• RI - Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
    • português (Brasil)
    • English
    • español
  • Sobre
    • RI Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
  • English 
    • português (Brasil)
    • English
    • español
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Escola Paulista de Medicina (EPM)
  • EPM - Artigos
  • View Item
  •   DSpace Home
  • Escola Paulista de Medicina (EPM)
  • EPM - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of Protein Corona on the Transport of Molecules into Cells by Mesoporous Silica Nanoparticles

Thumbnail
Date
2013-09-11
Author
Paula, Amauri J.
Araujo Junior, Roberto T. [UNIFESP]
Martinez, Diego Stefani T.
Paredes-Gamero, Edgar J. [UNIFESP]
Nader, Helena B. [UNIFESP]
Duran, Nelson
Justo, Giselle Z. [UNIFESP]
Alves, Oswaldo Luiz
Type
Artigo
ISSN
1944-8244
Is part of
Acs Applied Materials & Interfaces
DOI
10.1021/am4014693
Metadata
Show full item record
Abstract
Although there are several studies reporting the promising biological efficiency of mesoporous silica nanoparticles (loaded with antitumoral drugs) against cancer cells and tumors, there are no reports on the influence of the bio-nano interface interactions on the molecular diffusion process occurring along their pores. in this context, we show here that the protein coating formed on multifunctionalized colloidal mesoporous silica nanoparticles (MSNs) dispersed in a cell culture medium decreases the release of camptothecin (CPT, a hydrophobic antitumoral drug) from the pores of MSNs. This effect is related to the adsorption of biomolecules on the nanoparticle surface, which partially blocks the pores. Parallely, the hydrophobic functionalization inside the pores can offer suitable sites for the adsorption of other molecules present in the cell culture medium depending on the hydrophobicity, size, and conformation aspects of these molecules and adsorption sites of MSNs. Thus, the molecular cargo loaded in the pores (i.e. CPT) can be replaced by specific molecules present in the dispersion medium. As a consequence, we show that a non-permeable cellular staining molecule such as SYTOX green can be incorporated in MSNs through this mechanism and internalized by cells in an artificial fashion. By extrapolating this phenomenon for applications. in vivo, one has to consider now the possible manifestation of unpredicted biological effects from the use of porous silica nanoparticles and others with similar structure due to these internalization aspects.
Citation
Acs Applied Materials & Interfaces. Washington: Amer Chemical Soc, v. 5, n. 17, p. 8387-8393, 2013.
Keywords
mesoporous silica
colloidal nanoparticles
biomolecules' interaction
bovine serum albumin
protein corona
drug delivery
Sponsorship
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
INCT-Inomat
URI
http://repositorio.unifesp.br/handle/11600/36751
Collections
  • EPM - Artigos [17701]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV