicircle DNA containing the four reprogramming factors Oct4, Sox2, Lin 28, Nanog (OSLN) and the GFP reporter gene. The resulting clones are composed by epithelioid cells. These cells display characteristics of cancer stem cells, thus expressing pluripotent stem cell markers and dividing asymmetrically and symmetrically. Reprogrammed B16F10 cells did not form teratomas
however, they showed the suppression of tumourigenic abilities characterized by a reduced tumour size, when compared with parental B16F10 cell line. In contrast to parental cell line that showed accumulation of the cells in S phase of cell cycle, the cells of reprogrammed clones are accumulated in G1 phase. Long-term cultivation of reprogrammed B16F10 cells induces regression of their reprogramming. Conclusions: Our data imply that in result of reprogramming of B16F10 cells less aggressive Murine Melanoma Reprogrammed Cancer Cells may be obtained. These cells represent an interesting model to study mechanism of cells malignancy as well as provide a novel tool for anti-cancer drugs screening.
Descrição
Citação
Cell Proliferation. Hoboken, v. 50, n. 4, p. -, 2017.
Palavras-chave
Coleções