Navegando por Palavras-chave "Medidas de instance hardness"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
- ItemAcesso aberto (Open Access)Usando medidas de dificuldade de instâncias em curriculum learning(Universidade Federal de São Paulo, 2023-05-29) Nunes, Gustavo Henrique [UNIFESP]; Lorena, Ana Carolina; http://lattes.cnpq.br/3451628262694747; http://lattes.cnpq.br/9898732960998485As Redes Neurais Profundas (Deep Learning Networks) têm apresentado resultados no estado da arte em diversas tarefas desafiadoras, como na análise e classificação de imagens, vídeos e texto. Contudo, o seu treinamento é em geral custoso e a obtenção de melhores resultados preditivos depende de diversos fatores. Uma das alternativas propostas na literatura para acelerar o treinamento dessas redes e obter um bom desempenho preditivo é o Curriculum Learning (CL). No CL, os dados disponíveis para treinamento das redes são apresentados de maneira ordenada, em que observações de menor grau de dificuldade são apresentadas primeiro e o nível de dificuldade das observações apresentadas é progressivamente aumentado. Neste trabalho propõe-se o uso de medidas de dificuldade de instâncias (instance hardness measures - IHM), conhecidas na literatura por oferecerem diferentes perspectivas do nível de dificuldade de cada observação em um conjunto de dados, para realizar essa ordenação. Os resultados experimentais obtidos para o conjunto CIFAR-100 demonstram que a utilização do CL trouxe a maior acurácia preditiva em dez das vinte superclasses do conjunto de dados. Na sequência, a metodologia tradicional de treinamento Vanilla alcançou a maior acurácia preditiva em oito superclasses e uma ordenação aleatória (Random) se sobressaiu em duas. Com o intuito de verificar se os resultados poderiam ser melhorados, foram executados diversos experimentos adicionais, em que foi variado o parâmetro de apresentação de novas instâncias durante o treinamento, alterada a rede de extração de características e avaliada a utilização de métodos de agregação de medidas. Esses experimentos melhoraram ainda mais as acurácias preditivas em superclasses que o CL já havia trazido os melhores resultados, mas em superclasses que o Vanilla se saiu melhor isso não ocorreu.