Navegando por Palavras-chave "GPER"
Agora exibindo 1 - 3 de 3
Resultados por página
Opções de Ordenação
- ItemSomente Metadadados17Beta-Estradiol Signaling and Regulation of Proliferation and Apoptosis of Rat Sertoli Cells(Soc Study Reproduction, 2012-04-01) Royer, Carine [UNIFESP]; Lucas, Thais Fabiana Gameiro [UNIFESP]; Lazari, Maria de Fatima Magalhaes [UNIFESP]; Porto, Catarina Segreti [UNIFESP]; Universidade Federal de São Paulo (UNIFESP)The aim of the present study was to investigate the intracellular signaling events downstream of the classical estrogen receptors (ESRs) and G protein-coupled estrogen receptor 1 (GPER) involved in regulation of proliferation and apoptosis of rat Sertoli cells, in which we have previously described ESR1, ESR2, and GPER. ESRs play a role in Sertoli cell proliferation, and GPER, but not ESRs, plays a role modulating gene expression involved with apoptosis. the present study shows that 17beta-estradiol (E2) and the GPER-selective agonist G-1 rapidly activate phosphatidylinositol 3-kinase (PIK3)/serine threonine protein kinase (AKT) and cyclic AMP response element-binding (CREB) phosphorylation. E2 and the ESR1-selective agonist 4,4',4 ''-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) increase the expression of cyclin D1 (CCND1), whereas the ESR2-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and G-1 do not change the expression of this protein, suggesting that ESR1 is the upstream receptor regulating Sertoli cell proliferation. E2- or PPT-ESR1, through activation of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 3/1 (MAPK3/1) and PIK3 pathways, induces upregulation of CCND1. KG-501, the compound that disrupts the phospho-CREB/CREB binding protein (CBP) complex, does not change E2-or PPT-ESR1-mediated CCND1 expression, suggesting that phospho-CREB/cyclic AMP response element/CBP is not involved in the expression of this protein. E2- or G-1-GPER, through activation of EGFR/MAPK3/1 and PIK3 pathways, may be involved in the upregulation of antiapoptotic proteins BCL2 and BCL2L2. E2- or G-1-GPER/EGFR/MAPK3/1/phospho-CREB decreases BAX expression. Taken together, these results show a differential effect of E2-GPER on the CREB-mediated transcription of proapoptotic and antiapoptotic genes of the same BCL2 gene family. ESR1 and GPER can mediate the rapid E2 actions in the Sertoli cells, which in turn can modulate nuclear transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development, and to direct further studies, which may contribute to better understanding of the causes of male infertility.
- ItemSomente MetadadadosExpression and regulation of the estrogen receptors in PC-3 human prostate cancer cells(Elsevier Science Inc, 2016) Pisolato, Raisa [UNIFESP]; Lombardi, Ana Paola Giometti [UNIFESP]; Vicente, Carolina Meloni [UNIFESP]; Lucas, Thais Fabiana Gameiro [UNIFESP]; Lazari, Maria de Fatima Magalhaes [UNIFESP]; Porto, Catarina Segreti [UNIFESP]; Universidade Federal de São Paulo (UNIFESP)The aim of this study was to identify the expression, cellular localization and regulation of classic estrogen receptors ER alpha, and ER beta, ER-alpha 36 isoform and GPER in the androgen-independent prostate cancer cell line PC-3. In addition, we evaluated the relative contribution of these receptors to the activation of the ERK1/2 (extracellular signal-regulated protein kinases) signaling pathway. These four estrogen receptors were detected by Western blot assays and were shown by immunofluorescence assays to localize preferentially in extranuclear regions of PC-3 cells. In addition, treatment with 17 beta-estradiol (E2) (1 mu M) for 24 h led to down-regulation of the classic estrogen receptors, whereas E2 at physiological concentration (0.1 nM) for 24 h tended to increase the levels of ER alpha and ER beta. Furthermore, the ER alpha-selective agonist PPT selectively increased the expression of ER beta and the ER beta-selective agonist DPN increased ER alpha levels. None of these treatments affected expression of the ER-alpha 36 isoform. The unusual cytoplasmic localization of the classic estrogen receptors in these cells differs from the nuclear localization in the majority of estrogen target cells and suggests that rapid signaling pathways may be preferentially activated. In fact, treatment with selective agonists of ER alpha, ER beta and GPER induced ERK1/2 phosphorylation that was blocked by the respective antagonists. On the other hand, activation of ERK1/2 induced by E2 may involve additional mechanisms because it was not blocked by the three antagonists. Taken together, the results indicate that there is a crosstalk between ER alpha and ER beta to regulate the expression of each other, and suggest the involvement of other receptors, such as ER-alpha 36, inthe rapid ERK1/2 activation by E2. The identification of new isoforms of-ERs, regulation of the receptors and signaling pathways is important to develop new therapeutic strategies for the castration-resistant prostate cancer. (C) 2016 Elsevier Inc. All rights reserved.
- ItemSomente MetadadadosExpression and Signaling of G Protein-Coupled Estrogen Receptor 1 (GPER) in Rat Sertoli Cells(Soc Study Reproduction, 2010-08-01) Lucas, Thais Fabiana Gameiro [UNIFESP]; Royer, Carine [UNIFESP]; Siu, Erica Rosanna [UNIFESP]; Lazari, Maria de Fatima Magalhaes [UNIFESP]; Porto, Catarina Segreti [UNIFESP]; Universidade Federal de São Paulo (UNIFESP)The aim of the present study was to investigate the expression and signaling of the G protein-coupled estrogen receptor 1 (GPER) in cultured immature rat Sertoli cells-in which we have previously described the classical estrogen receptors (ESR1 and ESR2). Expression of GPER in cultured Sertoli cells from 15-day-old rats was detected by RT-PCR and immunoassays. Gper transcripts also were present in testes from 5-, 15-, and 120-day-old rats. Short-term treatment of Sertoli cells with 17beta-estradiol (E2), the GPER agonist G-1, or the ESR antagonist ICI 182,780 (ICI) rapidly activated MAPK3/1 (ERK1/2), even after down-regulation of ESR1 and ESR2, suggesting a role for GPER in the rapid E2 action in these cells. MAPK3/1 phosphorylation induced by ICI or G-1 was blocked by pertussis toxin, selective inhibitor of the SRC family of protein tyrosine kinases, metalloprotease inhibitor, MAP2K1/2 inhibitor, and epidermal growth factor receptor (EGFR) kinase inhibitor. Furthermore, E2, but not G-1, induced up-regulation of cyclin D1 in the Sertoli cells. This effect was blocked by ICI. E2 and G-1 decreased BAX and increased BCL2 expression and these effects were blocked by MAP2K1/2 inhibitor and EGFR kinase inhibitor. the pretreatment with ICI did not block the effect of E2. Taken together, these results indicate that in Sertoli cells 1) GPER-mediated MAPK3/1 activation occurs via EGFR transactivation through G protein beta gamma subunits that promote SRC-mediated metalloprotease-dependent release of EGFR ligands, which bind to EGFR and lead to MAPK3/1 phosphorylation; 2) E2-ESRs play a role in Sertoli cell proliferation; and 3) E2-GPER may regulate gene expression involved with apoptosis. ESR and GPER may mediate actions important for Sertoli cell function and maintenance of normal testis development and homeostasis.