• RI - Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
    • português (Brasil)
    • English
    • español
  • Sobre
    • RI Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
  • English 
    • português (Brasil)
    • English
    • español
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Instituto de Ciência e Tecnologia (ICT)
  • ICT - Outras produções
  • View Item
  •   DSpace Home
  • Instituto de Ciência e Tecnologia (ICT)
  • ICT - Outras produções
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid neural system for the automatic segmentation of the interventricular septum in echocardiographic images

Thumbnail
Date
2016
Author
Valença, Janaina Bussola Montrezor [UNIFESP]
Ferraz, Karoline Pereira [UNIFESP]
Alencar, Maria do Carmo Baracho de [UNIFESP]
Souza, Felipe Granado [UNIFESP]
Lopes, Lucy Vitale
Type
Trabalho apresentado em evento
ISSN
2161-4393
Is part of
2016 International Joint Conference On Neural Networks (IJCNN)
DOI
10.1109/IJCNN.2016.7727868
Metadata
Show full item record
Abstract
Echocardiographic exams allow the observation and extraction of measures related to cardiac structures. In the longitudinal parasternal view, these measures include the left ventricle end-diastolic and end-systolic diameters, end-diastolic interventricular septum thickness (IVSd), and end-diastolic left ventricle posterior wall thickness (LVPWd). Among these measures, the IVSd is important for diagnosing pathologies like hypertrophic cardiomyopathy, aneurysms, abnormal movement and structural faults. This work presents a hybrid neural network system to segment interventricular septum in echocardiographic images of parasternal longitudinal view. The hybrid system developed here consist of a Self-Organizing Map and a Multilayer Perceptron (MLP) neural network. The approach has two phases: clustering and classification. First, the Self-Organizing Map clusters image patches that are previously labeled as Septum and Non-septum. Later, an MLP is trained with information generated by the map. The MLP is then employed to classify patches of a new image resulting in a mask that indicates the probable septum regions. To validate the results, we did a semi-automatic extraction of septum thickness. The average error between the septum thicknesses obtained by the algorithm and the one manually traced was 0.5477mm +/- 0.5277mm. Future recommendations are presented to improve the hybrid system performance to get more accurate results.
Citation
2016 International Joint Conference On Neural Networks (IJCNN). New york, p. 5072-5078, 2016.
Keywords
Network Segmentation
Brain
Sponsorship
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - Brasil (CNPq) [486950/2013-1]
Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) [2016/04946-4]
Sao Paulo Research Foundation (FAPESP)
URI
http://repositorio.unifesp.br/handle/11600/49242
Collections
  • ICT - Outras produções [83]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV