Comparative study of the effects of low-intensity pulsed ultra-sound and low level laser therapy on injured muscle repair

Data
2011-01-01
Tipo
Trabalho apresentado em evento
Título da Revista
ISSN da Revista
Título de Volume
Resumo
Muscle tissue is one of the most frequently affected by injury, whether during sports activities, or work activities. in this context, biochemical and biophysical resources have been studied to minimize the time of muscle regeneration. Among these, low intensity pulsed ultrasound (US) and low level laser therapy (LLLT) may be highlighted. Despite a series of evidences about the positive effects of these resources in the process of tissue regeneration, the cellular and morphological changes triggered by LLLT and U. S. are still largely unknown. Thus, the aim of this study was to investigate the effects of US and LLLT on muscle repair after cryolesion by means of histopathological analysis and immunohistochemistry for COX-2. A total of thirty five male Wistar rats were randomly distributed into 4 groups: intact control group; injured control group: muscle injured animals without any treatment; laser treated group: muscle injured animals treated with 830 nm laser and ultra-sound treated group: muscle injured animals treated with US. the treatments started 24 hours post-surgery and were performed during 6 sessions. the animals exposed to lasertherapy pointed out minor degenerative changes of muscle tissue. in the same way, exposure to ultrasound was able to reduce tissue injuries induced by cryolesion, but less intense than laser therapy. Strong COX-2 positive cells were found in rats submitted to cryolesion only, whereas COX-2 immunoexpression was lower in laser treated or ultrasound treated groups. in summary, this study reveals that both lasertherapy and ultrasound have positive effects on muscle repair in rats.
Descrição
Citação
Mechanisms for Low-light Therapy Vi. Bellingham: Spie-int Soc Optical Engineering, v. 7887, 13 p., 2011.