• RI - Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
    • português (Brasil)
    • English
    • español
  • Sobre
    • RI Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
  • English 
    • português (Brasil)
    • English
    • español
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Escola Paulista de Medicina (EPM)
  • EPM - Artigos
  • View Item
  •   DSpace Home
  • Escola Paulista de Medicina (EPM)
  • EPM - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Maximal Subgroups of Compact Lie Groups

Thumbnail
Date
2012-01-01
Author
Antoneli, Fernando [UNIFESP]
Forger, Michael
Gaviria, Paola
Type
Artigo
ISSN
0949-5932
Is part of
Journal Of Lie Theory
Metadata
Show full item record
Abstract
This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component. It is also shown how to reduce the classification of maximal subgroups of the last two types to: (2) the classification of the finite maximal Sigma-invariant subgroups of centerfree connected compact simple Lie groups and (3) the classification of the Sigma-primitive subalgebras of compact simple Lie algebras, where Sigma is a subgroup of the corresponding outer automorphism group. In the second part, we explicitly compute the normalizers of the primitive subalgebras of the compact classical Lie algebras (in the corresponding classical groups), thus arriving at the complete classification of all (non-discrete) maximal subgroups of the compact classical Lie groups.
Citation
Journal Of Lie Theory. Lemgo: Heldermann Verlag, v. 22, n. 4, p. 949-1024, 2012.
Keywords
Lie groups
Lie algebras
Compact groups
Maximal subgroups
Sponsorship
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
URI
http://repositorio.unifesp.br/11600/44471
Collections
  • EPM - Artigos [17709]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV