• RI - Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
    • português (Brasil)
    • English
    • español
  • Sobre
    • RI Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
  • English 
    • português (Brasil)
    • English
    • español
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Instituto de Ciência e Tecnologia (ICT)
  • ICT - Artigos
  • View Item
  •   DSpace Home
  • Instituto de Ciência e Tecnologia (ICT)
  • ICT - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Competing regression models for longitudinal data

Thumbnail
Date
2012-03-01
Author
Alencar, Airlane P.
Singer, Julio M.
Rocha, Francisco Marcelo M. [UNIFESP]
Type
Artigo
ISSN
0323-3847
Is part of
Biometrical Journal
DOI
10.1002/bimj.201100056
Metadata
Show full item record
Abstract
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretestposttest longitudinal data. in particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses.
Citation
Biometrical Journal. Hoboken: Wiley-Blackwell, v. 54, n. 2, p. 214-229, 2012.
Keywords
Estimating equations method
Generalized linear models
Longitudinal data
Mixed models
Pretest
posttest measures
Sponsorship
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
URI
http://repositorio.unifesp.br/handle/11600/34654
Collections
  • ICT - Artigos [439]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV