Navegando por Palavras-chave "Aprendizado de máquina automatizado"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
- ItemAcesso aberto (Open Access)Auto-ML para manutenção industrial 4.0(Universidade Federal de São Paulo, 2024-02-27) Huarayo Quispe, Joel Frank [UNIFESP]; Berton, Lilian [UNIFESP]; http://lattes.cnpq.br/9064767888093340; http://lattes.cnpq.br/3740015935039713A Manutenção Industrial 4.0 tem sido uma área em constante evolução, onde a utilização de técnicas de aprendizado de máquina e inteligência artificial desempenham um papel crucial para aumentar a eficiência, a previsibilidade e a confiabilidade dos processos industriais. Neste contexto, o presente trabalho tem como objetivo investigar a aplicação do AutoML (Automated Machine Learning) na otimização de processos de manutenção industrial. O AutoML é uma abordagem inovadora que permite automatizar etapas importantes do fluxo de trabalho de aprendizado de máquina, como seleção de modelos, pré-processamento de dados e ajuste de hiperparâmetros, possibilitando que profissionais com pouca experiência em ciência de dados também possam criar modelos de qualidade. Este trabalho abordou três principais aspectos relacionados ao AutoML na indústria. Em primeiro lugar, foi realizada uma revisão sistemática da literatura sobre o uso de AutoML em contextos industriais, examinando estudos relevantes nos últimos anos. Em segundo lugar, foi conduzido um comparativo entre três bibliotecas de AutoML amplamente utilizadas (H2O, Pycaret e TPOT), analisando diversos critérios como características e requisitos, integração de dados, preparação de dados, modelagem, desempenho, implantação e aplicabilidade específica para cenários industriais. Testes foram realizados considerando três datasets com problemas industriais envolvendo regressão e classificação para otimização de produção e previsão de falhas de equipamentos. Por fim, foi desenvolvido um módulo de imputação de dados personalizado para a biblioteca TPOT2, com o objetivo de lidar de forma eficaz com dados ausentes ou incompletos encontrados em ambientes industriais. Essas três abordagens em conjunto contribuíram para uma compreensão mais abrangente do uso de AutoML na indústria e para o desenvolvimento de soluções práticas e eficazes para os desafios enfrentados nesse contexto.