• RI - Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
    • português (Brasil)
    • English
    • español
  • Sobre
    • RI Unifesp
    • Documentos
    • Tutoriais
    • Perguntas frequentes
    • Atendimento
    • Equipe
  • English 
    • português (Brasil)
    • English
    • español
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Escola Paulista de Medicina (EPM)
  • EPM - Artigos
  • View Item
  •   DSpace Home
  • Escola Paulista de Medicina (EPM)
  • EPM - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs)

Thumbnail
Date
2011-01-01
Author
Herculano-Houzel, Suzana
Ribeiro, Pedro
Campos, Leandro
Silva, Alexandre Valotta da [UNIFESP]
Torres, Laila Brito [UNIFESP]
Catania, Kenneth C.
Kaas, Jon H.
Type
Artigo
ISSN
0006-8977
Is part of
Brain Behavior and Evolution
DOI
10.1159/000330825
Metadata
Show full item record
Abstract
Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. in rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006; 103: 12138-12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010; 76: 32-44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. the conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum. Copyright (C) 2011 S. Karger AG, Basel
Citation
Brain Behavior and Evolution. Basel: Karger, v. 78, n. 4, p. 302-314, 2011.
Keywords
Rodents
Brain size
Evolution
Neurons
Glia
Glires
Sponsorship
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
James S. McDonnell Foundation
NSF
NEI
URI
http://repositorio.unifesp.br/handle/11600/33212
Collections
  • EPM - Artigos [17701]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy Submit DateThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Submit Date

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Contact Us
Theme by 
Atmire NV