• RI - Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
    • português (Brasil)
    • English
    • español
  • Sobre
    • RI Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
  • English 
    • português (Brasil)
    • English
    • español
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Escola Paulista de Medicina (EPM)
  • EPM - Artigos
  • View Item
  •   DSpace Home
  • Escola Paulista de Medicina (EPM)
  • EPM - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Calcium transport in gill cells of Ucides cordatus, a mangrove crab living in variable salinity environments

Thumbnail
View/Open
WOS000324013500022.pdf (292.0Kb)
Date
2013-10-01
Author
Leite, Vanessa Pisani [UNIFESP]
Zanotto, F. P.
Type
Artigo
ISSN
1095-6433
Is part of
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology
DOI
10.1016/j.cbpa.2013.07.012
Metadata
Show full item record
Abstract
Crustaceans show discontinuous growth and have been used as a model system for studying cellular mechanisms of calcium transport, which is the main mineral found in their exoskeleton. Ucides cordatus, a mangrove crab, is naturally exposed to fluctuations in calcium and salinity. To study calcium transport in this species during isosmotic conditions, dissociated gill cells were marked with fluo-3 and intracellular Ca2+ change was followed by adding extracellular Ca2+ as CaCl2 (0, 0.1, 0.25, 0.50, 1.0 and 5 mM), together with different inhibitors. for control gill cells, Ca2+ transport followed Michaelis-Menten kinetics with V-max = 0.137 +/- 0.001 Delta Ca(2+)i (mu M x 22.10(4) cells(-1) x 180 s(-1); N = 4; r(2) = 0.99); K-m = 0.989 +/- 0.027 mM. the use of different inhibitors for gill cells showed that amiloride (Na+/Ca2+ exchange inhibitor) inhibited 80% of Ca2+ transport in gill cells (V-max). KB-R, an inhibitor of Ca influx in vertebrates, similarly caused a decrease in Ca2+ transport and verapamil (Ca2+ channel inhibitor) had no effect on Ca2+ transport, while nifedipine (another Ca2+ channel inhibitor) caused a 20% decrease in Ca2+ affinity compared to control values. Ouabain, on the other hand, caused no change in Ca2+ transport while vanadate increased the concentration of intracellular calcium through inhibition of Ca2+ efflux probably through the plasma membrane Ca2+-ATPase. Results show that transport kinetics for Ca2+ in these crabs under isosmotic conditions is lower compared to a hyper-regulator freshwater crab Dilocarcinus pagei studied earlier using fluorescent Ca2+ probes. These kinds of studies will help understanding the comparative mechanisms underlying the evolution of Ca transport in crabs living in different environments. (C) 2013 Elsevier Inc. All rights reserved.
Citation
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology. New York: Elsevier B.V., v. 166, n. 2, p. 370-374, 2013.
Keywords
Calcium transport
Calcium homeostasis
Gill cells
Mangrove crabs
Ucides cordatus
Hypo-hyper-regulator
Sponsorship
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
URI
http://repositorio.unifesp.br/handle/11600/36771
Collections
  • EPM - Artigos [17701]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV