Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites

Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites

Author Zelanis, Andre Google Scholar
Huesgen, Pitter F. Google Scholar
Oliveira, Ana Karina Google Scholar
Tashima, Alexandre K. Autor UNIFESP Google Scholar
Serrano, Solange M. T. Google Scholar
Overall, Christopher M. Google Scholar
Institution Inst Butantan
Univ British Columbia
Forschungszentrum Julich
Universidade de São Paulo (USP)
Universidade Federal de São Paulo (UNIFESP)
Abstract Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6 ', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases.Biological significanceProteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom senile proteinases with peptide and macromolecular substrates and indicates that their hydrolytic activity is influenced by the amino acid sequences adjacent to the scissile bond. (C) 2014 Elsevier B.V. All rights reserved.
Keywords Snake venom
Serine proteinase
Proteomic Identification of protease
Cleavage Sites
Peptide bond specificity
Proteome derived peptide library
Language English
Sponsor Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
German Academic Exchange Service (DAAD)
Michael Smith Foundation for Health Research (MSFHR)
Canada Foundations for Innovation
Grant number FAPESP: 2010/17328-0
FAPESP: 2011/08514-8
FAPESP: 2011/23403-8
FAPESP: 2013/07467-1
CIHR: MOP-111-055
Date 2015-01-15
Published in Journal Of Proteomics. Amsterdam: Elsevier Science Bv, v. 113, p. 260-267, 2015.
ISSN 1874-3919 (Sherpa/Romeo, impact factor)
Publisher Elsevier B.V.
Extent 260-267
Access rights Closed access
Type Article
Web of Science ID WOS:000347582200018

Show full item record


File Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)




My Account