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A modificação química do material lamelar K
4
Nb

6
O

17
 foi investigada sistematicamente 

através da reação de sua forma protônica (H
2
K

2
Nb

6
O

17
) em soluções alcalinas contendo os cátions 

tetrametilamônio (tma+), tetraetilamônio (tea+) ou tetrapropilamônio (tpa+). A quantidade intercalada 
corresponde a 50% (para tma+), 25% (para tea+) e 15% (para tpa+) da carga negativa do H

2
K

2
Nb

6
O

17 

(considerando a troca iônica na região interlamelar I). As amostras de hexaniobato apresentam 
reflexões basais (020) de 23,0, 26,3 e 26,5 Å quando intercaladas, respectivamente, com tma+, 
tea+ e tpa+. Aquecendo-se as amostras acima de 200-250 oC, observa-se a liberação de CO

2
; a 

reação de eliminação de Hofmann também é observada para as amostras de hexaniobato-tpa+. As 
imagens de microscopia eletrônica de varredura mostram a presença predominante de partículas 
em forma de placas; partículas em forma de bastões também são observadas nas amostras contendo 
íons volumosos. A reação de intercalação é promovida na ordem tma+ > tea+ > tpa+, enquanto a 
formação de uma dispersão de partículas coloidais é facilitada na ordem inversa. 

Chemical modification of the layered K
4
Nb

6
O

17
 material was systematically investigated 

through the reaction of its proton-exchanged form (H
2
K

2
Nb

6
O

17
) in alkaline solutions containing 

tetramethylammonium (tma+), tetraethylammonium (tea+) or tetrapropylammonium (tpa+) 
cations. The intercalated amount reaches 50% (for tma+), 25% (for tea+) and 15% (for tpa+) of the 
H

2
K

2
Nb

6
O

17
 negative charge (concerning the exchange at interlayer I) due to the steric hindrance of 

larger cations. Hexaniobate samples present (020) basal reflections equal to 23.0, 26.3 and 26.5 Å 
once intercalated respectively with tma+, tea+ and tpa+. When samples are heated above 200‑250 oC, 
CO

2
 evolution is observed; Hofmann elimination reaction is also detected for hexaniobate-tpa+ 

samples. Scanning electron microscopy images show the predominance of plate-like particles; 
stick-like particles are also observed for samples containing bulky ions. The intercalation reaction 
is promoted in the order tma+ > tea+ > tpa+, while the formation of a dispersion of colloidal particles 
is facilitated in the inverse order. 
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Introduction 

New materials have been prepared combining 
chemical species that show unlike properties such as 
organic, inorganic and biochemicals in order to develop 
systems with improved or unique performance. However, 
the design of these hybrid materials requires chemical 
strategies to compatibilize so dissimilar species at the 
nanoscopic domain. One plausible approach demands the 

use of chemical reactions or processes that enhance the 
physicochemical interactions among the counterparts.

Considering inorganic phases, suitable reactions to 
increase the interaction with organic species consist in 
(i) functionalization of the inorganic surfaces through 
covalent bonds with appropriated pendent groups or 
(ii)  ion exchange of charged species that neutralize 
inorganic surfaces by proper ions.1 Chemical modification 
of inorganic nanostructures or nanocrystals has deserved 
special attention in the recent literature.1,2 Organic-
inorganic and biochemical-inorganic hybrid materials 
can be explored in diversified studies concerning the 
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preparation of nanostructured thin-films, macro- or 
mesoporous solids, biomaterials, biosensors, polymer 
nanocomposites, catalysts and photocatalysts, devices for 
generation of photocurrent or photoluminescence, and 
hierarchical structures.1,2 

Among the inorganic materials, the layered frameworks 
can produce nanostructured hybrid materials by intercalation 
of guest species between the layers or reassemblage of the 
anisotropic nanosheets produced in an exfoliation process. 
Layered niobates are an important class of inorganic 
materials that have some interesting characteristics such as 
semiconducting property, photosensitivity, acidic sites, high 
aspect ratios, chemical stability in a large range of pH and 
high loading capability. They are constituted of negative 
layers of NbO

6
 octahedral units (linked by corner and/or 

edge) and potassium cations between adjacent layers.3

Chemical modification of the niobate interlayer region 
and surface properties based on functionalization reactions 
can be achieved using the proton exchanged phases. 
Organic groups covalently bonded to the interlayer and 
external surfaces of niobate materials were obtained by 
reaction between the acidic Nb-OH group and n-alcohols 
such as methanol, ethanol and others with longer alkyl 
chains,4 polyethers of CH

3
(OCH

2
CH

2
)

m
OH (1 ≤ m ≤ 4) 

composition,5 trifluoracetate6 and silanes forming Nb‑O‑Si 
bonds.7 

As mentioned above, another strategy to perform the 
chemical modification of niobate materials comprises the 
intercalation of organic cations. In the pioneer work of 
Lagaly and Beneke,8 interlayer simple inorganic cations 
were exchanged by n-alkylammonium (C

4
-C

18
) ions. Later 

on, other papers were published about the intercalation of 
n-alkylammonium9 and also of substituted alkylammonium 
ions (hydroxyl and diamines)10 into layered niobate 
materials. 

One important motivation for the replacement of simple 
cations such as potassium by organic ions is to overcome 
the high layer charge density of niobates that precludes 
the intercalation of bulky species. As the organic modified 
derivatives are more reactive than the pristine solids, they 
are used as a pre-intercalated precursor for preparation 
of niobates intercalated with bulky species such as 
porphyrins,11 rhodamine12 and anthocyanines,13 as well as 
for adsorption of organic compounds like phenols.14 

Chemical modification of niobate by the intercalation 
route is mainly driven by the fact that the pre-intercalation 
with polyether monoamine surfactant,15 tetraalkylammonium 
ion (from tetrabutylammonium hydroxide solutions),16 and 
n-alkylammonium ion17 promotes the exfoliation of layered 
niobate. This process produces a colloidal dispersion of 
inorganic nanosheets, suitable for preparation of thin films 

to generate photocurrent using [Ru(bpy)
3
]2+ sensitizer,18 

photoluminescence from rare earth ions,19 molecular 
hydrogen from water under illumination,20 protonic 
conductor,21 Li+ conductor,22 interstratified materials with 
layered double hydroxides,23 acid catalysts,24 macroporous 
niobate,25 biosensors based on hemoglobin26 and other 
materials, as reviewed recently.27 

In addition, niobate nanosheets in colloidal dispersion 
can undergo a curling process forming tubular or scrolled 
inorganic nanoparticles under soft chemical conditions.28 
Niobate particles with such morphology can form porous 
inorganic-inorganic composites with aluminosilicate29 
or can incorporate cationic porphyrin30 and complexes 
that are mimics of copper oxidases.31 Nanoscrolls having 
[Ru(bpy)

3
]2+ as the sensitizer and edta as the sacrificial 

electron donor can produce molecular hydrogen from water 
splitting with visible light.32 

In the present work, we conducted the chemical 
modification of the layered niobate of K

4
Nb

6
O

17
 

composition through reaction of its proton-exchanged 
form in tetraalkylammonium hydroxide solutions. Single 
crystal X-ray diffractometry studies of hexaniobate phases 
(M

4
Nb

6
O

17
, where M = K+, Rb+ or Cs+) indicate that the unit 

cells are composed of four stacked layers along the b-axis 
direction and each layer is constituted of double NbO

6
 chains 

in which one octahedron out of two is periodically missing 
in the second chain.33 The unit cell of anhydrous K

4
Nb

6
O

17
 

is orthorhombic (a = 7.83Å, b = 33.21 Å, c  =  6.46 Å) 
and the stacked negative layers yield two distinct interlayer 
regions, usually designated I and II, as seen in Figure 1. The 
regions are crystallographically distinct and also display 
unusual intercalation properties (perhaps due to the fact 
that only interlayer region I can be hydrated,33 which is 
important for occurrence of exchange). Depending on the 
cation electrical charge and the experimental conditions, 
ion-exchange reactions take place only at interlayer I.34,35 
As a result of this peculiar feature, the cation-exchanged 
product has a layered structure with a second staging 
arrangement. Due to the high crystallinity of layered 
hexaniobate, this phenomenon can be experimentally 
detected using X-ray diffractometry34,36 or by the indirect 
determination of exfoliated particles thickness.13,16,17,28 
K

4
Nb

6
O

17
·3H

2
O structural data from atomic force 

microscopy (AFM) have shown a preferential surface 
cleavage at the water-containing interlayer I; cleavage at 
interlayer II is unlikely.37 According to that, hydrogen bonds 
established by water molecules in interlayer I are weaker 
than the ionic bonds between the K+ ion and oxygen atoms 
in interlayer II (Figure 1). 

Potassium hexaniobate material can be changed 
to the protonic form when suspended in acid aqueous 
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solution. Under mild conditions, K+ ion exchange is partial 
(H

x
K

4‑x
Nb

6
O

17
);16,36 considering the chemical properties 

of interlayers I and II mentioned above, it is usually 
proposed that H+/H

3
O+ ions are present at interlayer I. 

The segregation of proton ions has been validated through 
experiments where the protonic hexaniobate is used as 
precursor to obtain the exfoliated material. Characterization 
of exfoliated particles by AFM17,18,28 permits to estimate the 
particles thickness and distinguish particles constituted 
by two layers containing sandwiched K+ ions. Using 
high resolution electron microscopy (HRTEM) images 
of restacked hexaniobate obtained from a dispersion of 
exfoliated particles, we observed bright lines related to 
organic species intercalated in region I and dark lines about 
14 Å thick.13 This value is very close to that obtained by the 
sum of two hexaniobate layers thickness and the interlayer II  
occupied by K+ ions (4.1 Å plus 9.3 Å; see Figure 1). This 
result corroborates the proposal of the partial exchange 
of H+/H

3
O+ ions only into interlayer I and the posterior 

exfoliation producing bilayers of [K
2
Nb

6
O

17
]2- composition. 

Ellipsometric data of hexaniobate films prepared by layer-
by-layer technique also allow inferring the thickness of 
exfoliated particles and support the assumption of the low 
reactivity of interlayer II.16 

Studies of the reaction between the hexaniobate protonic 
form (H

x
K

4-x
Nb

6
O

17
) and alkylammonium hydroxide 

solutions are restricted to the tetrabutylammonium 
(tba+) hydroxide solution.16,24,38 H

x
K

4-x
Nb

6
O

17
 can react 

in tetraalkylammonium hydroxide solutions producing 
water and two kinds of materials: (i) intercalated 
materials having the alkylammonium ion between niobate 
layers, (ii)  dispersions of niobate nanosheets. We have 
demonstrated that, in tba+ hydroxide solutions, about 
65  wt.% of the sample is delaminated and that bulky 
tba+ cations are not able to intercalate in hexaniobate.39 
The material recovered from the colloidal dispersions of 
hexaniobate nanosheets has only 10% of H+ ions exchanged 

by tba+, since the size and charge of the organic cation 
preclude the balance of all niobate negative layer charge. 

In this study, the investigation was extended to other 
tetraalkylammonium (R

4
N+, where R = methyl, ethyl, 

propyl) hydroxide solutions, in order to investigate the 
influence of the carbon chain and the R

4
N+/H+-niobate molar 

ratio on the intercalation reaction into proton exchanged 
hexaniobate material. Solid samples were analyzed by 
powder X-ray diffractometry (XRD), thermogravimetric 
analyses coupled to mass spectrometry (TGA-MS), 
elemental analysis, infrared (FTIR) and FT-Raman 
spectroscopies and scanning electron microscopy (SEM). 
To our knowledge, this is the first time that a systematic 
study about modification of the hexaniobate structure 
and properties through reaction in tetraalkylammonium 
hydroxide solutions is performed. 

Experimental 

Chemicals 

Nb
2
O

5
 was obtained from Companhia Brasileira de 

Metalurgia e Mineração (CBMM, Brazil) and K
2
CO

3
 

was supplied by Merck. Aqueous solutions containing 
25% tetramethylammonium (tma+) hydroxide and 25% 
tetraethylammonium (tea+) hydroxide were obtained 
from Acros Organics, while the 1 mol L-1 solution of 
tetrapropylammonium (tpa+) hydroxide was obtained from 
Aldrich. All reagents were used as received.

Preparation of H
2
K

2
Nb

6
O

17
 

K
4
Nb

6
O

17
 was prepared by heating a stoichiometric 

mixture of Nb
2
O

5
 and K

2
CO

3
 at 1100 oC for 10 h (ceramic 

method), as previously described.11 The isolation of the 
orthorhombic hexaniobate crystal structure with d

040 
= 9.4 Å 

was confirmed by XRD. The H+-exchanged form was 
prepared by refluxing a suspension of K

4
Nb

6
O

17
 in HNO

3
 

6 mol L-1 for 3 days. Afterwards, the isolated material was 
characterized by XRD and thermogravimetric analyses 
(TGA) as previously reported.36 These data confirmed 
the isolation of the acidic hexaniobate of composition 
H

2
K

2
Nb

6
O

17
·H

2
O with d

040 
= 8.0 Å. 

Preparation of hexaniobate-R
4
N+ (R=methyl, ethyl, propyl) 

samples 

Tetraalkylammonium (R
4
N+) hydroxide solutions 

containing molar ratios R
4
N+/H+-niobate (where H+-niobate 

represents the total amount of H+ ion in H
2
K

2
Nb

6
O

17
) 

of 0.25, 0.50, 0.75 and 1.0 were mixed with 0.50 g of 

Figure 1. Representation of the K
4
Nb

6
O

17
·3H

2
O structure. In the right hand 

side, solid and dashed lines among the interlayer species and the NbO
6
 

units represent the ionic interactions and hydrogen bonds.



Shiguihara et al. 1369Vol. 21, No. 7, 2010

H
2
K

2
Nb

6
O

17
 and the final volume of the suspensions was 

adjusted to 250 mL, as reported in a previous study.39 
Capped flasks containing fixed amounts of H

2
K

2
Nb

6
O

17
 

in (R
4
N)OH aqueous solution were maintained under 

stirring at room temperature for two weeks. The shaker 
was switched off overnight. After that, the flasks were kept 
without stirring for one day, and the opaque supernatants 
were separated from the deposited solids (i.e., the sediment 
at the bottom of the flasks) using a Pasteur pipette. 
Afterwards, the deposited solid fractions were washed with 
water and dried under vacuum in a desiccator with silica gel. 
These solid samples are here abbreviated as R

4
N(XX)dep, 

where XX is the R
4
N+/H+-niobate ratio used in the 

experiment and “dep” means “deposited”. In other words, 
regarding the general formula (R

4
N+)

x
H

2-x
K

2
Nb

6
O

17
, the 

value of x is ranging from 0.5 (when R
4
N+/H+ = 0.25) to 

2.0 (when R
4
N+/H+ = 1). 

In order to estimate the percentage of niobate in the 
deposited solid, the mass of the solid that remained at the 
bottom of the flasks (subtracted the organic content) was 
compared to the mass of H

2
K

2
Nb

6
O

17
 used in the experiment 

(0.50 g). 

Characterization methods 

Elemental analysis (C, H, N) were conducted on a Perkin 
Elmer 2400 analyzer at the Instituto de Química (Universidade 
de São Paulo - USP). XRD patterns of powdered samples 
were recorded on a Rigaku diffractometer model Miniflex 
using Cu-Ka radiation (1.541 Å, 30 kV and 15 mA). 
Mass spectrometry-coupled thermogravimetric analyses 
(TGA-MS) were recorded on a Netzsch thermoanalyser 
model STA 490 PC Luxx coupled to an Aëolos 403C 
mass-spectrometer, under synthetic air (50  mL min-1) 
at 10 oC min-1. Fourier transform infrared spectra (FTIR) 
were recorded on a Bomem spectrophotometer, model 
MB-102, with a reflectance accessory; the samples were 
diluted in solid KBr. Fourier-transform Raman (FT-
Raman) spectra were recorded in a FT-Raman Bruker 
FRS-100/S spectrometer using 1064 nm exciting radiation 
(Nd:YAG laser Coherent Compass 1064-500N) and a Ge 
detector. Scanning electron micrographs of gold-coated 
samples were recorded on a Leo 440i microscope with 
a SiLi detector (secondary electrons) at the Instituto de 
Geociências (Universidade de São Paulo - USP). 

Results and Discussion 

Carbon, nitrogen, hydrogen and water contents of 
all samples isolated from the H

2
K

2
Nb

6
O

17
 suspension 

in tetraalkylammonium hydroxide solution, as well 

as the proposed chemical formulas, are reported in 
the Supplementary Information (SI, Tables S1-S3). 
Figure 2 shows the relation between the nominal and 
experimental value of x regarding the general formula  
(R

4
N+)

x
H

2‑x
K

2
Nb

6
O

17
. It was noticed that, for tma+, tea+ 

and tpa+ ions, intercalation between the hexaniobate layers 
occurred, but only a limited amount of the organic cation 
can replace the H+/H

3
O+ ions. Besides, the amount of the 

layers negative charge neutralized by the organic ions 
decreases with the increasing carbon chain length of the 
tetraalkylammonium cation, almost certainly due to the 
superior steric hindrance of larger ions. The content of 
organic ammonium ions increases with the rise in the R

4
N+/H+ 

molar ratio, and the intercalated amount reaches 50% 
(R

4
N+ = tma+), 25% (R

4
N+ = tea+) and 15% (R

4
N+ = tpa+) 

of the negative charge of H
2
K

2
Nb

6
O

17
, concerning the 

exchange reaction only at the interlayer space I.

X-ray diffraction patterns of the protonic niobate and 
the R

4
N+-intercalated niobates are shown in Figure 3. The 

XRD pattern of H
2
K

2
Nb

6
O

17
 shows a basal spacing (d

040
) 

of 8.0 Å and the absence of the 020 diffraction peak, as 
expected.30,36,39,40� The calculated d

040
 value is consistent 

with the intercalation of one water molecule in the protonic 
phase.8 After the intercalation of R

4
N+ cations, the peak 

attributed to the 020 interplanar distance appears, as well 
as the second, third and fourth order reflections. The 
exception is observed with tba+, for which the diffraction 
pattern indicates that this cation does not intercalate into 
the hexaniobate. The shifts in the diffraction peaks of the 
niobate treated with tba+, as compared to the H

2
K

2
Nb

6
O

17
 

diffraction peaks, are not related to the alkylammonium 
intercalation; the corresponding increase in the basal 
spaces is too small for tba+ cation intercalation. The peak 
shifts can be attributed to the presence of H

2
K

2
Nb

6
O

17
 

Figure 2. Experimental versus nominal values of X in the general formula 
(R

4
N+)

x
H

2-x
K

2
Nb

6
O

17
, where R

4
N+ = tetraalkylammonium cation. 
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phases containing different amounts of interlayered water 
molecules.39 Abe et al.40 also observed a proton-exchanged 
phase having a 040 basal spacing of about 9 Å. 

Isolated hexaniobate-tma+ samples present basal 
reflections (0k0) equal to 23.0 Å (020), 11.5 Å (040) and 
7.79 Å (060), while hexaniobate-tea+ solids show basal 
spacings of 26.3 Å (020), 13.0 Å (040), 8.64 Å (060) and 
6.48 Å (080). For the hexaniobate-tpa+ samples, basal 
reflections are 26.5 Å (020), 13.1 Å (040) and 8.64 Å 
(060). Considering the 0k0 reflections where k = 2, 4, 6, 
the mean values of the b

o
 unit cell parameters are 46.4 Å, 

52.0 Å and 52.4 Å for the systems intercalated respectively 
with tma+, tea+ and tpa+. Based on the chemical properties 
of hexaniobate interlayers I and II, and also the fact that 
the precursor H

2
K

2
Nb

6
O

17
 has the H+/H

3
O+ ions located 

in interlayer I, we propose that the organic cations are 
preferentially intercalated in region I, as illustrated in 
Figure 4. Hence, proton-exchanged hexaniobate mixed with 
hydroxide solutions of small tetraalkylammonium cations  
generate mainly intercalated materials (reaction A in  
Figure 4), while bulky ions such as tba+ favor the formation 
of niobate nanosheets (reaction B in Figure 4). 

The intercalation of R
4
N+ ions only at interlayer I was 

evidenced in a previous study,13 in which the tea(0.50) 
sample was used as a precursor to intercalate flavylium 
cations (anthocyanins) between hexaniobate layers. The 

HRTEM image showed that the dark line thickness is 
compatible with [K

2
Nb

6
O

17
]2- layers.

The height of adjacent layers containing confined R
4
N+ 

cations can be determined by subtracting the values of the 
hexaniobate layer thickness (4.1 Å) and the basal spacing 
of a potassium filled interlayer (9.3 Å) from the calculated 
b

o
 unit cell parameter, as indicated in Figure 4. Thus the 

estimated gallery heights are 9.6 Å for tma+, 12.6 Å for 
tea+ and 12.8 Å for tpa+. These values could be compared 
to the radius of the organic cations in order to analyze the 
arrangement of the ions between the layers. However, there 
is a divergence of about 30 to 50% in the reported values 
estimated on various scales for R

4
N+ radii.41 In addition, 

hydrated radius should be assumed in the case of these 
cations, since TGA and elemental analysis data confirm 
the hydrated nature of the hexaniobate isolated samples 
(Table 1). Water molecular dynamics simulation of tma+ 
and tea+ solutions having chloride or bromide ions suggests 
that the distance between the nitrogen atom of the cation 
and the oxygen atom of the water in the first shell is about 
4.5-5 Å and also that water (as well as the anion) prefers 
the space between the alkyl groups.42 The hydration of 
tetraalkylammonium ions is affected by the counterion, 
which in this work is the hexaniobate layer (a macroanion). 
Therefore, the gallery heights calculated from XRD data 
are in agreement with the above mentioned works.

By analyzing the basal spacing observed for the three 
organic cations (Figure 3), it becomes apparent that the 
carbon chains in the tpa+ ions are bent inside the interlayer 
region, since it is expected a radius bigger than that of tea+ 
ions. The energy required to convert a trans-trans∙trans-
trans (tt∙tt) conformer into a trans-gauche∙trans-gauche 
(tg∙tg) conformer is low (about 1 kcal mol-1).43 Raman 
spectroscopy has been used to monitor (tt∙tt) and (tg∙tg) 
conformers of the tea+ ion through the spectral changes 
in the -CH

3
 rocking mode at 860-880 cm-1. In the case 

of hexaniobate-tetraalkylammonium samples, it is not 
possible to perform the Raman spectral analysis of the 

Figure 3. XRD patterns of H
2
K

2
Nb

6
O

17
, tma(0.50)dep, tea(0.50)dep, 

tpa(0.50)dep and tba(0.50)dep.

Figure 4. Schematic representation of the acid-base reaction between the 
hexaniobate acidic form and tetraalkylammonium hydroxide solutions.
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conformers because their bands are superimposed with 
the strong niobate layers bands, as shown further on. 
The broadening observed in the XRD pattern of tea+ and 
tpa+-intercalated niobates might be related to phases with 
different water contents and not to phases with different 
R

4
N+ content or arrangement inside the interlayer region, 

since the saturation of tetraalkylammonium cations inside 
the layers does not depend on the charge balance alone. 

It should be possible to estimate the amount of cation 
required to neutralize the negative charge of hexaniobate 
if the R

4
N+ radius (or its cross sectional area) was known. 

However, as discussed above, the cation radius depends on 
its hydration degree and also on the conformer stabilized 
into the layered material. The negative charge density of 
the niobate layer is 12.6 Å2/charge, and any R

4
N+ radius 

value already reported gives an area larger than that 
occupied by one hexaniobate negative charge. Thus, the 
steric hindrance precludes the neutralization of the whole 
charge of the inorganic structure by tetraalkylammonium 
cations supporting only one positive charge.

FTIR spectra of the deposited solids show absorptions 
bands of water, ammonium ions and niobate group 
(Figure  5), as follows:44,45 a strong and broad band at 
3300 cm‑1 and a medium-weak band at 1650 cm -1 assigned 
to n

as
(O-H) and to d

s
(H

2
O), respectively; bands at 1480 cm-1 

assigned to d
s
(CH

2
) of the organic cations; a strong and 

broad absorption band in the 900-600 cm-1 region related 
to the NbO

6
 units. Bands ascribed to the organic species 

do not appear in the spectrum of the tba(0.50)dep sample, 
because the intercalation does not occur.39 FTIR spectra 
of R

4
N+‑hexaniobate samples present weak bands in the 

3000-2800 cm-1 range, attributed to the asymmetrical 

and symmetrical stretching modes of methylene and 
methyl groups. The band related to the bending d

s
(CH

2
) 

mode is sensitive to the amount of tetraalkylammonium 
ions in the samples, once its intensity raises in the order 
tma+ > tea+ > tpa+, agreeing with elemental analyses and 

Figure 5. FTIR spectra of (a) H
2
K

2
Nb

6
O

17
, (b) tma(0.50)dep, (c) tea(0.50)

dep, (d) tpa(0.50)dep and (e) tba(0.50)dep.

Table 1. TGA-MS analysis under air: weight losses (wt.%) and identification of main released species

event 1
endo

event 2
endo

event 3
exo

event 4
exo

H
2
K

2
Nb

6
O

17
23-117 oC
Dm = 1.40%
m/z = 18 (H

2
O)

117-242 oC
Dm = 1.69%
m/z = 18 (H

2
O)

242-500 oC
Dm = 1.90%
m/z = 18 (H

2
O)

tma(0.50)dep 23-140 oC
Dm = 3.20%
m/z = 18 (H

2
O)

140-250 oC
Dm = 2.00%
m/z = 18 (H

2
O)

250-450 oC
Dm = 4.58%
m/z = 18 (H

2
O)

m/z = 44 (CO
2
)

450-850 oC
Dm = 3.83%
m/z = 18 (H

2
O)

m/z = 44 (CO
2
)

tea(0.50)dep 23-135 oC
Dm = 2.82%
m/z = 18 (H

2
O)

135-200 oC
Dm = 1.17%
m/z = 18 (H

2
O)

200-457 oC
Dm = 5.71%
m/z = 18 (H

2
O)

m/z = 44 (CO
2
)

457-800 oC
Dm = 3.60%
m/z = 18 (H

2
O)

m/z = 44 (CO
2
)

tpa(0.50)dep 23-150 oC
Dm = 2.50%
m/z = 18 (H

2
O)

150-215 oC
Dm = 0.48%
m/z = 18 (H

2
O)

215-450 oC
Dm = 3.90%
m/z = 18 (H

2
O)

m/z = 41 (propylene)
m/z = 43 (CH

3
CH

2
CH

2
)

m/z = 44 (CO
2
)

450-800 oC
Dm = 1.30%
m/z = 18 (H

2
O)

m/z = 44 (CO
2
)
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TGA data. The influence of R
4
N+ ions on the stretching 

modes of octahedral NbO
6 

groups could provoke 
modifications in the 900-700 cm-1 region, but they are 
not perceived in the infrared spectra. As discussed ahead, 
Raman spectra are more responsive to the presence of 
organic species.

Figure 6 shows the Raman spectra of K
4
Nb

6
O

17
, 

H
2
K

2
Nb

6
O

17 
and hexaniobate samples containing a low 

and the highest amount of intercalated tma+ ions. In the 
4000-2500 cm-1 region, the FTIR spectra of hexaniobate-
tetraalkylammonium systems are dominated by intense 
and broad bands arising from water, while the Raman 
spectra are nearly free from such interference. Bands 
related to C-H stretching modes are observed at 3032, 
2984, 2928 and 2822 cm-1 for (tma)dep samples; 2998, 
2948 and 2897 cm-1 for (tea)dep samples; and 3004, 2973, 
2938 and 2880 cm-1 for (tpa)dep samples. The bands at 
1453 and 757 cm-1 are assigned to the CH

3
 bending mode 

and the symmetric stretching vibration of the C
4
N+ group, 

respectively.46 

The very intense bands in the FT-Raman spectra showed 
in Figure 6 are characteristic of hexaniobate as follow: 
950-800 cm-1 (Nb-O terminal stretching mode of highly 
distorted NbO

6
 octahedra), 700-500 cm-1 (Nb-O stretching 

of slightly distorted octahedra) and 300-200 cm-1 (bending 
modes of the Nb-O-Nb linkages).45 The band at 900 cm-1 
shifts to 938 cm-1 after the replacement of K+ by H+/H

3
O+ 

ions, as reported previously.34,47� In the potassium form, 
the interlayer cations interact with the oxygen atoms of 
the inorganic layers and also with water molecules.33 
Replacement of K+ by protons increases the bond order 
of the short and terminal Nb-O bonds because H+ ions 
are probably shielded by the hydration sphere, precluding 
interaction with the layers.48� As can be seen in Figure 6, 
the partial substitution of protons by tma+ provokes the 
appearance of a new band at about 900 cm-1, suggesting 
an increase in the Nb=O bond order. The shoulder at about 
940 cm-1 in the spectrum of tma(1.0)dep can be attributed to 
the antisymmetric stretching vibration of the C

4
N+ group.46 

When the samples of hexaniobate saturated with the other 
tetraalkylammonium ions are considered (tea(1.0)dep and 
tpa(1.0)dep), the disappearance of the band at 938 cm-1 and 
the growth of a band at 900 cm-1 are also noticed. Hence, 
independently of the R

4
N+ ion intercalated, the band related 

to Nb=O shifts to 900 cm-1. The same decrease in intensity 
and displacement of the band at 938 cm-1 is observed 
when H

2
K

2
Nb

6
O

17
 is dehydrated, suggesting that, after 

elimination of the water molecules, H+ ions can establish 
a strong interaction with oxygen atoms, decreasing the 
Nb-O bond order.48 

TGA and C, H, N analysis data show that the amount 
of water in the interlayer region decreases when R

4
N+ 

cations are intercalated. Hence, the presence of the organic 
species should promote the enhancement of the interaction 
between H+ and Nb=O. The R

4
N+ cations can be localized 

more distant of Nb-O terminal groups situated on the layer. 
TGA and DTG-MS curves (in air) of H

2
K

2
Nb

6
O

17 
and 

the samples saturated with tetraalkylammonium cations 
are showed in Figures 7 and 8 respectively. It is possible to 
identify four main thermal steps of weight loss, as indicated 

Figure 6. FT-Raman spectra of K
4
Nb

6
O

17
, H

2
K

2
Nb

6
O

17
, tma(0.25)dep 

and tma(1.0)dep. 
Figure 7. TGA curves of H

2
K

2
Nb

6
O

17
, tma(0.50)dep, tea(0.50)dep and 

tpa(0.50)dep.
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in Table 1. According to mass spectrometry data, the first 
and the second events (from room temperature to about 
200-250 oC) correspond to release of the water molecules. 
The dehydration step at low temperature (up to about 
140-150  oC) can be assigned to the interparticles water 
release; the dehydration process at higher temperatures 
(event 2) should be due to the liberation of interlayer water 
molecules. The water content in the hexaniobate modified 
by organic cation intercalation shows a tendency to decrease 
in the order tma+ > tea+ > tpa+ (Table 1, event 2), which 
can be explained by the increase of the nonpolar surface 
of the tetraalkylammonium ions in the same order.49� 
Above ca. 250oC, the H

2
K

2
Nb

6
O

17
 sample undergoes a 

dehydroxylation reaction (event 3) producing Nb
2
O

5
, 

K
2
Nb

4
O

11
 and one water molecule per formula.36

For the hexaniobate samples intercalated with 
tetraalkylammonium cations, besides the dehydroxylation 
of the layers, event 3 also comprises the partial oxidation of 
guest ions, evidenced by the evolution of carbon dioxide. 
Mass spectra of gases released from hexaniobate-tpa+ 
samples during the third step of weight loss also present 
peaks assignable to propylene (most intense characteristic 
fragment appears at m/z 41) and the propyl fragment 
(CH

3
CH

2
CH

2
-), suggesting that a Hofmann elimination 

reaction also occurs: 

(CH
3
CH

2
CH

2
)
4
N+ → (CH

3
CH

2
CH

2
)
3
N + H+ + CH

3
CH=CH

2

Tripropylamine molecules can be protonated when 
produced and kept between the layers, undergoing 
progressive Hofmann elimination reaction and/or oxidative 
degradation under air. It is noticed that, for the smallest 
cations, release of olefins and trialkylamine is not observed 

Figure 8. DTG-MS curves of (a) H
2
K

2
Nb

6
O

17
, (b) tma(0.50)dep, (c) tea(0.50)dep and (d) tpa(0.50)dep.

under the present experimental conditions. Hofmann 
elimination reaction does not occur for tma+ but it could 
happen for tea+. Also, ammonia or nitrogen oxides have not 
been detected for any of the samples under the experimental 
conditions described in this work.

SEM images of some hexaniobate-R
4
N+ deposited 

solids show the existence of particles with different 
shapes according to the amount and nature of the 
tetraalkylammonium cation used. In the case of hexaniobate 
intercalated with tma+ and tea+, the images of all samples 
show a clear predominance of plate-like particles, as 
expected for the non-exfoliated layered hexaniobate. 
However, the presence of some stick-like particles mixed 
with the plate-like ones is observed in the SEM images 
of samples containing tpa+ (Figures 9a and 9b) and tba+ 
(Figure 9c). The amount of stick-like particles increases 
when the R

4
N+/H+ molar ratio used in the experiments is 

raised, as shown in Figures 9a and b.
For hexaniobate deposited solids obtained after contact 

with tba+ solutions for two weeks, spherical particles 
are also observed in minor quantities. With the images 
registered till now it is not possible to ascertain if these 
specific particle shapes are constituted of a single particle or 
an aggregation of smaller ones. The reason for the existence 
of these different kinds of particle shapes (influenced by 
the tetraalkylammonium cation) is not yet understood and 
it is now under investigation in our laboratory.

The weight of the solids deposited was evaluated for 
the three hexaniobate-R

4
N+ systems and revealed values of 

about 90, 86 and 40% for tma+, tea+ and tpa+ respectively. As 
reported previously39 in the same experimental conditions 
used in this work, tba+ ions kept 35 wt.% of particles in 
the deposited condition (while 65 wt.% of niobate particles 
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hexaniobate-tetraalkylammonium samples are washed in 
order to remove the non-intercalated cations, i.e., when the 
ionic strength decreases. The XRD pattern of a hexaniobate 
gel-like sample in the wet state does not show diffraction 
peaks (data not shown), suggesting that removing the ions by 
washing can lead to a long-range swelling of the layers and 
a disorganized arrangement of the hexaniobate sheets. The 
gel-like aspect was mainly observed for the hexaniobate-
tea+ samples. Bearing in mind the four tetraalkylammonium 
ions focused in the present work, tea+ has an intermediate 
character when the ion surface polarity and the electrostatic 
interactions established by the R

4
N+ ions are considered.49 

While tma+ (that shows high surface polarity) produces the 
most highly hydrated samples and tpa+ (or tba+) ions are 
bulky enough to promote a high delamination degree, tea+ 
ions have the better hydrophilicity/size relation to form a 
gel-like system. It is possible to infer that the gel is not 
constituted by exfoliated particles but by disorganized and 
long-range swelled particles. The tea(0.50)dep sample in 
the gel-like form was used to intercalate flavylium cations 
(anthocyanins) and the SEM and TEM images confirmed 
that the hexaniobate particles were not exfoliated.13 The 
particles morphology is different when compared to the 
images of hexaniobate-flavylium obtained from a colloidal 
dispersion of exfoliated nanosheets. 

Conclusions 

Intercalation of the tetraalkylammonium tma+, tea+ 
and tpa+ ions in H

2
K

2
Nb

6
O

17
 is promoted by an acid-base 

reaction, but steric hindrance of the cations precludes the 
neutralization of all interlayered H+ ions. Regarding the 
general formula (R

4
N+)

x
H

2-x
K

2
Nb

6
O

17
, the X value reaches 

about 1.0 for tma+ systems, 0.56 for tea+ samples and 0.31 
for tpa+ materials. X-ray diffraction patterns indicated that 
the gallery height of adjacent layers containing confined 
R

4
N+ species is compatible with a monolayer of hydrated 

ions and, in the case of samples with tpa+ ions, the carbon 
chain should be in a trans-gauche conformation. FTIR and 
FT-Raman spectra present bands related to water molecules, 
organic cations and the inorganic framework. The band 
assigned to the stretching of Nb=O group (pointing out to 
the interior of interlayer region) is shifted to low frequency 
due to an increase in the interaction between the niobyl 
group and the H+ ions. The presence of tetraalkylammonium 
ions decreases the H

2
O content between the layers; water 

molecules can shield the Nb=O…H+ interaction. 
TGA and DTG-MS curves support this interpretation, 

since the water content in the modified hexaniobate 
decreases in the order tma+ > tea+ > tpa+, i.e., when the 
nonpolar surface of the tetraalkylammonium ions increases. 

Figure 9. SEM images of (a) tpa(0.25)dep, (b) tpa(0.75)dep and (c) 
tba(0.75)dep.

develop a dispersion of nanosheets). Taking these results 
and Figure 4 into account, it is possible to claim that process 
A (intercalation) is promoted in the order tma+ > tea+ > tpa+, 
while process B (exfoliation) is facilitated in the inverse 
order: tba+ > tpa+ >> tea+ > tma+. Tetraalkylammonium 
ions are symmetric species and the positive charge is 
located on the nitrogen atom, what means that electrostatic 
attraction between the organic cation and the negative 
charged inorganic surface decreases if the cation diameter is 
increased. Hence, two factors can be considered important 
to drive the formation of niobate nanosheets from acidic-
hexaniobate in tetraalkylammonium hydroxide solutions: 
the R

4
N+ electrostatic attraction to the inorganic layers and 

the steric hindrance. 
Between the extreme situations (intercalated or 

exfoliated samples), another process was perceived. A 
system with a gel-like aspect is observed when some 
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When heated above 200-250 oC, organic ions experience an 
oxidative decomposition producing carbon dioxide; in the case 
of niobate samples containing tpa+, a Hofmann elimination 
is also observed. Hexaniobate-R

4
N+ deposited solids have 

plate-like particles, as expected for the non-exfoliated 
layered hexaniobate. However, stich-like particles are also 
observed when H

2
K

2
Nb

6
O

17
 is kept in solutions containing 

the larger tpa+ and tba+ ions. Considering the amount of 
hexaniobate that is retained at the bottom of the suspensions 
and the amount that is delaminated (the supernatant colloidal 
dispersion), it is plausible to state that the intercalation 
reaction is promoted in the order tma+ > tea+ > tpa+, 
while formation of niobate nanosheets is facilitated in the 
inverse order: tba+ > tpa+ > tea+ > tma+. 

Samples containing intercalated tea+ ions form a gel-
like system when washed to remove the non-intercalated 
ions dissolved in water. Experimental data suggest that 
the gel phase is not constituted by exfoliated particles but 
by disorganized and long-range swelled particles. This 
fact was interpreted as a consequence of the intermediate 
characteristics (surface polarity and ion radius) of the tea+ 
ions compared to the others ions investigated in this study.

Supplementary Information 

Supplementary data (Tables S1-S3) are available free 
of charge at http://jbcs.sbq.org.br, as a pdf file.
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Table S1. Estimated composition of hexaniobate-tma+ deposited solids

Sample C (%) H (%) N (%) Water (%)

tma(0.25)dep
[(CH

3
)

4
N+]

0.42
H

1.58
K

2
Nb

6
O

17
·2.4H

2
O

2.05
(1.94)a

1.16
(1.10)

0.60
(0.48)

4.40
(4.44)

tma(0.50)dep
[(CH

3
)

4
N+]

0.95
H

1.05
K

2
Nb

6
O

17
·3H

2
O

4.41
(4.43)

1.79
(1.80)

1.29
(1.15)

5.23
(5.38)

tma(0.75)dep
[(CH

3
)

4
N+]

1.05
H

0.95
K

2
Nb

6
O

17
·3H

2
O

4.85
(4.83)

1.88
(1.93)

1.41
(1.24)

5.19
(5.33)

tma(1.0)dep
[(CH

3
)

4
N+]

1.05
H

0.95
K

2
Nb

6
O

17
·2.8H

2
O

4.86
(4.90)

1.85
(1.90)

1.42
(1.16)

4.86
(4.91)

a) experimental data.

Table S2. Estimated composition of hexaniobate-tea+ deposited solids

Sample C (%) H (%) N (%) Water (%)

tea(0.25)dep
[(CH

3
CH

2
)

4
N+]

0.48
H

1.52
K

2
Nb

6
O

17
·2.8H

2
O

4.51
(4.69)a

1.65
(1.38)

0.66
(0.71)

4.94
(4.95)

tea(0.50)dep
[(CH

3
CH

2
)

4
N+]

0.62
H

1.38
K

2
Nb

6
O

17
·3.7H

2
O

5.63
(5.39)

2.02
(1.59)

0.82
(0.71)

6.3
(6.2)

tea(0.75)dep
[(CH

3
CH

2
)

4
N+]

0.56
H

1.44
K

2
Nb

6
O

17
·3.2H

2
O

5.18
(5.30)

1.85
(1.41)

0.75
(0.91)

5.55
(5.46)

tea(1.0)dep
[(CH

3
CH

2
)

4
N+]

0.56
H

1.44
K

2
Nb

6
O

17
·3.2H

2
O

5.18
(5.24)

1.85
(1.37)

0.75
(0.72)

5.54
(5.49)

a) experimental data.

Table S3. Estimated composition of hexaniobate-tpa+ deposited solids

Sample C (%) H (%) N (%) Water (%)

tpa(0.25)dep
[(CH

3
CH

2
CH

2
)

4
N+]

0.09
H

1.91
K

2
Nb

6
O

17
·1.6H

2
O

1.36
(1.39)a

0.80
(0.56)

0.13
(0.03)

3.00
(3.27)

tpa(0.50)dep
[(CH

3
CH

2
CH

2
)

4
N+]

0.25
H

1.75
K

2
Nb

6
O

17
·1.6H

2
O

3.66
(3.68)

1.21
(1.11)

0.36
(0.28)

2.92
(2.94)

tpa(0.75)dep
[(CH

3
CH

2
CH

2
)

4
N+]

0.29
H

1.71
K

2
Nb

6
O

17
·1.5H

2
O

4.22
(4.28)

1.30
(1.16)

0.41
(0.40)

2.73
(2.78)

tpa(1.0)dep
[(CH

3
CH

2
CH

2
)

4
N+]

0.31
H

1.69
K

2
Nb

6
O

17
·1.6H

2
O

4.48
(4.54)

1.36
(1.27)

0.44
(0.49)

2.89
(3.00)

a) experimental data.


